
Notions of representability for cylindric algebras–some algebras

are more representable than others

Tarek Sayed Ahmed
Department of Mathematics, Faculty of Science,

Cairo University, Giza, Egypt.

Abstract . The theory of cylindric algebras was introduced by Tarski in the fifties of the 20th
century, and its intensive study was further pursued by pioneers such as Henkin and Monk and, by the
Hungarian mathematicians Andréka, Németi and Sain, and many of their students; to name only a few:
Madarász, Marx, Kurucz, Simon, Mikulás, and Sági and many others (outside Hungary) including the
author of this paper, where we introduce and investigate new notions of representability for cylindric
algebras and investigate various connections between such notions. Let 2 < n ≤ l < m ≤ ω. Let CAn

denote the variety of cylindric algebras of dimension n and let RCAn denote the variety of representable
CAns. We say that an atomic algebra A ∈ CAn has the complex neat embedding property up to l
and m if A ∈ RCAn ∩ NrnCAl and CmAtA ∈ SNrnCAm. Fixing the prarameters l at the value n, this
is a measure of how much the algebra is representable. The yardstick is how far can its Dedekind-
MacNeille completion be dilated, that is to say, counting the number of more extra dimensions its
Dedekind-MacNeille completion neatly embeds into. If A,B ∈ RCAn are atomic, CmAtB ∈ SNrnCAl

and CmAtA ∈ SNrnCAm, then we say that A is more representable than B. When m = ω, we say that
A is strongly representable; this is the maximum degree of representability; the algebra in question
cannot be ‘more representable’ than that. In this case the atom structure of A, namely AtA, is strongly
representable in the sense of Hirsch and Hodkinson. This notion gives an infinite potential spectrum of
’degrees’ of representability. In this connection, we exhibit various atomic algebras in RCAn ∩NrnCAl

that do no not have the complex neat embedding property for infinitely many values of l and m. It
is known that the class of Kripke frames Str(RCAn) = {F : CmF ∈ RCAn} is not elementary. From
this it follows that there is some n < m < ω such that Str(SNrnCAm) = {F : CmF ∈ SNrnCAm} is not
elementary. Replacing S by Sc (forming complete subalgebras), Sd (forming dense subalgebras) and
I (forming isomorphic copies), respectively, we show that for any O ∈ {Sc,Sd, I}, the class of frames
Str(ONrnCAn+3) = {F : CmF ∈ ONrnCAn+3} is not elementary. Metalogical applications are given
to n-variable fragments of first order logic endowed wth so-called clique guarded semantics. The last
semantics capture the new notions of representations introduced and studied in this paper. 1

1 Introduction

It is well known that every Boolean algebra (satisfying a finite set of equations) is isomorphic
to a field of sets, that is to say, every Boolean algebra is representable in some concrete sense,
where the Boolean meets and joins are intepreted respectively as set theoretic intersections
and unions. This result, betten known in the literature as Stone’s Theorem, is equivalent (in
ZFC) to the completeness of propositional logic. But in the case of cylindric and polyadic
algebras of various dimensions the ‘representation problem’ is somewhat more involved. For
example not every cylindric algebra of dimension > 1 is representable as a genuine field of sets
with cylindrifications interpreted as forming cylinders, and in fact, the class of representable
cylindric algebras of dimension > 2, though a variety, cannot be axiomatized by finite schema

1Mathematics Subject Classification 03G15, 03B45, 05C15
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of equations. Nevertheless, Tarski proved that in certain significant cases, the finitely many
cylindric algebra axioms may be adequate and strong enough to enforce representability.

In this connection, Tarski proved that every locally finite dimensional cylindric algebra of
infinite dimension is representable, and this, in turn, is equivalent to the completeness theorem
of first order logic proved earlier by Malcev and Henkin (who generalized Gödel’s original
completeness proof for only countable first order languages using the technique of Skolem
functions). Here the condition of ‘local finite dimensional’ is an algebraic condition reflecting
the fact that formulas considered have finite length. The condition of being locally finite
dimensional is not a first order one, nor can it indeed be replaced equivalently by a condition
that is first order definable, because it can be quite easily shown that the ultraproduct of
locally finite dimensional cylindric algebras (of infinite dimension) may not be locally finite
dimensional.

In the realm of representable algebras, there are several types of representations. Ordi-
nary representations are just isomorphisms from Boolean algebras with operators to a more
concrete structure (having the same signature) whose elements are sets endowed with set-
theoretic operations like intersection and complementation and forming cylinders. Complete
representations, on the other hand, are representations that preserve arbitrary conjunctions
whenever defined. More generally consider the following question: Given an algebra and a set
of meets, is there a representation that carries this set of meets to set theoretic intersections?
A complete representation would thus be one that preseves all existing meets (finite of course
and infinite). Here we are assuming that our semantics is specified by set algebras, with the
concrete Boolean operation of intersection among its basic operations.

When the algebra in question is countable, and we have only countably many meets; this is
an algebraic version of an omitting types theorem; the representation omits the given set meets
or non-principal types. When the algebra in question is atomic, then a representation omitting
the non-principal type consisting of co-atoms, turns out to be a complete representation. This
follows from the following result due to Hirsch and Hodkinson: A Boolean algebra A has a
complete representation f : A → ⟨℘(X),∪,∩,∼, ∅, X⟩ (f is a 1-1 homomorphism and X a
set) ⇐⇒ A atomic and

∪
x∈AtA f(x) = X, where AtA is the set of atoms of A. The notion of

complete representations has been linked to the algebraic notion of atom-canonicity (a well
known persistence property in modal logic) and to the metalogical notions of Martin’s axiom,
omitting types theorems and the existence of atomic models for atomic theories in various
fragments and extensions of first order logic [14, 16].

On the face of it, the notion of complete representations seems to be strikingly a second
order one. This intuition is confirmed in [6] where it is proved that the classes of completely
representable cylindric algebras of dimension at least three and that of relation algebras are
not elementary. These results were proved by Hirsch and Hodkinson using so-called rainbow
algebras [6]; in this paper we present entirely different proofs for all such results and some
more closely related ones using so called Monk-like algebras. Our proof depends essentially
on some form of an infinite combinatorial version of Ramsey’s Theorem. But running to such
conclusions–concerning (non-)first order definablity– can be reckless and far too hasty; for
in other non-trivial cases the notion of complete representations turns not to be a genuinely
second order one; it is definable in first order logic.

The class of completely representable Boolean algebras is elementary; it simply coincides
with the atomic ones. A far less trivial example is the class of completely representable infi-
nite dimensional polyadic algebras; it coincides with the class of atomic, completely additive
algebras. It is not hard to show that, like atomicity, complete additivity for atomic algebras
can indeed be defined in first order logic as is explained in detail in [15]. Complete additivity
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of extra Boolean operations defined on atomic algebras is a notion that can be captured in
first order logic; and surprisingly quite simply [15]. It is commonly accepted that the cylin-
dric paradigm and polyadic paradigm belong to different worlds, often exhibiting condflicting
behaviour, with the last highlighted by the presence of the operations of substitutions [4] that
occur in polyadic jargon under the name of transformation systems.

The elementary closure of the class of completely representable relation and cylindric
algebras of dimension > 2 has been studied in some depth by Hirsch and Hodkinson. This
class is characterized by the so-called Lyndon conditions. For each k, there is a kth Lyndon
condition, ρk which is a first order senternce coding a winning strategy in a zero-sum k-
rounded Ehrenfeucht–Fräıssé game between two players ∃ and ∀ ; the ρks taken together
axiomatize this class. All of the ρks are needed for the axiomatization of this class, for it is
not finitely axiomatizable.

Fix finite n > 2. Let CRCAn denote the class of completely representable CAns and
LCAn = ElCRCAn be the class of algebras satisfying the Lyndon conditions. For a class K
of Boolean algebras with operators, let K ∩At denote the class of atomic algebras in K. By
modifying the games coding the Lyndon conditions allowing ∀ to reuse the pebble pairs on
the board, we will show that LCAn = ElCRCAn = ElScNrnCAω ∩ At. Define A ∈ CAn to
be strongly representable ⇐⇒ A is atomic and the complex algebra of its atom structure,
equivalently its Dedekind-MacNeille completion, in symbols CmAtA is in RCAn. This is a
strong form of representability; of course A itself will be in RCAn, because A embeds into
CmAtA and RCAn is a variety, a fortiori closed under forming subalgebras. We denote the
class of strongly representable atomic algbras of dimension n by SRCAn. Nevertheless, there
are atomic simple countable algebras that are representable, but not strongly representable.
In fact, we shall see that there is a countable simple atomic algebra in RCAn such that
CmAtA /∈ SNrnCAn+3(⊃ RCAn).

So in a way some algebras are more representable than others. In fact, the following
inclusions are known to hold:

CRCAn ( LCAn ( SRCAn ( RCAn ∩At.

In this paper we delve into a new notion, that of degrees of representability. Not all algebras
are representable in the same way or strength. If C ⊆ NrnD, with D ∈ CAm for some ordinal
(possibly infinite) m, we say that D is an m-dilation of C or simply a dilation if m is clear from
context. Using this jargon of ’dilating algebras’ we say that A ∈ RCAn is strongly representable
up to m > n ⇐⇒ CmAtA ∈ SNrnCAm. This means that, though A itself is in RCAn, the
Dedekind-MacNeille completion of A is not representable, but nevertheless it has some neat
embedding property; it is ‘close’ to bieng representable. Using this jargon, A admits a dilation
of a bigger dimension. The bigger the dimension of the dilation of the representable algebra
the more representable the algebra is, the closer it is to being strongly representable. Through
the unfolding of this paper, we will investigate and make precise the notion of an algebra being
more representable than another. It is known that LCAn is an elementary class, but SRCAn is
not. We shall prove below that Str(ONrnCAn+3 = {F : CmF ∈ ONrnCAn+3} is not elementary
with O ∈ Sc, Sd, I as defind in the abstract.

Layout: After the preliminaries, we show that there exists an atomic, countable and
simple A ∈ RCAn, such that its Dedekind-MacNeille completion, namely, the complex algebra
of its atom structure, briefly CmAtA, is outside the variety SNrnCAn+3, cf. Theorem 3.2.
For any 2 < n < l < ω, we show there exists an atomic algebra B ∈ NrnCAl ∩ RCAn, such
that its Dedekind-MacNeille completion CmAtB is not representable, cf. Theorem 3.5. We
show that there is an atomic algebra E ∈ RCAn such that its Dedekind-MacNeille completion
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CmAtE is in NrnCAω, but the algebra E itself, is not even in NrnCAn+1, cf. Theorem 3.6. We
show that for 2 < n < ω a version of the omitting types fails for Ln ‘almost everywhere’–
a notion to be made precise. We show that for any O ∈ {Sc,Sd, I}, the class of frames
Str(ONrnCAn+3) = {F : CmF ∈ ONrnCAn+3} is not elementary, cf. Theorem 5.5. Our proof
constructs a completely representable algebra B and an atomic representable algebra C such
that AtB ∈ AtNrnCAω, CmAtB ∈ NrnCAω, B ≡ C and C /∈ ScNrnCAn+3, cf. Theorem 5.4.
We relate notions of representablity formulated for atomic algebras such as, complete, strong,
weak, and satisfying the Lyndon condition, to atomic algebras having special neat embedding
properties, cf. Theorems 6.1, 6.3, 6.3.

2 Preliminaries

We follow the notation of [1] which is in conformity with the notation in the monograph [5].
In particular, for any pair of ordinal α < β, NrαCAβ(⊆ CAα) denotes the class of α–neat
reducts of CAβs. The last class is studied extensively in the chapter [13] of [1] as a key notion
in the representation theory of cylindric algebras.

Definition 2.1. Assume that α < β are ordinals and that B ∈ CAβ. Then the α–neat
reduct of B, in symbols NrαB, is the algebra obtained from B, by discarding cylindrifiers
and diagonal elements whose indices are in β \ α, and restricting the universe to the set
NrαB = {x ∈ B : {i ∈ β : cix ̸= x} ⊆ α}.

It is straightforward to check that NrαB ∈ CAα. Let α < β be ordinals. If A ∈ CAα and
A ⊆ NrαB, with B ∈ CAβ, then we say that A neatly embeds in B, and that B is a β–dilation
of A, or simply a dilation of A if β is clear from context. For K ⊆ CAβ, we write NrαK for
the class {NrαB : B ∈ K}.

Let 2 < n < ω. Following [5], Csn denotes the class of cylindric set algebras of dimension
n, and Gsn denotes the class of generalized cylindric set algebra of dimension n; C ∈ Gsn,
if C has top element V a disjoint union of cartesian squares, that is V =

∪
i∈I

nUi, I is
a non-empty indexing set, Ui ̸= ∅ and Ui ∩ Uj = ∅ for all i ̸= j. The operations of C
are defined like in cylindric set algebras of dimension n relativized to V . It is known that
IGsn = RCAn = SNrnCAω =

∩
k∈ω SNrnCAn+k. We often identify set algebras with their

domain referring to an injection f : A → ℘(V ) (A ∈ CAn) as a complete representation of A
(via f) where V is a Gsn unit.

Definition 2.2. An algebra A ∈ CAn is completely representable ⇐⇒ there exists C ∈ Gsn,
and an isomorphism f : A → C such that for all X ⊆ A, f(

∑
X) =

∪
x∈X f(x), whenever∑

X exists in A. In this case, we say that A is completely representable via f .

It is known that A is completely representable via f : A → C, where C ∈ Gsn has top
element V say ⇐⇒ A is atomic and f is atomic in the sense that f(

∑
AtA) =

∪
x∈AtA f(x) =

V [6]. We denote the class of completely representable CAns by CRCAn. To define certain
deterministic games to be used in the sequel, we recall the notions of atomic networks and
atomic games [7, 8]. Let i < n. For n–ary sequences x̄ and ȳ ⇐⇒ ȳ(j) = x̄(j) for all j ̸= i.

Definition 2.3. Fix finite n > 2 and assume that A ∈ CAn is atomic.
(1) An n–dimensional atomic network on A is a map N : n∆ → AtA, where ∆ is a non–

empty set of nodes, denoted by nodes(N), satisfying the following consistency conditions for
all i < j < n:
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• If x̄ ∈ nnodes(N) then N(x̄) ≤ dij ⇐⇒ xi = xj ,

• If x̄, ȳ ∈ nnodes(N), i < n and x̄ ≡i ȳ, then N(x̄) ≤ ciN(ȳ).

For n–dimensional atomic networks M and N , we write M ≡i N ⇐⇒ M(ȳ) = N(ȳ) for all
ȳ ∈ n(n ∼ {i}).

(2) Assume that m, k ≤ ω. The atomic game Gm
k (AtA), or simply Gm

k , is the game played
on atomic networks of A using m nodes and having k rounds [8, Definition 3.3.2], where ∀ is
offered only one move, namely, a cylindrifier move: Suppose that we are at round t > 0. Then
∀ picks a previously played network Nt (nodes(Nt) ⊆ m), i < n, a ∈ AtA, x ∈ nnodes(Nt), such
that Nt(x̄) ≤ cia. For her response, ∃ has to deliver a network M such that nodes(M) ⊆ m,
M ≡i N , and there is ȳ ∈ nnodes(M) that satisfies ȳ ≡i x̄ and M(ȳ) = a. We write Gk(AtA),
or simply Gk, for G

m
k (AtA) if m ≥ ω.

(3) The ω–rounded game Gm(AtA) or simply Gm is like the game Gm
ω (AtA) except that

∀ has the option to reuse the m nodes in play.

Let 2 < n < m ≤ ω. The notion of an algebra A having signature CAn possesing an m-
square representation is define in detail [16]. An m-square representation only locally classic.
Given 2 < l < m ≤ ω, an m - square representation is l-square but the converse may fail
dramatically. An ω-square rpresentation–the limiting case-is an ordinary representation, such
a representation is m-square for each finite m. Roughly, if we zoom in by a movable window
to an m-square represention, there will come a point determined by the parameter m, were
we mistake this locally classic represenation for a genuine ordinary Tarskian one. However,
when we zoom out ’contradictions’ reappear. We will return to such issues in some detail in
a moment. The following lemma is proved in [17, Lemma 4.6] and [16, Lemma 5.8].

Lemma 2.4. Let 2 < n < m ≤ ω.

1. If A ∈ CAn is finite and A has an m- square representation, then ∃ has a winning
strategy in Gm(AtA)

2. If A ∈ ScNrnCAm, then ∀ has a winning strategy in Gm(AtA).

In our proof we use a variation on a rainbow constructions; in this we follow [6, 8]. Fix
2 < n < ω. Given relational structures G (the greens) and R (the reds) the rainbow atom
structure of a CAn consists of equivalence classes of surjective maps a : n → ∆, where ∆ is
a coloured graph. A coloured graph is a complete graph labelled by the rainbow colours, the
greens g ∈ G, reds r ∈ R, and whites; and some n−1 tuples are labelled by ‘shades of yellow’. In
coloured graphs certain triangles are not allowed for example all green triangles are forbidden.
A red triple (rij , rj′k′ , ri∗k∗) i, j, j

′, k′, i∗, k∗ ∈ R is not allowed, unless i = i∗, j = j′ and k′ = k∗,
in which case we say that the red indices match, cf.[6, 4.3.3]. The equivalence relation relates
two such maps ⇐⇒ they essentially define the same graph [6, 4.3.4]. We let [a] denote the
equivalence class containing a. For 2 < n < ω, we use the graph version of the usual atomic
ω–rounded game Gm

ω (α) with m nodes, played on atomic networks of the CAn atom structure
α. The game Gm(β) where β is a CAn atom structure is like Gm

ω (AtA) except that ∀ has the
option to reuse the m nodes in play. We use the ‘graph versions’ of these games as defined [6,
4.3.3]. The (complex) rainbow algebra based on G and R is denoted by AG,R. The dimension
n will always be clear from context.
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3 Degrees of representability

.
Recall that Sc denotes the operation of forming complete subalgebras and Sd is the op-

eration of forming dense subalgebras. We let I denote the operation of forming isomorphic
images. For any class K of BAOs, it is easy to check that IK ⊆ SdK ⊆ ScK. (It is not hard to
show that if K is the class of Boolean algebras, that is to say, without extra operations, then
the above two inclusions are proper.)

Definition 3.1. Let 2 < n ≤ l < m ≤ ω. Let O ∈ {S,Sd,Sc, I}

(1) An algebra A ∈ CAn has the O neat embedding property up to m if A ∈ ONrnCAm.
If m = ω and O = S, we say that A has the neat embedding property. Observe that the
last condtion is equivalent to that A ∈ RCAn

(2) An atomic A ∈ CAn has the complex O neat embeddng property up to m if CmAtA ∈
ONrnCAm. The word ‘complex’ in the present context referes to involving the Dedekind-
MacNeille completion obtained by forming the complex algebra of the atom structure–in
the definition at hand.

(3) An atomic algebra A ∈ RCAn is it strongly representable up l and m if A ∈ RCAn ∩
NrnCAl and CmAtA ∈ SNrnCAm. If l = n and m = ω, we say that A is strongly
representable.

In out first two main theorems, cf. Theorem 3.2, 3.5, we use a so-called blow up and blur
construction. We find it useful to give the gist of the idea to make it easier for the reader–for
the idea in essence is really simple and subtle, but may be overshadowed by the details of the
specific otherwise possibly complicated construction at hand.

General Idea: The idea of a blow up and blur construction in (more than in) a nut shell
is the following. Let 2 < n < ω.

• Assume that RCAn ⊆ K ⊆ CAn, and that SK = K, that is K is closed under forming
subalgebras. The purpose is to show that K is not closed under Dedekind-MacNeille
completions also known as Monk-minimal completions.

• One starts with an atomic algebra C ∈ CAn (usually finite) outside K. Then one blows
up and blur C, by splitting some of its atoms each to infinitely many, getting a new
infinite atom structure At. In this process a (finite) set of ‘blurs’ are involved in a way
to be clarified in a moment. These blurs do not blur the complex algebra CmAt, in the
sense that C is ‘there on this global level’, C embeds into CmAt.

• Thus the algebra CmAt will not be in K because C /∈ K, C ⊆ CmAt and SK = K. The
completeness (existence of arbitray joins) of the complex algebra plays a major role,
because every splitted atom of C, is mapped to the join of its splitted copies which exist
in CmAt, because it is complete; the other atoms are mapped to themselves. These
precarious joins prohibiting membership in K do not exist in the term algebra TmAt,
the subalgebra of CmAt generated by the atoms, because it is not complete; only joins
of finite or cofinite subsets of the atoms do, so that now ‘blurs’ blur C on the level of
the term algebra; more succintly, C does not embed in TmAt.
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• In fact, it can (and will be) be arranged that TmAt will not only be in K, but actually
it will be in (the possibly smaller) class RCAn. This is where the blurs play another
crucial role. Basically including essentially non-principal ultrafilters, the blurs, together
with the principal ultrafilters generated by the atoms in At will be used as colours to
represent TmAtA as an algebra of genuine n-ary relations with concrete set theoreic
operations. In the process of representation, one cannot use only principal ultrafilters,
because TmAt cannot be completely representable; for else this induces a representation
of CmAtA.

• But using the blurs one can actually completely represent (TmAt)+ the canonical ex-
tension of TmAt. Concluding we get an atom structure At that is only weakly repre-
sentable, that is to say, TmAt ∈ RCAn, but not strongly representable, that is to say,
CmAt /∈ RCAn.

Let us get more concrete giving some specific examples to this subtle construction that
proves highly efficient in proving non–atom canonicity.

Theorem 3.2. Let 2 < n < ω. There exists an atomic, countable and simple A ∈ RCAn

(i.e. A has the neat embedding property), but A does not have the complex S neat embedding
property up to m for any m ≥ n+ 3.

Proof. The proof is divided into four parts:
1: Blowing up and blurring a finite rainbow algebra forming a weakly repre-

sentable atom structure At: Take the finite rainbow CAn, An+1,n where the reds R is the
complete irreflexive graph n, and the greens are {gi : 1 ≤ i < n − 1} ∪ {gi0 : 1 ≤ i ≤ n + 1}.
We will show An+1,n detects that RCAn is not atom-canonical with respect to SNrnCAn+3.
Denote the finite atom structure of An+1,n by Atf ; so that Atf = At(An+1,n). One then
replaces the red colours of the finite rainbow algebra of An+1,n each by infinitely many reds
(getting their superscripts from ω), obtaining this way a weakly representable atom structure
At. The cylindric reduct of the resulting atom structure after ‘splitting the reds’, namely, At,
is like the weakly (but not strongly) representable atom structure of the atomic, countable
and simple algebra A as defined in [10, Definition 4.1]; the sole difference is that we have n+1
greens and not ω–many as is the case in [10]. One then defines a larger the class of coloured
graphs like in [10, Definition 2.5]. Let 2 < n < ω. Then the colours used are like above except
that each red is ‘split’ into ω many having ‘copies’ the form rlij with i < j < n and l ∈ ω,
with an additional shade of red ρ such that the consistency conditions for the new reds (in
addition to the usual rainbow consistency conditions) are as follows:

• (rijk, r
i
j′k′ , r

i∗
j∗k∗) unless i = i′ = i∗ and |{(j, k), (j′, k′), (j∗, k∗)}| = 3

• (r, ρ, ρ) and (r, r∗, ρ), where r, r∗ are any reds.

The consistency conditions can be coded in an Lω,ω theory T having signture the reds with
ρ together with all other colours like in [8, Definition 3.6.9]. The theory T is only a first
order theory (not an Lω1,ω theory) because the number of greens is finite which is not the
case with [8] where the number of available greens are countably infinite coded by an infinite
disjunction. One construct an n-homogeneous model M is as a countable limit of finite models
of T using a game played between ∃ and ∀like in [10, Theorem 2.16]. In the rainbow game ∀
challenges ∃ with cones having green tints (gi0), and ∃ wins if she can respond to such moves.
This is the only way that ∀ can force a win. ∃ has to respond by labelling appexes of two
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succesive cones, having the same base played by ∀. By the rules of the game, she has to use
a red label. She resorts to ρ whenever she is forced a red while using the rainbow reds will
lead to an inconsistent triangle of reds; [10, Proposition 2.6, Lemma 2.7]. The number of
greens make [10, Lemma 3.10] work with the same proof using only finitely many green and
not infinitely many. The winning strategy implemented by ∃ using the red label ρ that comes
to her rescue whenever she runs out of ‘rainbow reds’, so she can always and consistently
respond with an extended coloured graph.

We denote the resulting term CAn, TmAt by Bb(An+1,n, r, ω) short hand for blowing up
and blurring An+1,n by splitting each red graph (atom) into ω many. It can be shown exactly
like in [10] that ∃ can win the rainbow ω–rounded game and build an n–homogeneous model
M by using a shade of red ρ outside the rainbow signature, when she is forced a red; [10,
Proposition 2.6, Lemma 2.7]. The n-homogeniuty entails that any subgraph (substructure) of
M of size ≤ n, is independent of its location in M; it is uniquely determined by its isomorphism
type.

In the present context, after the splitting ‘the finitely many red colours’ replacing each such
red colour rkl, k < l < n by ω many rikl, i ∈ ω, the rainbow signature for the resulting rainbow
theory as defined in [7, Definition 3.6.9] call this theory Tra, consists of gi : 1 ≤ i < n − 1,
gi0 : 1 ≤ i ≤ n + 1, wi : i < n − 1, rtkl : k < l < n, t ∈ ω, binary relations, and n − 1 ary
relations yS , S ⊆ω n + k − 2 or S = n + 1. The set algebra Bb(An+1,n, r, ω) of dimension n
has base an n–homogeneous model M of another theory T whose signature expands that of
Tra by an additional binary relation (a shade of red) ρ. In this new signature T is obtained
from Tra by some axioms (consistency conditions) extending Tra. Such axioms (consistency
conditions) specify consistent triples involving ρ. We call the models of T extended coloured
graphs. In particular, M is an extended coloured graph.

To build M, the class of coloured graphs is considered in the signature L ∪ {ρ} like in
uual rainbow constructions as given above with the two additional forbidden triples (r, ρ, ρ)
and (r, r∗, ρ), where r, r∗ are any reds. Let GG be the class of all models of this extended
rainbow first order theory. The extra shade of red ρ will be used as a label. This model M is
constructed as a countable limit of finite models of T using a game played between ∃ and ∀.
Here, unlike the extended Lω1,ω theory dealt with in [10], T is a first order one because the
number of greens used are finite.

In the rainbow game [6, 7] ∀ challenges ∃ with cones having green tints (gi0), and ∃ wins if
she can respond to such moves. This is the only way that ∀ can force a win. ∃ has to respond
by labelling appexes of two succesive cones, having the same base played by ∀. By the rules of
the game, she has to use a red label. She resorts to ρ whenever she is forced a red while using
the rainbow reds will lead to an inconsitent triangle of reds; [10, Proposition 2.6, Lemma 2.7].
The winning strategy is implemented by ∃ using the red label ρ that comes to her rescue
whenever she runs out of ‘rainbow reds’, so she can always and consistently respond with an
extended coloured graphs.

2. Representing a term algebra (and its completion) as (generalized) set alge-
bras: Having M at hand, one constructs two atomic n–dimensional set algebras based on M,
sharing the same atom structure and having the same top element. The atoms of each will
be the set of coloured graphs, seeing as how, quoting Hodkinson [10] such coloured graphs
are ‘literally indivisible’. Now Ln and Ln

∞,ω are taken in the rainbow signature (without ρ).
Continuing like in op.cit, deleting the one available red shade, set W = {ā ∈ nM : M |=
(
∧

i<j<n ¬ρ(xi, xj))(ā)}, and for ϕ ∈ Ln
∞,ω, let ϕ

W = {s ∈ W : M |=W ϕ[s]}. Here W is the
set of all n–ary assignments in nM, that have no edge labelled by ρ and |=W is first order
emantics with quantifiers relativized to W , cf. [10, §3.2 and Definition 4.1]. We note that ρ
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is used by ∃ infinitely many times during the game forming a ‘red clique’ in M [10].
Let A be the relativized set algebra with domain {φW : φ a first-order Ln − formula}

and unit W , endowed with the usual concrete cylindric operations read off the connectives.
Classical semantics for Ln rainbow formulas and their semantics by relativizing to W coincide
[10, Proposition 3.13] but not with respect to Ln

∞,ω rainbow formulas. Hence the set algebra A
is isomorphic to a cylinric set algebra of dimension n having top element nM, so A is simple,
in fact its Df reduct is simple.

Let E = {ϕW : ϕ ∈ Ln
∞,ω} [10, Definition 4.1] with the operations defined like on A the

usual way. CmAt is a complete CAn and, so like in [10, Lemma 5.3] we have an isomorphism
from CmAt to E defined via X 7→

∪
X. Since AtA = AtTm(AtA), which we refer to only

by At, and TmAtA ⊆ A, hence TmAtA = TmAt is representable. The atoms of A, TmAtA
and CmAtA = CmAt are the coloured graphs whose edges are not labelled by ρ. These atoms
are uniquely determined by the interpretion in M of so-called MCA formulas in the rainbow
signature of At as in [10, Definition 4.3].

3. Embedding An+1,n into Cm(At): Let CRGf be the class of coloured graphs on Atf
and CRG be the class of coloured graph on At. We can (and will) assume that CRGf ⊆ CRG.
Write Ma for the atom that is the (equivalence class of the) surjection a : n→M , M ∈ CGR.
Here we identify a with [a]; no harm will ensue. We define the (equivalence) relation ∼ on
At by Mb ∼ Na, (M,N ∈ CGR) :

• a(i) = a(j)⇐⇒ b(i) = b(j),

• Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω,

• Ma(a(i), a(j)) = Nb(b(i), b(j)), if they are not red,

• Ma(a(k0), . . . , a(kn−2)) = Nb(b(k0), . . . , b(kn−2)), whenever defined.

We say that Ma is a copy of Nb if Ma ∼ Nb (by symmetry Nb is a copy of Ma.) Indeed,
the relation ‘copy of’ is an equivalence relation on At. An atom Ma is called a red atom,
if Ma has at least one red edge. Any red atom has ω many copies, that are cylindrically
equivalent, in the sense that, if Na ∼ Mb with one (equivalently both) red, with a : n → N
and b : n → M , then we can assume that nodes(N) = nodes(M) and that for all i < n,
a � n ∼ {i} = b � n ∼ {i}. In CmAt, we write Ma for {Ma} and we denote suprema taken in
CmAt, possibly finite, by

∑
. Define the map Θ from An+1,n = CmAtf to CmAt, by specifing

first its values on Atf , via Ma 7→
∑

j M
(j)
a where M

(j)
a is a copy of Ma. So each atom maps

to the suprema of its copies.
This map is well-defined because CmAt is complete. We check that Θ is an injective

homomorphim. Injectivity is easy.. We check preservation of all the CAn extra Boolean
operations.

• Diagonal elements. Let l < k < n. Then:

Mx ≤ Θ(d
CmAtf
lk ) ⇐⇒ Mx ≤

∑
j

∪
al=ak

M (j)
a

⇐⇒ Mx ≤
∪

al=ak

∑
j

M (j)
a

⇐⇒ Mx =M (j)
a for some a : n→M such that a(l) = a(k)

⇐⇒ Mx ∈ dCmAt
lk .
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• Cylindrifiers. Let i < n. By additivity of cylindrifiers, we restrict our attention to atoms
Ma ∈ Atf with a : n→M , and M ∈ CRGf ⊆ CRG. Then:

Θ(c
CmAtf
i Ma) = f(

∪
[c]≡i[a]

Mc) =
∪

[c]≡i[a]

Θ(Mc)

=
∪

[c]≡i[a]

∑
j

M (j)
c =

∑
j

∪
[c]≡i[a]

M (j)
c =

∑
j

cCmAt
i M (j)

a

= cCmAt
i (

∑
j

M (j)
a ) = cCmAt

i Θ(Ma).

4. ∀ has a winning strategy in Gn+3At(An+1,n); and the required result: It is straight-
forward to show that ∀ has winning strategy first in the Ehrenfeucht–Fräıssé forth private
game played between ∃ and ∀ on the complete irreflexive graphs n(n − 1)/2 + 2) and n in

n(n− 1)/2+2 rounds EF
n(n−1)2+2
n(n−1)+2 (n+1, n) [8, Definition 16.2] since n(n− 1)/2+2 is ‘longer’

than n. Using (any) p > n many pairs of pebbles avalable on the board ∀ can win this game
in n + 1 many rounds. For brevity le D = An+1,n. Now ∀ lifts his winning strategy from
the last private Ehrenfeucht–Fräıssé forth game to the graph game on Atf = At(D) [6, pp.
841] forcing a win using n + 3 nodes, i.e in the grapg gmae ∀ need two exra nodes by the
rainbow theorem [7]. By Lemma 2.4, D /∈ ScNrnCAn+3 when 2 < n < ω). Since D is finite,
then D /∈ SNrnCAn+3, because D coincides with its canonical extension and for any D ∈ CAn,
D ∈ SNrnCAm =⇒ D+ ∈ ScNrnCAm. But D embeds into CmAtA, hence CmAtA is outside
the variety SNrnCAn+3, as well.

The following definition to be used in the sequel is taken from [2]:

Definition 3.3. [2, Definition 3.1] Let R be a relation algebra, with non–identity atoms I
and 2 < n < ω. Assume that J ⊆ ℘(I) and E ⊆ 3ω. We say that (J,E) is a strong n–blur for
R if it (J,E) is an n–blur of R in the sense of [2, Definition 3.1], that is to say J is a complex
n blur and E is an index blur such that the complex n–blur satisfies:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

The following defintion will be used frequently. Its first encounter is in the second item of
theorem 4.4. We use the notation in [2].

Definition 3.4. [2, Definition 3.1] Let R be a relation algebra, with non–identity atoms I.
Assume that J ⊆ ℘(I) and E ⊆ 3ω.

1. We say that (J,E) is an n–blur for R, if J is a complex n–blur defined as follows:

(1) Each element of J is non empty,

(2)
∪
J = I,

(3) (∀P ∈ I)(∀W ∈ J)(I ⊆ P ;W ),

(4) (∀V1, . . . Vn,W2, . . .Wn ∈ J)(∃T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ), that is there is
for v ∈ Vi, w ∈Wi and t ∈ T , we have v;w ≤ t.

(5) (∀P2, . . . Pn, Q2, . . . Qn ∈ I)(∀W ∈ J)W ∩ P2;Qn ∩ . . . Pn;Qn ̸= ∅,

and the tenary relation E is an index blur defined as in item (ii) of [2, Definition 3.1].
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2. We say that (J,E) is a strong n–blur, if it (J,E) is an n–blur, such that the complex
n–blur satisfies (4)s:

(∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T )

Theorem 3.5. For any 2 < n < l < ω, there is an atomic algebra B ∈ NrnCAl ∩ RCAn,
but B is not strongly representable up to l and ω. In particular, CmAtB /∈ RCAn, B is not
completely representable a fortiori B is not strongly representable.

Proof. Let 2 < n < m ≤ ω. First we prove the conditionally the non–atom canonicity of
SNrnCAm depending on the existence of certain finite relation algebras R with strong m blur-
satisfying a condition that we highlight as we go along. We use the flexible blow up and blur
construction used in [2]. The idea is to use R in place of the finite Maddux algebras denoted
by Ek(2, 3) on [2, p.83]. Here k(< ω) is the number of non–identity atoms and then take
it from there to reach the conditions, we move backwards if you like. The required algebra
witnessing non–atom canonicity will be obtained by blowing up and blurring R in place of
the relation algebra Ek(2, 3) [2].

Our exposition addresses an (abstract) finite relation algebra R having an l–blur in the
sense of definition [2, Definition 3.1], with 3 ≤ l ≤ k < ω and k depending on l. Occasionally
we use the concrete Maddux algebra Ek(2, 3) to make certain concepts more tangible. We
use the notation in [2]. Let 2 < n ≤ l < ω. One starts with a finite relation algebra R
that has only representations, if any, on finite sets (bases), having an l–blur (J,E) as in [2,
Definition 3.1] recalled in definition 3.4. After blowing up and bluring R, by splitting each
of its atoms into infinitely many, one gets an infinite atomic representable relation algebra
Bb(R, J, E) [2, p.73], whose atom structure At is weakly but not strongly representable. The
atom structure At is not strongly representable, because R is not blurred in CmAt. The finite
relation algebra R embeds into CmAt, so that a representation of CmAt, necessarily on an
infinite base, induces one of R on the same base, which is impossible. The representability of
Bb(R, J, E) depend on the properties of the l–blur, which blurs R in Bb(R, J, E). The set of
blurs here, namely, J is finite. In the case of Ek(2, 3) used in [2], the set of blurs is the set
of all subsets of non–identity atoms having the same size l < ω, where k = f(l) ≥ l for some
recursive function f from ω → ω, so that k depends recursively on l.

One (but not the only) way to define the index blur E ⊆ 3ω is as follows [14, Theorem
3.1.1]: E(i, j, k) ⇐⇒ (∃p, q, r)({p, q, r} = {i, j, k} and r − q = q − p. This is a concrete
instance of an index blur as defined in [2, Definition 3.1(iii)] (recalled in definition 3.4 above),
but defined uniformly, it does not depends on the blurs. The underlying set of At, the atom
structure of Bb(R, J, E) is the following set consisting of triplets: At = {(i, P,W ) : i ∈ ω, P ∈
AtR ∼ {Id},W ∈ J} ∪ {Id}. When R = Ek(2, 3) (some finite k > 0), composition is defined
by singling out the following (together with their Peircian transforms), as the consistent
triples: (a, b, c) is consistent ⇐⇒ one of a, b, c is Id and the other two are equal, or if
a = (i, P, S), b = (j,Q, Z), c = (k,R,W )

S ∩ Z ∩W ̸= ∅ =⇒ E(i, j, k)&|{P,Q,R}| ̸= 1.

(We are avoiding mononchromatic triangles). That is if for W ∈ J , EW = {(i, P,W ) : i ∈
ω, P ∈W}, then

(i, P, S); (j,Q, Z) =
∪
{EW : S ∩ Z ∩W = ∅}∪

{(k,R,W ) : E(i, j, k), |{P,Q,R}| ̸= 1}.
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More generally, for the R as postulated in the hypothesis, composition in At is de-
fined as follow. First the index blur E can be taken to be like above. Now the triple
((i, P, S), (j,Q, Z), (k,R,W )) in which no two entries are equal, is consistent if either S,Z,W
are safe, briefly safe(S,Z,W ), witness item (4) in definition 3.4 (which vacuously hold oif
S ∩ Z ∩ W = ∅), or E(i, j, k) and P ;Q ≤ R in R. This generalizes the above definition
of composition, because in Ek(2, 3), the triple of non–identity atoms (P,Q,R) is consistent
⇐⇒ they do not have the same colour ⇐⇒ |{P,Q,R}| ̸= 1. Having specified its atom
structure, its timely to specfiy the relation algebra Bb(R, J, E) ⊆ CmAt. The relation algebra
Bb(R, J, E) is TmAt (the term algebra). Its universe is the set {X ⊆ H ∪ {Id} : X ∩ EW ∈
Cof(EW ), for all W ∈ J}, where Cof(EW ) denotes the set of co–finite subsets of EW , that is
subsets of EW whose complement is infinite, with EW as defined above. The relation algebra
operations lifted from At the usual way. The algebra Bb(R, J, E) is proved to be representable
[2].

For brevity, denote Bb(R, J, E) by R, and its domain by R. For a ∈ At, and W ∈ J, set
Ua = {X ∈ R : a ∈ X} and UW = {X ∈ R : |X ∩ EW | ≥ ω}. Then the principal ultrafilters
of R are exactly Ua, a ∈ H and UW are non-principal ultrafilters for W ∈ J when EW is
infinite. Let J ′ = {W ∈ J : |EW | ≥ ω}, and let Uf = {Ua : a ∈ F} ∪ {UW : W ∈ J ′}.
Uf is the set of ultrafilters of R which is used as colours to represent R, cf. [2, pp. 75-77].
The representation is built from coloured graphs whose edges are labelled by elements in Uf
in a fairly standard step–by–step construction. The step–by–step construction builds in the
way coloured graphs, which are basically networks whose edges are labelled by ultrafilters,
with non–principal ultrafilters allowed. So such coloured graphs are networks that are not
atomic because not only principal ultrafilters are allowed as labels. Furthermore, we cannot
restrict our attension to only atomic networks because we do not want Bb(R, J, E) to be
strongly representable, least completely representable. The ‘limit’ of a sequence of atomic
networks constructed in a step-by–step manner, or obtained via winning strategy strategy
for ∃ in an ω–rounded atomic game, will necessarily produce a complete representation of
Bb(R, J, E). But the required representation will be extracted from a complete representation
of the canonical extension of Bb(R, J, E). Nothing wrong with that. A relation algebra R is
representable ⇐⇒ its canonical extension is representable. A complete representation of the
canonical extension of R induces a representation of R, because R embeds into its a canonical
extension, but the converse is not necessarily true. So here we are proving more than the
mere representablity of Bb(R, J, E), because we are constructing a complete representation
of its canonical extension, namely, the algebra CmUf , where Uf is the atom structure having
domain Uf, with Uf as defined above.

Now we show why the Dedekind-MacNeille completion CmAt is not representable. For
P ∈ I, let HP = {(i, P,W ) : i ∈ ω,W ∈ J, P ∈ W}. Let P1 = {HP : P ∈ I} and
P2 = {EW :W ∈ J}. These are two partitions of At. The partition P2 was used to represent,
Bb(R, J, E), in the sense that the tenary relation corresponding to composition was defined on
At, in a such a way so that the singletons generate the partition (EW :W ∈ J) up to “finite
deviations.” The partition P1 will now be used to show that Cm(Bb(R, J, E)) = Cm(At)
is not representable. This follows by observing that omposition restricted to P1 satisfies:
HP ;HQ =

∪
{HZ : Z;P ≤ Q in R} which means that R embeds into the complex algebra

CmAt prohibiting its representability, because R allows only representations having a finite
base.

The construction lifts to higher dimensions expressed in CAns, 2 < n < ω. Because (J,E)
is an l–blur, then by [2, Theorem 3.2 9(iii)], Atca = Matl(AtBb(R, J, E)), the set of l by l basic
matrices on At is an l–dimensional cylindric basis, giving an algebra Bl = Bbl(R, J, E) ∈
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RCAl. Again Atca is not strongly representable, for had it been then a representation of
CmAtca, induces a representation of R on an infinite base, because RaCmAtca ⊇ CmAt ⊇ R,
and the representability of CmAtca induces one of RaCmAtca, necessarily having an infinite
base. For 2 < n ≤ l < ω, denote by Cl the non-representable Dedekind-MacNeille completion
of the algebra Bbl(R, J, E) ∈ RCAl, that is Cl = CmAt(Bbl(R, J, E)) = CmMatl(At). If the l–
blur happens to be strong, in the sense of definition 3.4 and n ≤ m ≤ l, then we get by [2, item
(3) pp.80], that Bbm(R, J, E) ∼= NrmBbl(R, J, E). This is proved by defining an embedding
h : RdmCl → Cm via x 7→ {M � m : M ∈ x} and showing that h � NrmCl is an isomorphism
onto Cm [2, p.80]. Surjectiveness uses the condition (J5)l formulated in the second item of
definition 3.4 of strong l-blurness. Without this condition, that is if the l–blur (J,E) is not
strong, then still Cm and Cl can be defined because by definition (J,E) is an t–blur for all
m ≤ t ≤ l, so Matt(At) is a cylindric basis and for t < l Ct embeds into NrmCl using the
same above map, but this embedding might not be surjective. So for every l, now replacing
R by the Maddux algebra Ef(l)(2, 3), the algebra Al = NrnBbl(Ef(l)(2, 3)), J, E)– with f(l)
depending recursively on l, having strong l-blur due to the properties of the Maddux algebra
Ef(l)(2, 3), is as required. In other words, and more concisely, we have Al ∈ RCAn ∩ NrnCAl,
but CmAtAl /∈ RCAn.

The flexibility of the construction in op.cit allows one to refine the main result in [2] by
varying the relation algebra R. All we need for the construction to work is that R is finite
having a (strong) l–blur with n ≤ l < ω. So one can get sharper results if one requires for
example that R has no infinite k–dimensional hyperbasis with n ≤ l < k ≤ ω, k possibly
finite, equivalently, R does not have a k–flat infinite representation. The equivalence here
is due to the fact that R is finite. It cannot be the case that l ≥ k (k ∈ ω), for else
A = Bbn(R, J, E) ∼= NrnBbl(R, J, E), and Bbl(R, J, E) is atomic (and finite dimensional),
so by lemma 4.2, A will have a complete l, hence a complete k–flat representation, which
is impossible because R does not have an infinite k-flat represenation. Such requirements
lead to negative results on atom–canonicity completely analogous to the result proved in the
previous two subitems (a) and (b) of the present item, and possibly more of a kind.

Theorem 3.6. There is an algebra E ∈ RCAn that has the complex I neat embedding property
up to m for any m ≥ n but does not have the I neat embedding property up to n+1, a fortior
the atomic algebra E has the complex neat embeding property up to m ≥ n + 1, but does bot
have the I neat embedding property for any m ≥ n+ 1.

Let α be any ordinal and let F is field of characteristic 0. Let V = {s ∈ αF : |{i ∈ α : si ̸=
0}| < ω}. Note that V is a vector space over the field F. Let

C = ⟨℘(V ),∪,∩,r, ∅, V, ci, dij⟩i,j∈α.

Let y denote the following α-ary relation:

y = {s ∈ V : s0 + 1 =
∑
i>0

si}.

and
w = {s ∈ V : s1 + 1 =

∑
i ̸=1

si}.

For each s ∈ y we let ys be the singleton containing s, i.e. ys = {s}. Let

E = SgC({y, ys : s ∈ y})
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A = SgC({y, w, ys : s ∈ y}).

Clearly E and A are in RCAα. We first show that w /∈ E, then we show that if E ∈ NrnCAα+1

then w ∈ E concluding that E /∈ NrαCAα+1. Let

Pl = {{s ∈ αF(0) : t+
∑

(risi) = 0} : {t, ri : i < α} ⊆ F}.

P l< = {p ∈ Pl : cip = p, for some i < α}.

Note that for p ∈ Pl, p = {s ∈ αF(0) : t+
∑

i risi = 0} say, then cip = p (i.e. p is parallel to
the i-th axis) iff ri = 0. Note too, that

{y, w, dij : i, j ∈ α} ⊆ Pl.

y, w /∈ Pl<, 1 ∈ Pl<

and
{dij : i ̸= j, i, j ∈ α} ⊆ Pl< iff α ≥ 3.

Now let

G = {y,−y, p,−p, c(∆){0},−c(∆){0} : p ∈ Pl< ∪ {d01} ∆ ⊆ω α, 0 ∈ ∆}.

G∗ = {
∩
i∈n

gi : n ∈ ω, gi ∈ G}.

and
G∗∗ = {

∪
i∈n

gi : n ∈ ω, gi ∈ G∗}.

It is easy to see that {y, ys : s ∈ y} ⊆ G∗∗, and G∗∗ is a boolean field of sets. We prove that
w /∈ G∗∗ and that G∗∗ is closed under cylindrifications. To this end, we set:

L = {p ∈ Pl< : c0p ̸= p} and P (0) = L ∪ {d01}.

Next we define
G1 = {g ∈ G∗ : g ⊆ y}

and
G2 = {g ∈ G∗ : g ̸⊆ y and g ⊆ p, for some p ∈ P (0)}.

We have G1 ∩G2 = ∅. Now let

G3 = {p1 ∩ p2 . . . ∩ pk : k ∈ ω, {p1, p2, . . . , pk} ⊆ Gr ({y} ∪ P (0))}.

It is easy to see that G∗ = G1 ∪ G2 ∪ G3. To prove that w /∈ G∗∗ we need: If g ∈ G3 and
0 ̸= g, then g ̸⊂ w. But this follows from the following. Assume that g = p1 ∩ p2 . . . ∩ pk say,
with pi ∈ G and pi /∈ ({y} ∪P (0)) for 1 ≤ i ≤ k, and let z ∈ g. Let [] be the function from Pl
into F defined as follows:

[p] = {1/r0(−t−
∑

rizi)} if p = −{s ∈α F(0) : t+
∑

risi = 0}, r0 ̸= 0

and else
[p] = 0.
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Let
r ∈ Fr ((

∪
1≤i≤k

[pi]) ∪ [−w])

be arbitrary, and let
z0r = z r {(0, z0)} ∪ {(0, r)}.

Then
z0r ∈ g r w i.e. g ̸⊆ w.

(Here we are using that when c(∆){0} ∈ G, then 0 ∈ ∆.) We now proceed to show that
w /∈ G∗∗. Assume that

x =
∪
{g1i : i < n1} ∪

∪
{g2i : i < n2} ∪

∪
{g3i : i < n3}

where
{gji : i < nj} ⊆ Gj and gji ⊆ w for all j ∈ {1, 2, 3}.

We show that x ̸= w. By the above, we have x ⊆
∪

i<n pi for some {pi : i < n} ⊆ P (0).
Note that if α > 2 then P (0) = L and P (0) = L ∪ {d01} otherwise. If α = 2 then w ⊆ −d01
otherwise P (0) = L. Now it is enough to show that w is not contained in

∪
E for any finite

E ⊆ L. But it can be seen by implementing easy linear algebraic arguments that, for every
n ∈ ω, and for every system

t0 +
∑

(r0ixi) = 0

·

·

tn +
∑

(rnixi) = 0,

of equations, such that for all j ≤ n, there exists i < α, such that

rji = 0 and rj0 ̸= 0,

the equation ∑
i<α

xi = 2x1 + 1

has a solution s in the weak space αF(0), such that s is not a solution of

tj +
∑
i<α

(rjixi) = 0,

for every j ≤ n. We have proved that w /∈ G∗∗. To show that w /∈ A, we will show that G∗∗

is closed under the cylindric operations (i.e it is the universe of a CAα. It is enough to show
that (since the ci’s are additive), that for j ∈ α and g ∈ G∗ arbitrary, we have cjg ∈ G∗∗. For
this purpose, put for every p ∈ Pl

p(j|0) = cj{s ∈ p : sj = 0} and (−p)(j|0) = −p(j|0).

Then it is not hard to see that

p(j|0) = {s ∈ αF(0) : t+
∑
i ̸=j

(risi) = 0},
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if
p = {s ∈ αF0) : t+

∑
i<α

(risi) = 0},

and so
p(j|0) ∈ Pl< for every p ∈ Pl.

Let j and g be as indicated above. We can assume that

g = e ∩ p1 ∩ . . . ∩ pn ∩ −P1 . . . ∩ −Pm ∩ z

∩ − c(∆1){0} . . . ∩ −c(∆N ){0},

where
e ∈ {y,−y, 1}

n,m,N ∈ ω r {0}, pi, Pi ∈ Pl< ∪ {d01},

cjpi ̸= pi, cjPi ̸= Pi,

z ∈ {c(∆){0}, 1 : ∆ ∈ ℘ωα, 0 ∈ ∆, j /∈ ∆},

and
{∆1, . . . ,∆n} ⊆ {x ∈ ℘ωα : j /∈ x, 0 ∈ x}.

We distinguish between 2 cases:
Case 1.

z = c(∆){0} and j /∈ ∆.

Then
cj(e ∩ p1 . . . ∩ pn ∩ −P1 . . . ∩ −Pm

∩c(∆){0} ∩ −c(∆1){0} . . . ∩ −c(∆N ){0})

p1(j|0) ∩ . . . pn(j|0) ∩ −P1(j|0) . . . ∩ −Pm(j|0)

∩cjc(∆){0} ∩ −cjc(∆1){0} ∩ ∩ − cjc(∆N ){0}.

Case 2.
z = 1

Then
cj(e.p1 ∩ . . . ∩ pn ∩ −P1 . . . ∩ −Pm

∩ − c(∆1){0} . . . ∩ −c(∆N ){0})

= f(e) ∩k≤n ((∩i≤ncj(pk ∩ pi) ∩ ∩i≤mcj(pk − Pi)

∩i≤Ncj(pk − c(∆i){0})).

where
f(y) = ((∩i≤ncj(y ∩ pi) ∩ ∩i≤mcj(y − Pi)

∩i≤Ncj(y − c(∆i){0})).

f(−y) = ∩k≤ncj(pk − y)

f(1) = 1.
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Now for every p, q ∈ Pl, there are p′, q′, p′′ and q′′ ∈ Pl< such that

cj(p ∩ q) = p′ ∩ q′,

cj(pr q) = p′′ r q′′

and if j ∈ ∆pr Γ, then

cj(p \ c(Γ){0}) = αF(0) r p(j|0) ∪ (p(j|0)r cjc(Γ){0}).

We have proved that w /∈ E. Now we restrict α to be finite > 1 and according to the
widespread custom of naming ordinals, we call it n. Let B be the full set algebra with unit
V = nQ. It is straightforwrad to show that AtB = AtE = {{s} : s ∈ V }, that is to say, the
atoms of both algebras coincide with the singletons. Clearly CmAtE = B, so that infcat B
is the Dedekind-MacNeille completion of E. Since B is a full set algebra having top ement
nQ and universe ℘(nQ), then A ∈ NrnCAω. So E is an algebra that has the complex I neat
embedding propery up to ω, but E does not have the neat embeding property up to n + 1,
since E /∈ NrnCAn+1.

Let 2 < n ≤ l ≤ m ≤ ω. Denote the class of CAns having the complex O neat embedding
property up to m by CNPCAO

n,m, and let RCAO
n,m := CNPCAO

n,m ∩ RCAn. Denote the class

of strongly representable CAns up to l and m by RCAl,m
n . Call an algebra A ∈ CAn strongly

representable if A is atomic and AtA is strongly representable; that is CmAtA ∈ RCAn. Observe
that RCAn,m

n = RCAS
n,m and that when m = ω both classes coincide with the class of strongly

representable CAns. For a class K of BAOs, K∩Count denotes the class of countable algebras
in K and (recall that) K ∩At denotes the class of atomic algebras in K.

Theorem 3.7. Let 2 < n ≤ l < m ≤ ω and O ∈ {S,Sc,Sd, I}. Then the following hold:

1. RCAO
n,m ⊆ RCAO

n,l and RCAI
n,l ⊆ RCASd

n,l ⊆ RCASc
n,l ⊆ RCAS

n,l. The last inclusion is proper
for l ≥ n+ 3,

2. For O ∈ {S,Sc,Sd}, CNPCAO
n,l ⊆ ONrnCAl (that is the complex O neat embedding

property is stronger than the O neat embedding property), and for O = S, the inclusion
is proper for l ≥ n + 3. But for O = I, CNPCAI

n,l * NrnCAl (so the complex I neat
embedding property does not imply the I neat embedding property),

3. If A is finite, then A ∈ CNPCAO
n,l ⇐⇒ A ∈ ONrnCAl and A ∈ RCAO

n,l ⇐⇒ A ∈
RCAn∩ONrnCAl. Furthermore, for any positive k, CNPCAO

n,n+k+1 ( CNPCAO
n,n+k, and

finally CNPCAO
n,ω ( RCAn,

4. (∃A ∈ RCAn ∩At ∼ CNPCAS
n,l) =⇒ SNrnCAk is not atom–canonical for all k ≥ l. In

particular, SNrnCAk is not atom–canonical for all k ≥ n+ 3,

5. If SNrnCAl is atom–canonical, then RCAS
n,l is first order definable. There exists a finite

k > n+ 1, such that RCAS
n,k is not first order definable.

6. Let 2 < n < l ≤ ω. Then RCAl,ω
n ∩ Count ̸= ∅ ⇐⇒ l < ω.

Proof. 1. The inclusions in in the first item is by definiton. To show the strictness of the
last inclusion, use (1) of Lemma 5.4.

17



2. Let O ∈ {S,Sc,Sd}. If CmAtA ∈ ONrnCAl, then A ⊆d CmAtA, so A ∈ SdONrnCAl ⊆
ONrnCAl. This proves the first part. The strictness of the last inclusion follows Theorem
3.2, since the atomic countable algebra A constructed in op.cit is in RCAn, but CmAtA /∈
SNrnCAl for any l ≥ n+3. For the last non–inclusion in item (2), we use the set algebras
A and E in Theorem 3.6.

3. Follows by definition observing that if A is finite then A = CmAtA. The strictness of the
first inclusion follows from the construction in [9] where it shown that for any positive
k, there is a finite algebra A in NrnCAn+k ∼ SNrnCAn+k+1. The inclusion CNPCAO

n,ω ⊆
RCAn holds because if B ∈ CNPCAO

n,ω, then B ⊆ CmAtB ∈ ONrnCAω ⊆ RCAn. The A
used in the last item of theorem 3.2 witnesses the strictness of the last inclusion proving
the last required in this item.

4. Follows from the definition and the construction used in Theorem 3.2.

5. Follows from that SNrnCAl is canonical. So if it is atom–canonical too, then At(SNrnCAl) =
{F : CmF ∈ SNrnCAl}, the former class is elementary [7, Theorem 2.84], and the last
class is elementray ⇐⇒ RCAS

n,l is elementary. Non–elementarity follows from [8, Corol-

lary 3.7.2] where it is proved that RCAS
n,ω is not elementary, together with the fact that∩

n<k<ω SNrnCAk = RCAn. In more detail, let Ai be the sequence of strongly repre-
sentable CAns with CmAtAi = Ai and A = Πi/UAi is not strongly representable. Hence
CmAtA /∈ SNrnCAω =

∩
i∈ω SNrnCAn+i, so CmAtA /∈ SNrnKl for all l > k, for some

k ∈ ω, k > n. But for each such l, Ai ∈ SNrnCAl(⊇ RCAn), so Ai is a sequence of al-
gebras such that CmAtAi = Ai ∈ SNrnCAl, but Cm(At(Πi/UAi)) = CmAtA /∈ SNrnCAl,
for all l ≥ k. That k has to be strictly greater than n+ 1, follows because SNrnCAn+1

is atom–canonical.

6. ⇐=: Let l < ω. Then the required follows from the second part of theorem 3.2 proving
Ψ(l, ω); namely, there exists a countable A ∈ NrnCAl ∩RCAn such that CmAtA /∈ RCAn.
Now we prove =⇒ : Assume for contradiction that there is an A ∈ RCAω,ω

n ∩ Count.
Then by definition A ∈ NrnCAω so A ∈ CRCAn. But this complete representation,
induces a(n ordinary) representation of CmAtA which is a contradiction.

4 Clique-guarded semantics

Fix 2 < n < ω. The reader is referred to [7, Definitions 13.4, 13.6] for the notions of m–flat
and m–square representations for relation algebras (m > 2) to be generalized next to CAns.

Definition 4.1. [16, §5, p.14] Assume that 2 < n < m < ω. Let M be the base of a relativized
representation of A ∈ CAn witnessed by an injective homomorphism f : A → ℘(V ), where
V ⊆ nM and

∪
s∈V rng(s) = M. We write M |= a(s) for s ∈ f(a). Let L(A)m be the first

order signature using m variables and one n-ary relation symbol for each element in A. Let
L(A)m∞,ω be the infinitary extension of L(A)m allowing infinite conjunctions. Then an n-

clique is a set C ⊆ M such that (a1, . . . , an−1) ∈ V = 1M for distinct a1, . . . , an ∈ C. Let
Cm(M) = {s ∈ mM : rng(s) is an n-clique}. Cm(M) is called the n-Gaifman hypergraph of M,
with the n–hyperedge relation 1M. The clique guarded semantics |=c are defined inductively.
We give only existential quantifiers (cylindrifiers): for s̄ ∈ mM, i < m, M, s̄ |=c ∃xiϕ ⇐⇒
there is a t̄ ∈ Cm(M), t̄ ≡i s̄ such that M, t̄ |= ϕ.
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We say that M is an m–square representation of A, if for all s̄ ∈ Cm(M), a ∈ A, i < n,
and injective map l : n→ m, whenever M |= cia(sl(0), . . . , sl(n−1)), then there is a t̄ ∈ Cm(M)
with t̄ ≡i s̄, and M |= a(tl(0), . . . , tl(n−1)); M is an (infinitary) m–flat representation if it is
m–square and for all s̄ ∈ Cm(M), for all distinct i, j < m, M |=c [∃xi∃xjϕ ←→ ∃xj∃xiϕ](s̄),
where ϕ ∈ (L(A)m∞,ω)L(A)

m. Complete representability for m-squareness and m-flatness is
defined like the classical case.

The main ideas used in the next Theorem can be found in [7, Definitions 12.1, 12.9, 12.10,
12.25, Propositions 12.25, 12.27] adapted to the CA case. In all cases, the m–dimensional
dilation stipulated in the statement of the Theorem, will have top element Cm(M), where M
is the m–relativized representation of the given algebra, and the operations of the dilation are
induced by the n-clique–guarded semantics.

Theorem 4.2. [7, Theorems 13.45, 13.36]. Assume that 2 < n < m < ω and let A ∈ CAn.
Then A ∈ SNrnCAm ⇐⇒ A has an infinitary m–flat representation ⇐⇒ A has an m–
flat representation. Furthermore, if A is atomic, then A has a complete infinitary m–flat
representation ⇐⇒ A ∈ ScNrn(CAm ∩At).

Proof. We give a sketchy sample. We start from representations to dilations. Let M be an
m–flat representation of A. For ϕ ∈ L(A)m, let ϕM = {ā ∈ Cm(M) : M |=c ϕ(ā)}, where
Cm(M) is the n–Gaifman hypergraph. Let D be the algebra with universe {ϕM : ϕ ∈ L(A)m}
and with cylindric operations induced by the n-clique–guarded (flat) semantics. For r ∈ A,
and x̄ ∈ Cm(M), we identify r with the formula it defines in L(A)m, and we write r(x̄)M ⇐⇒
M, x̄ |=c r.

Then D is a set algebra with domain ℘(Cm(M)) and with unit 1D = Cm(M). Since M ism–
flat, then cylindrifiers in D commute, and so D ∈ CAm. Now define θ : A→ D, via r 7→ r(x̄)M.
Then exactly like in the proof of [7, Theorem 13.20], θ is an injective neat embedding, that
is, θ(A) ⊆ NrnD. The relativized model M itself might not be infinitary m–flat, but one
can build an infinitary m–flat representation of A, whose base is an ω–saturated model of
the consistent first order theory, stipulating the existence of an m–flat representation, cf. [7,
Proposition 13.17, Theorem 13.46 items (6) and (7)]. The inverse implication from dilations
to representations harder. One constructs from the given m–dilation, an m–dimensional
hyperbasis (that can be defined similarly to the RA case, cf. [7, Definition 12.11]) from which
the required m-relativized representation is built. This can be done in a step–by step manner
treating the hyperbasis as a ‘saturated set of mosaics’, cf. [7, Proposition 13.37].

For results on complete m–flat representations, one works in Lm
∞,ω instead of first order

logic. With D formed like above from (the complete m–flat representation) M, using L(A)m∞,ω

instead of Ln, let ϕ
M be a non–zero element in D. Choose ā ∈ ϕM, and let τ =

∧
{ψ ∈

L(A)m∞,ω : M |=c ψ(ā)}. Then τ ∈ L(A)m∞,ω, and τ
M is an atom below ϕM. The rest is entirely

analogous, cf. [7, p.411].

4.1 Omitting types OTTr for the clique guarded fragments

Fix 2 < n ≤ l < m ≤ ω. Consider the statement Ψ(l,m): There exists a countable, com-
plete and atomic Ln theory T (meaning that the Tarski-Lindenbuam qoutient algebra FmT is
atomic), such that the type Γ consisting of co-atoms of FmT is realizable in every m-square
model of T (m-representation of FmT ) but cannot be be isolated using l variables.

Let OTTr(l,m) be by definition ¬Ψ(l,m), short for a restricted version of the Omit-
ting Types Theorem holds at the parameters l and m, where by definition, we stipulate that
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OTTr(ω, ω) is just the consquene of the Omitting types Theorem, for Lω,ω, that says that a
countable atomic theory T has a countbale atomic (prime) model. This atomic (unique up to
isomorphism) model of T is the model resulting by omitting the countably many non-principal
types (Xi : i ∈ ω), where Xi is the set of co-atoms of NriFmT . These are indeed non-principal
because by definition ]NriFmT is an atomic Boolean algebra, since T is an atomic theory.
Furthermore if T is complete, then NriFmT is also a simple CAi for each i < ω; i.e. NriFmT

has no proper ideals (congruences).
For 2 < n ≤ l < m ≤ ω and l = m = ω, we investigate the plausability of the following

statement which we abbreviate by (**):

OTTr(l,m) ⇐⇒ l = m = ω.

In other words: OTTr holds only in the limiting case when l→∞ and m = ω and not ‘before’.
This will be proved on the ‘paths’ (l, ω), n ≤ l < ω (x axis) and (n, n+ k), k ≥ n+3 (y axis)
using two different blow up and blur constructions, given in Theorem 3.2 and 3.5.

Let n < ω. Then Dn(Gn) is a class of (non–commutative) set algebras having the same
signature as CAn. If A ∈ Dn(Gn), then the top element of A is a set V ⊆ nU (some non–empty
set U), such that if s ∈ V , and i < j < n (τ : n→ n), then s◦ [i|j](s◦τ) ∈ V . It is known that
both Dn and Gn are finitely axiomatizable varieties [16], such that Gsn ⊆ Gn ⊆ Dn. It can
be proved similarly to Theorem 4.2, that if A satisfies all the CAn axioms with the possible
exception of commutativity of cylindrifiers, then for any 2 < n < m < ω, A ∈ SNrnDm ⇐⇒
A ∈ SNrnGm ⇐⇒ A has an m-square representation.

In the next Theorem several conditions are given implying Ψ(l,m)f for various values of
the parameters l and m where Ψ(l,m)f is the formula obtained from Ψ(l,m) replacing square
by flat. In the first item of the next theorem by no infinite ω–dimensional hyperbasis (basis),
we understand no representation on an infinite base. By ω–flat (square) representation, we
mean an ordinary representation, and by complete ω–flat (square) representation, we mean a
complete representation. 2

We need a lemma before embarking on the Theorem.

Lemma 4.3. Let R be a relation algebra and 3 < n < ω. Then R+ has an n–dimensional
infinite relational (hyper)basis ⇐⇒ R has an infinite n–square (flat) representation. R+

has an n–dimensional infinite hyperbasis ⇐⇒ R has an infinite n–flat representation.

Proof. [7, Theorem 13.46, the equivalence (1) ⇐⇒ (5) for relational basis, and the equiva-
lence (7) ⇐⇒ (11) for hyperbasis].

Theorem 4.4. Let 2 < n ≤ l < m ≤ ω. Then every item implies the immediately following
one.

1. There exists a finite relation algebra R with a strong l–blur and no infinitem–dimensional
hyperbasis,

2. There is a countable atomic A ∈ NrnCAl ∩ RCAn such that CmAtA does not have an
m–flat representation,

2Here we deviate from [7] in the treatment of κ-square representations for κ an infinite cardinal, by identi-
fying a complete ω-square representation with a complete representation for an atomic algebra A ∈ CAn. This
is true in case A has countably many atoms, but may not true in general according to [7, Definition 17.22].
If ω ≤ κ < λ, an algebra having a complete λ–square representation, may not have a complete κ–square one.
The rainbow algebra of dimension n, for any 2 < n < ω, A = Aλ,κ witnesses this. Any complete κ–square
representation of A will force a ‘κ red clique’ indexed by the λ greens which is impossible because the indices
of reds must match within the red clique.
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3. There is a countable atomic A ∈ NrnCAl ∩ RCAn such that CmAtA /∈ SNrnCAm,

4. There is a countable atomic A ∈ NrnCAl ∩RCAn such that A has no complete infinitary
m–flat representation,

5. Ψ(l′,m′)f is true for any l′ ≤ l and m′ ≥ m.

The same implications hold upon replacing infinitem–dimensional hyperbasis bym–dimensional
relational basis (not necessarily infinite), m–flat by m–square and SNrnCAm by SNrnDm.
Furthermore, in the new chain of implications every item implies the corresponding item in
Theorem 4.4. In particular, Ψ(l,m) =⇒ Ψ(l,m)f .

Proof. (1) =⇒ (2): We proceed similarly to Theorem 3.5. Let R be as in the hypothesis
with strong l–blur (J,E). The idea is to ‘blow up and blur’ R in place of the Maddux algebra
Ek(2, 3) blown up and blurred in [2, Lemma 5.1], where k < ω is the number of non–identity
atoms and k depends recursively on l, giving the desired strong l–blurness, cf. [2, Lemmata
4.2, 4.3]. Let 2 < n ≤ l < ω. The relation algebra R is blown up by splitting all of the atoms
each to infinitely many giving a new infinite atom structure At denoted in [2, p.73] by At.
One proves that the blown up and blurred atomic relation algebra Bb(R, J, E) (as defined
in [2]) with atom structure At is representable; in fact this representation is induced by a
complete representation of its canonical extension, cf. [2, Item (1) of Theorem 3.2]. Because
(J,E) is a strong l–blur, then, by its definition, it is a strong j–blur for all n ≤ j ≤ l, so the
atom structure At has a j–dimensional cylindric basis for all n ≤ j ≤ l, namely, Matj(At).
For all such j, there is an RCAj denoted on [2, Top of p. 9] by Bbj(R, J, E) such that
TmMatj(At) ⊆ Bbj(R, J, E) ⊆ CmMatj(At) and AtBbj(R, J, E) is a weakly representable
atom structure of dimension j, cf. [2, Lemma 4.3]. Now take A = Bbn(R, J, E). We claim
that A is as required. Since R has a strong j–blur (J,E) for all n ≤ j ≤ l, then A ∼=
NrnBbj(R, J, E) for all n ≤ j ≤ l as proved in [2, item (3) p.80]. In particular, taking j = l,
A ∈ RCAn ∩ NrnCAl. We show that CmAtA does not have an m–flat representation. Assume
for contradicton that CmAtA does have an m–flat representation M. Then M is infinite of
course. Since R embeds into Bb(R, J, E) which in turn embeds into RaCmAtA, then R has
an m–flat representation with base M. But since R is finite, R = R+, so by Lemma 4.3, R
has an infinite m–dimensional hyperbasis, contradiction.

(2) =⇒ (3): By item (1) of Theorem 4.2.
(3) =⇒ (4): A complete m–flat representation of (any) B ∈ CAn induces an m–flat

representation of CmAtB which implies by Theorem 4.2 that CmAtB ∈ SNrnCAm. To see
why, assume that B has an m–flat complete representation via f : B→ D, where D = ℘(V )
and the base of the representation M =

∪
s∈V rng(s) is m–flat. Let C = CmAtB. For c ∈ C,

let c ↓= {a ∈ AtC : a ≤ c} = {a ∈ AtB : a ≤ c}; the last equality holds because AtB = AtC.
Define, representing C, g : C→ D by g(c) =

∑
x∈c↓ f(x), then g is a homomorphism into ℘(V )

having base M.
(4) =⇒ (5): By [5, §4.3], we can (and will) assume that A = FmT for a countable, simple

and atomic theory Ln theory T . Let Γ be the n–type consisting of co–atoms of T . Then Γ
is realizable in every m–flat model, for if M is an m–flat model omitting Γ, then M would be
the base of a complete infinitary m–flat representation of A, and so A ∈ ScNrnCAm which is
impossible. But A ∈ NrnCAl, so using the same (terminology and) argument in [2, Theorem
3.1] we get that any witness isolating Γ needs more than l–variables. In more detail, suppose
for contradiction that ϕ is an l witness, so that T |= ϕ→ α, for all α ∈ Γ, where recall that Γ
is the set of coatoms. Then since A is simple, we can assume without loss of generality, that
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A is a set algebra with base M say. Let M = (M,Ri)i∈ω be the corresponding model (in a
relational signature) to this set algebra in the sense of [5, §4.3]. Let ϕM denote the set of all
assignments satisfying ϕ in M. We have M |= T and ϕM ∈ A, because A ∈ NrnCAm−1. But
T |= ∃xϕ, hence ϕM ̸= 0, from which it follows that ϕM must intersect an atom α ∈ A (recall
that the latter is atomic). Let ψ be the formula, such that ψM = α. Then it cannot be the
case that T |= ϕ → ¬ψ, hence ϕ is not a witness, contradiction and we are done. We have
proved Ψ(l,m). The rest follows from the definitions.

For squareness the proofs are essentially the same undergoing the obvious modifications
(e.g. using the part on squareness in Lemma 4.3 and repacing CAn by Dn). In the first
implication ‘infinite’ in the hypothesis is not needed because any finite relation algebra having
an infinite m–dimensional relational basis has a finite one, cf. [7, Theorem 19.18] which is not
the case with hyperbasis, cf. [7, Prop. 19.19].

Corollary 4.5. For 2 < n < ω and n ≤ l < ω, Ψ(n, n+ 3) and Ψ(l, ω) hold.

Proof. The first case, follows from Theorem 3.2 and 4.4 (by taking l = n and m = n + 3).
For the second case, it suffices by Theorem 4.4 (by taking m = ω) to find a countable algebra
C ∈ NrnCAl∩RCAn such that CmAtC /∈ RCAn. This algebra is constructed in [2], cf. Thjeorem
3.5.

It is timely that we tie a few threads together.

Definition 4.6. Let 2 < n < ω. We say that VT fails for Ln almost everywhere if there exist
positive l,m ≥ n such that V(k, ω) and V(n, t) are false for all finite k ≥ l and all t ≥ m. We
say that VT fails for Ln everywhere if for 3 ≤ l < m ≤ ω and l = m = ω, V(l,m) holds ⇐⇒
l = m = ω, that is to say (∗∗) above holds.

From Corollary 4.5 and the implication (1) =⇒ (6) in Theorem 4.4 (by taking l = m−1),
we get:

Theorem 4.7. Let 2 < n < ω. Then OTTr fails for Ln almost everywhere. Furthermore, if
for each n < m < ω, there exists a finite relation algebra Rm having m − 1 strong blur and
no m-dimensional relational basis, then VT fails for Ln everywhere.

Now we formulate an algebraic result implying that VT fails for any finite first order
definable expansion of Ln as defined in [3]. We deviate from the notation in [3] by writing
RCA+

n for a first order definable expansion of RCAn.

Theorem 4.8. Let 2 < n < ω. Let RCA+
n be a first order definable expansion of RCAn such

that the non–cylindric operations are first order definable by formulas using only finitely many
variables l > n. If RCA+

n is completely additive, then it is not atom–canonical.

Proof. Let n be the finite number of variables occuring in the first order formulas defining the
new connectives and let l = n+1. Let A be countable and atomic such that A ∈ RCAn∩NrnCAl

and A has no complete representation; such an A exists, cf. Theorem 3.5. Without loss, we
can assume that we have only one extra operation f definable by a first order formula ϕ, say,
using n < k < ω variables with at most n free variables. Now ϕ defines a CAk term τ(ϕ) which,
in turn, defines the unary operation f on A, via f(a) = τ(ϕ)B(a). This is well defined, in
the sense that f(a) ∈ A, because A ∈ NrnCAn+1 and the first order formula ϕ defining f , has
at most n free variables. Call the expanded structure A∗(∈ RCA+

n ). By complete additivity,
CmAtA∗ is the Dedekind-MacNeille completion of A∗. But RdcaCmAtA∗ = CmAtA /∈ RCAn, a
fortiori, Cm(AtA∗) /∈ RCA+

n , and we are done.

22



Let 2 < n ≤ l < m ≤ ω. In VT(l,m), while the parameter l measures how close
we are to Lω,ω, m measures the ‘degree’ of squareness of permitted models. One can view
liml→∞VT(l, ω) = VT(ω, ω) algebraically using ultraproducts as follows. Fix 2 < n < ω.
For each 2 < n ≤ l < ω, let Rl be the finite Maddux algebra Ef(l)(2, 3) with strong l–
blur (Jl, El) and f(l) ≥ l as specified in [2, Lemma 5.1] (denoted by k therein). Let Rl =
Bb(Rl, Jl, El) ∈ RRA and let Al = NrnBbl(Rl, Jl, El) ∈ RCAn. Then (AtRl : l ∈ ω ∼ n),
and (AtAl : l ∈ ω ∼ n) are sequences of weakly representable atom structures that are not
strongly representable with a completely representable ultraproduct. We immediately get:

Corollary 4.9. Assume that 2 < n < ω. Then the following hold:

1. The (elementary) class LCAn of algebras satisfying the Lyndon conditions (which is
ElCRCAn) is not finitely axiomatizable,

2. [3, 11] The set of equations using only one variable that holds in each of the varieties
RCAn and RRA, together with any finite first order definable expansion of each, cannot
be derived from any finite set of equations valid in the variety.

5 Non-elementary classes of algebras having a neat embedding
property

We define an atomic k rounded (atomic) game Hk stronger than the usual k-rounded (atomic)
game Gk [7, 8]. To define the game we need a few definitions:

Definition 5.1. A λ–neat hypernetwork is roughly a network endowed with labelled hyper-
deges of length ̸= n allowed to get arbitrarily long but are of finite length, and such hyperedges
get their labels from a non–empty set of labels Λ; such that all so–called short hyperedges are
constantly labelled by λ ∈ Λ. The board of the game consists of λ-neat hypernetworks:

Definition 5.2. For an n–dimensional atomic network N on an atomic CAn and for x, y ∈
nodes(N), set x ∼ y if there exists z̄ such that N(x, y, z̄) ≤ d01. Define the equivalence relation
∼ over the set of all finite sequences over nodes(N) by x̄ ∼ ȳ iff |x̄| = |ȳ| and xi ∼ yi for all
i < |x̄|. (It can be easily checked that this indeed an equivalence relation).

A hypernetwork N = (Na, Nh) over an atomic CAn consists of an n–dimensional network
Na together with a labelling function for hyperlabels Nh : <ωnodes(N)→ Λ (some arbitrary
set of hyperlabels Λ) such that for x̄, ȳ ∈ <ωnodes(N) if x̄ ∼ ȳ ⇒ Nh(x̄) = Nh(ȳ). If
|x̄| = k ∈ N and Nh(x̄) = λ, then we say that λ is a k-ary hyperlabel. x̄ is referred to as a
k–ary hyperedge, or simply a hyperedge.

We may remove the superscripts a and h if no confusion is likely to ensue. A hyperedge
x̄ ∈ <ωnodes(N) is short, if there are y0, . . . , yn−1 that are nodes in N , such that N(xi, y0, z̄) ≤
d01 or . . . N(xi, yn−1, z̄) ≤ d01 for all i < |x|, for some (equivalently for all) z̄. Otherwise, it is
called long.

This game involves, besides the standard cylindrifier move, two new amalgamation moves.
This game has k rounds with k ≤ ω, call it Hk. Concerning his moves, ∀ can play a cylindrifier
move, like before but now played on λ— neat hypernetworks (λ a constant label). Also ∀ can
play a transformation move by picking a previously played λ neat hypernetwork N and a par-
tial, finite surjection θ : ω → nodes(N), this move is denoted (N, θ). ∃’s response is mandatory.
She must respond with Nθ. Finally, ∀ can play an amalgamation move by picking previously
played λ neat hypernetworks M,N such that M�nodes(M)∩nodes(N) = N�nodes(M)∩nodes(N), and
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nodes(M) ∩ nodes(N) ̸= ∅. This move is denoted (M,N). To make a legal response, ∃ must
play a λ–neat hypernetwork L extending M and N , where nodes(L) = nodes(M)∪ nodes(N).

Getting these prliminaries out of the way, we are now ready to start digging deeper.

Lemma 5.3. Let α be a countable atom structure. If ∃ has a winning strategy in Hω(α), then
any algebra F having atom structure α is completely representable and there exists a complete
D ∈ RCAω such that Cmα ∼= NrnD

Proof. Fix some a ∈ α. The game Hω is designed so that using ∃ s winning strategy in
the game Hω(α) one can define a nested sequence M0 ⊆ M1, . . . of λ–neat hypernetworks
where M0 is ∃’s response to the initial ∀-move a, such that: If Mr is in the sequence and
Mr(x̄) ≤ cia for an atom a and some i < n, then there is s ≥ r and d ∈ nodes(Ms) such that
Ms(ȳ) = a, ȳi = d and ȳ ≡i x̄. In addition, if Mr is in the sequence and θ is any partial
isomorphism of Mr, then there is s ≥ r and a partial isomorphism θ+ of Ms extending θ such
that rng(θ+) ⊇ nodes(Mr) (This can be done using ∃’s responses to amalgamation moves).
Now let Ma be the limit of this sequence, that is Ma =

∪
Mi, the labelling of n − 1 tuples

of nodes by atoms, and hyperedges by hyperlabels done in the obvious way using the fact
that the Mis are nested. Let L be the signature with one n-ary relation for each b ∈ α, and
one k–ary predicate symbol for each k–ary hyperlabel λ. Now we work in L∞,ω. For fixed
fa ∈ ωnodes(Ma), let Ua = {f ∈ ωnodes(Ma) : {i < ω : g(i) ̸= fa(i)} is finite}. We make Ua

into the base of an L relativized structureMa. We allow a clause for infinitary disjunctions.
In more detail, for b ∈ α, l0, . . . , ln−1, i0 . . . , ik−1 < ω, k–ary hyperlabels λ, and all L-formulas
ϕ, ϕi, ψ, and f ∈ Ua:

Ma, f |= b(xl0 . . . , xln−1) ⇐⇒ Ma(f(l0), . . . , f(ln−1)) = b,

Ma, f |= λ(xi0 , . . . , xik−1
) ⇐⇒ Ma(f(i0), . . . , f(ik−1)) = λ,

Ma, f |= ¬ϕ ⇐⇒ Ma, f ̸|= ϕ,

Ma, f |= (
∨
i∈I

ϕi) ⇐⇒ (∃i ∈ I)(Ma, f |= ϕi),

Ma, f |= ∃xiϕ ⇐⇒ Ma, f [i/m] |= ϕ, some m ∈ nodes(Ma).

We are now working with (weak) set algebras whose semantics is induced by L∞,ω formulas
in the signature L, instead of first order ones. For any such L-formula ϕ, write ϕMa for
{f ∈ Ua :Ma, f |= ϕ}. Let Da = {ϕMa : ϕ is an L-formula} and Da be the weak set algebra
with universe Da. Let D = Pa∈αDa. Then D is a generalized complete weak set algebra [5,
Definition 3.1.2 (iv)]. By complete we mean (the usua) infinite suprema exists. This is true
because we chose to work with L∞,ω while forming the dilations Da (a ∈ α). Each Da is
complete, hence so is their product D. Let X ⊆ NrnD. Then by completeness of D, we get
that d =

∑DX exists. Assume that i /∈ n, then cid = ci
∑
X =

∑
x∈X cix =

∑
X = d,

because the cis are completely additive and cix = x, for all i /∈ n, since x ∈ NrnD. We
conclude that d ∈ NrnD, hence d is an upper bound of X in NrnD. Since d =

∑D
x∈X X there

can be no b ∈ NrnD (⊆ D) with b < d such that b is an upper bound of X for else it will be an
upper bound of X in D. Thus

∑NrnD
x∈X X = d We have shown that NrnD is complete. Making

the legitimate identification NrnD ⊆d Cmα by density, we get that NrnD = Cmα (since
NrnD is complete), hence Cmα ∈ NrnCAω. This does not mean that Tmα ∈ NrnCAω, witness
Theorem ?? below. To show that an atomic algebra with atom structure α is completely
representable, we use that given two atomic algebras A,B ∈ CAn such that AtA ∼= AtB, then
A ∈ CRCAn ⇐⇒ B ∈ CRCAn. Now Cmα ∈ SdNrnCAω(⊆ ScNrnCAω) and α is countable,
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so by [13, Theorem 5.3.6], Cmα is completely representable, hence so is any algebra sharing
the atom structure α. Alternatively to prove the last part, one can use that Hω is plainly
stronger than the usual ω–rounded atomic game G (in the sense that a winning strategy for
∃ in Hω =⇒ a winning strategy for ∃ in G), and then uses [8, Theorem 3.3.3] whose more
difficult implication says that a winning strategy for G(β) (hence inH(β)), β a countable atom
structure, implies that β is completely representable. (The converse, when β is uncountable,
may not be true [17, Theorem 4.5]).

Lemma 5.4. Any class K between SdNrnCAω ∩ CRCAn and ScNrnCAn+3 is not elementary

Proof. (1) ∀ has a winning strategy in Gn+3(AtC) for a rainbow-like algebra C:
Take the a rainbow–like CAn, call it C, based on the ordered structure Z and N. The

reds R is the set {rij : i < j < ω(= N)} and the green colours used constitute the set
{gi : 1 ≤ i < n − 1} ∪ {gi0 : i ∈ Z}. In complete coloured graphs the forbidden triples are
like the usual rainbow constructions based on Z and N, but now the triple (gi0, g

j
0, rkl) is also

forbidden if {(i, k), (j, l)} is not an order preserving partial function from Z → N. It can be
shown that ∀ has a winning strategy in the graph version of the game Gn+3(AtC) played on
coloured graphs [6]. The rough idea here, is that, as is the case with winning strategy’s of
∀ in rainbow constructions, ∀ bombards ∃ with cones having distinct green tints demanding
a red label from ∃ to appexes of succesive cones. The number of nodes are limited but ∀
has the option to re-use them, so this process will not end after finitely many rounds. The
added order preserving condition relating two greens and a red, forces ∃ to choose red labels,
one of whose indices form a decreasing sequence in N. In ω many rounds ∀ forces a win, so
C /∈ ScNrnCAn+3. More rigorously, ∀ plays as follows: In the initial round ∀ plays a graph
M with nodes 0, 1, . . . , n − 1 such that M(i, j) = w0 for i < j < n − 1 and M(i, n − 1) = gi
(i = 1, . . . , n − 2), M(0, n − 1) = g00 and M(0, 1, . . . , n − 2) = yZ. This is a 0 cone. In the
following move ∀ chooses the base of the cone (0, . . . , n − 2) and demands a node n with
M2(i, n) = gi (i = 1, . . . , n − 2), and M2(0, n) = g−1

0 . ∃ must choose a label for the edge
(n + 1, n) of M2. It must be a red atom rmk, m, k ∈ N. Since −1 < 0, then by the ‘order
preserving’ condition we have m < k. In the next move ∀ plays the face (0, . . . , n − 2) and
demands a node n+1, withM3(i, n) = gi (i = 1, . . . , n−2), such thatM3(0, n+2) = g−2

0 . Then
M3(n+1, n) and M3(n+1, n−1) both being red, the indices must match. M3(n+1, n) = rlk
and M3(n + 1, r − 1) = rkm with l < m ∈ N. In the next round ∀ plays (0, 1, . . . n − 2) and
re-uses the node 2 such that M4(0, 2) = g−3

0 . This time we have M4(n, n− 1) = rjl for some
j < l < m ∈ N. Continuing in this manner leads to a decreasing sequence in N. We have
proved the required. Since CmAtC = C and C /∈ ScNrnCAn+3 we are done.

(2) ∃ has a winning strategy in Hk(AtC) for all k < ω:
In [16] it is shown that for k < ω, ∃ has a winning strategy in Gk(AtCZ,N) inspite of

the newly forbidden triple consisting of two greens and one red, synchronized by an order
preserving function. This plainly makes her choices more restricted. But we can go further.
It can be shown with some more effort (but not much more) that, in fact, ∃ has a winning
strategy in even the stronger game Hk(AtCZ,N) for all k < ω.

(2a) Response of ∃ in labelling λ-neat hypredges: We describe ∃’s strategy in
dealing with labelling hyperedges in λ–neat hypernetworks, where λ is a constant label kept
on short hyperedges. In a play, ∃ is required to play λ–neat hypernetworks, so she has
no choice about the the short edges, these are labelled by λ. In response to a cylindrifier
move by ∀ extending the current hypernetwork providing a new node k, and a previously
played coloured hypernetwork M all long hyperedges not incident with k necessarily keep
the hyperlabel they had in M . All long hyperedges incident with k in M are given unique
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hyperlabels not occurring as the hyperlabel of any other hyperedge in M . In response to
an amalgamation move, which involves two hypernetworks required to be amalgamated, say
(M,N) all long hyperedges whose range is contained in nodes(M) have hyperlabel determined
by M , and those whose range is contained in nodes(N) have hyperlabels determined by N . If
x̄ is a long hyperedge of ∃ s response L where rng(x̄) * nodes(M), nodes(N) then x̄ is given a
new hyperlabel, not used in any previously played hypernetwork and not used within L as the
label of any hyperedge other than x̄. This completes her strategy for labelling hyperedges.

(2b) Response of ∃ to cylindrficatioon moves: We show that ∃ has a winning
strategy in Gk(AtCZ,N) where 0 < k < ω is the number of rounds; the part proved in [16]. Let
0 < k < ω. We proceed inductively. Let M0,M1, . . . ,Mr, r < k be the coloured graphs at the
start of a play of Gk just before round r + 1. Assume inductively, that ∃ computes a partial
function ρs : Z→ N, for s ≤ r : Let 0 < k < ω. We proceed inductively. Let M0,M1, . . . ,Mr,
r < k be the coloured graphs at the start of a play of Gk just before round r + 1. Assume
inductively, that ∃ computes a partial function ρs : Z→ N, for s ≤ r :

(i) ρ0 ⊆ . . . ρt ⊆ . . . ⊆ . . . ρs is (strict) order preserving; if i < j ∈ domρs then ρs(i) −
ρs(j) ≥ 3k−r, where k − r is the number of rounds remaining in the game, and

dom(ρs) = {i ∈ Z : ∃t ≤ s, Mt contains an i–cone as a subgraph},

(ii) for u, v, x0 ∈ nodes(Ms), if Ms(u, v) = rµ,k, µ, k ∈ N, Ms(x0, u) = gi0, Ms(x0, v) = gj0,
where i, j ∈ Z are tints of two cones, with base F such that x0 is the first element in F
under the induced linear order, then ρs(i) = µ and ρs(j) = k.

For the base of the induction ∃ takes M0 = ρ0 = ∅. Assume that Mr, r < k (k the number
of rounds) is the current coloured graph and that ∃ has constructed ρr : Z → N to be a
finite order preserving partial map such conditions (i) and (ii) hold. We show that (i) and
(ii) can be maintained in a further round. We check the most difficult case. Assume that
β ∈ nodes(Mr), δ /∈ nodes(Mr) is chosen by ∀ in his cylindrifier move, such that β and δ are
apprexes of two cones having same base and green tints p ̸= q ∈ Z. Now ∃ adds q to dom(ρr)
forming ρr+1 by defining the value ρr+1(p) ∈ N in such a way to preserve the (natural) order
on dom(ρr) ∪ {q}, that is maintaining property (i). Inductively, ρr is order preserving and
‘widely spaced’ meaning that the gap between its elements is at least 3k−r, so this can be
maintained in a further round. Now ∃ has to define a (complete) coloured graph Mr+1 such
that nodes(Mr+1) = nodes(Mr) ∪ {δ}. In particular, she has to find a suitable red label for
the edge (β, δ). Having ρr+1 at hand she proceeds as follows. Now that p, q ∈ dom(ρr+1),
she lets µ = ρr+1(p), b = ρr+1(q). The red label she chooses for the edge (β, δ) is: (*)
Mr+1(β, δ) = rµ,b. This way she maintains property (ii) for ρr+1. Next we show that this is a
winning strategy for ∃.

We check consistency of newly created triangles proving that Mr+1 is a coloured graph
completing the induction. Since ρr+1 is chosen to preserve order, no new forbidden triple
(involving two greens and one red) will be created. Now we check red triangles only of the
form (β, y, δ) in Mr+1 (y ∈ nodes(Mr)). We can assume that y is the apex of a cone with base
F inMr and green tint t, say, and that β is the appex of the p–cone having the same base. Then
inductively by condition (ii), taking x0 to be the first element of F , and taking the nodes β, y,
and the tints p, t, for u, v, i, j, respectively, we have by observing that β, y ∈ nodes(Mr), β, y ∈
dom(ρr) and ρr ⊆ ρr+1, the following: Mr+1(β, y) = Mr(β, y) = rρr(p),ρr(t) = rρr+1(p),ρr+1(t).
By her strategy, we have Mr+1(y, δ) = rρr+1(t),ρr+1(q) and we know by (*) that Mr+1(β, δ) =
rρr+1(p),ρr+1(q). The triple (rρr+1(p),ρr+1(t), rρr+1(t),ρr+1(q), rρr+1(p),ρr+1(q)) of reds is consistent and
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we are done with this case. All other edge labelling and colouring n−1 tuples inMr+1 by yellow
shades are exactly like in [6]. But we can go further. We show that ∃ has a winning strategy
in the stronger game Hk(AtC) for all k ∈ ω. ∃’s strategy dealing with λ–neat hypernetworks,
where λ is a constant label kept on short hyperedges.

(2c) Response of ∃ to amalgamation moves: Now we change the board of play but
only formally. We play on λ–neat hypergraphs. Given a rainbow algebra A, there is a one to
one correspondence between coloured graphs on AtA and networks on AtA [8, Half of p. 76]
denote this correspondence, expressed by a bijection from coloured graphs to networks by (*):

Γ 7→ NΓ, nodes(Γ) = nodes(NΓ).

Now the gameH can be re-formulated to be played on λ–neat hypergraphs on a rainbow algebra
A; these are of the form (∆, Nh), where ∆ is a coloured graph on AtA, λ is a hyperlabel, and
Nh is as before, Nh :<ω nodes(∆)→ Λ, such that for x̄, ȳ ∈ <ωnodes(∆), if x̄ ∼ ȳ ⇒ Nh(x̄) =
Nh(ȳ). Here x̄ ∼ ȳ, making the obvious translation, is the equivalence relation defined by:
x ∼ y ⇐⇒ |x| = |y| and N∆(xi, yi, z̄) ≤ d01 for all i < |x| and some z̄ ∈ n−2nodes(∆).

All notions earlier defined for hypernetworks, in particular, λ–neat ones, translate to λ–
neat hypergraphs, using (*), like short hyperdges, long hypedges, λ–neat hypergraphs, etc.
The game is played now on λ–neat hypergraphs on which the constant label λ is kept on the
short hyperedges in <ωnodes(∆). We have already dealt with the ‘graph part’ of the game.
We turn to the remaining amalgamation moves. We need some notation and terminology.
Every edge of any hypergraph (edge of its graph part) has an owner ∀ or ∃, namely, the one
who coloured this edge. We call such edges ∀ edges or ∃ edges. Each long hyperedge x̄ in Nh

of a hypergraph N occurring in the play has an envelope vN (x̄) to be defined shortly.
In the initial round, ∀ plays a ∈ α and ∃ plays N0 then all edges of N0 belongs to ∀. There
are no long hyperedges in N0. If ∀ plays a cylindrifier move requiring a new node k and ∃
responds with M then the owner in M of an edge not incident with k is the same as it was in
N and the envelope in M of a long hyperedge not incident with k is the same as that it was
in N . All edges (l, k) for l ∈ nodes(N) ∼ {k} belong to ∃ in M . if x̄ is any long hyperedge of
M with k ∈ rng(x̄), then vM (x̄) = nodes(M).
If ∀ plays the amalgamation move (M,N) (of two λ–neat hypergraphs) and ∃ responds with
L then for m ̸= n ∈ nodes(L) the owner in L of a edge (m,n) is ∀ if it belongs to ∀ in eitherM
or N , in all other cases it belongs to ∃ in L. If x̄ is a long hyperedge of L then vL(x̄) = vM (x̄)
if rng(x̄) ⊆ nodes(M), vL(x̄) = vN (x̄) and vL(x̄) = nodes(M) otherwise. If in a later move,
∀ plays the transformation move (N, θ) and ∃ responds with Nθ, then owners and envelopes
are inherited in the obvious way. This completes the definition of owners and envelopes. The
next claim, basically, reduces amalgamation moves to cylindrifier moves. By induction on the
number of rounds one can show:

Claim: Let M,N occur in a play of Hm, 0 < m ∈ ω. in which ∃ uses the above labelling
for hyperedges. Let x̄ be a long hyperedge ofM and let ȳ be a long hyperedge of N . Then for
any hyperedge x̄′ with rng(x̄′) ⊆ vM (x̄), ifM(x̄′) =M(x̄) then x̄′ = x̄. If x̄ is a long hyperedge
of M and ȳ is a long hyperedge of N , and M(x̄) = N(ȳ), then there is a local isomorphism
θ : vM (x̄) → vN (ȳ) such that θ(xi) = yi for all i < |x|. For any x ∈ nodes(M) ∼ vM (x̄)
and S ⊆ vM (x̄), if (x, s) belong to ∀ in M for all s ∈ S, then |S| ≤ 2. Next, we proceed
inductively with the inductive hypothesis exactly as before, except that now each Nr is a
λ–neat hypergraph. All what remains is the amalgamation move. With the above claim at
hand, this turns out an easy task to implement guided by ∃ s winning strategy in the graph
part.
We consider an amalgamation move at round 0 < r, (Ns, Nt) chosen by ∀ in round r + 1, ∃
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has to deliver an amalgam Nr+1. ∃ lets nodes(Nr+1) = nodes(Ns) ∪ nodes(Nt), then she, for
a start, has to choose a colour for each edge (i, j) where i ∈ nodes(Ns) ∼ nodes(Nt) and j ∈
nodes(Nt) ∼ nodes(Ns). Let x̄ enumerate nodes(Ns)∩nodes(Nt). If x̄ is short, then there are at
most two nodes in the intersection and this case is identical to the cylindrifier move. If not, that
is if x̄ is long in Ns, then by the claim there is a partial isomorphism θ : vNs(x̄)→ vNt(x̄) fixing
x̄. We can assume that vNs(x̄) = nodes(Ns)∩nodes(Nt) = rng(x̄) = vNt(x̄). It remains to label
the edges (i, j) ∈ Nr+1 where i ∈ nodes(Ns) ∼ nodes(Nt) and j ∈ nodes(Nt) ∼ nodes(Ns).
Her strategy is now again similar to the cylindrifier move. If i and j are tints of the same
cone she chooses a red using ρr+1 (constructed inductively like in the above proof), if not she
chooses a white. She never chooses a green. Concerning n− 1 tuples she needs to label n− 1
hyperedges by shades of yellow. For each tuple ā = a0, . . . an−2 ∈ Nr+1, with no edge (ai, aj)
coloured green (we have already labelled edges), then ∃ colours ā by yS , where

S = {i ∈ Z : there is an i cone in Nr+1 with base ā}.

We have shown that ∃ has a winning strategy in Hk(AtC) for each finite k.
(3) Finishing the proof: All games used are deterministic. For each k < ω, let σk

describe the winning strategy of Hk(α). Let C = Tmα. Let D be a non–principal ultrapower
of C. Then ∃ has a winning strategy σ in Hω(AtD) — essentially she uses σk in the k’th
component of the ultraproduct so that at each round of Hω(AtD), ∃ is still winning in co–
finitely many components, this suffices to show she has still not lost. Now one can use an
elementary chain argument to construct countable elementary subalgebras C = A0 ≼ A1 ≼
. . . ≼ . . .D in the following way. One defines Ai+1 to be a countable elementary subalgebra
of D containing Ai and all elements of D that σ selects in a play of Hω(AtD) in which ∀ only
chooses elements from Ai.

Now let B =
∪

i<ω Ai. This is a countable elementary subalgebra of D, hence necessarily
atomic, and ∃ has a winning strategy in Hω(AtB). (Cf. [8, Theorem 3.3.4 and Corollary
3.3.5] for a similar argument). So by Lemma 5.3 (using AtB in place of α), we get that
CmAtB ∈ NrnCAω. Since B ⊆d CmAtB, then B ∈ SdNrnCAω and by Lemma 5.3, we also have
thatB ∈ CRCAn. But ∀ has a winning strategy inGm(AtB), so by lemma 2.4, C /∈ ScNrnCAm.
To finalize the proof, let K be as given. Then B ≡ C, B ∈ K(⊆ SdNrnCAω ∩ CRCAn), but
C /∈ ScNrnCAn+3(⊇ K) giving that K is not elementary.

Theorem 5.5. 1. There is a finite k ≥ 2, such that for all m ≥ n+ k the class of frames
Str(SNrnCAm) = {F : CmF ∈ SNrnCAm} is not elementary. An entirely analogous result
holds for RAs,

2. Let O ∈ {Sc,Sd, I} and k ≥ 3. Then the class of frames Kk = {F : CmF ∈ ONrnCAn+k}
is not elementary.

Proof. 1: We show that Str(SNrnCAm) is not elementary for some finite m ≥ n + 2. . Let
(Ai : i ∈ ω) be a sequence of (strongly) representable CAns with CmAtAi = Ai and A = Πi/UAi

is not strongly representable with respect to any non-principal ultrafilter U on ω. Such
algebras exist [8]. Hence CmAtA /∈ SNrnCAω =

∩
i∈ω SNrnCAn+i, so CmAtA /∈ SNrnCAl for all

l > m, for somem ∈ ω,m ≥ n+2. But for each such l, Ai ∈ SNrnCAl(⊆ RCAn), so (Ai : i ∈ ω)
is a sequence of algebras such that CmAt(Ai) ∈ SNrnCAl (i ∈ I), but Cm(At(Πi/UAi)) =
CmAt(A) /∈ SNrnCAl, for all l ≥ m.

2: We use the same construction (and notation) as above. It suffices to show that the
class of algebras Kk = {A ∈ CAn ∩ At : CmAtA ∈ ONrnCAk} is not elementary. ∃ has a

28



winning strategy in Hω(α) for some countable atom structure α, Tmα ⊆d Cmα ∈ NrnCAω

and Tmα ∈ CRCAn. Since CZ,N /∈ ScNrnCAn+3, then CZ,N = CmAtCZ,N /∈ Kk, CZ,N ≡ Tmα
and Tmα ∈ Kk because Cmα ∈ NrnCAω ⊆ SdNrnCAω ⊆ ScNrnCAω. We have shown that
CZ,N ∈ ElKk ∼ Kk, proving the required.

We state an easy lemma towards strengthening Lemma 5.4. If B is a Boolean algebra and
b ∈ B, then RlbB denotes the Boolean algebra with domain {x ∈ B : x ≤ b}, top element b,
and other Boolean operations those of B relativized to b.

Lemma 5.6. In the following A and D are Boolean algebras.

1. If A is atomic and 0 ̸= a ∈ A, then RlaA is also atomic. If A ⊆d D, and a ∈ A, then
RlaA ⊆d RlaD,

2. If A ⊆d D then A ⊆c D. In particular, for any class K of BAOs, K ⊆ SdK ⊆ ScK. If
furthermore A and D are atomic, then AtD ⊆ AtA.

Proof. (1): Let b ∈ RlaD be non–zero. Then b ≤ a and b is non-zero in D. By atomicity of
D there is an atom c of D such that c ≤ b. So c ≤ b ≤ a, thus c ∈ RlaD. Also c is an atom
in RlaD because if not, then it will not be an atom in D. The second part is similar.

(2): Assume that
∑A S = 1 and for contradiction that there exists b′ ∈ D, b′ < 1 such

that s ≤ b′ for all s ∈ S. Let b = 1− b′ then b ̸= 0, hence by assumption (density) there exists
a non-zero a ∈ A such that a ≤ b, i.e a ≤ (1− b′). If a · s ̸= 0 for some s ∈ S, then a is not less
than b′ which is impossible. So a · s = 0 for every s ∈ S, implying that a = 0, contradiction.
Now we prove the second part. Assume that A ⊆d D and D is atomic. Let b ∈ D be an atom.
We show that b ∈ AtA. By density there is a non–zero a′ ∈ A, such that a′ ≤ b in D. Since
A is atomic, there is an atom a ∈ A such that a ≤ a′ ≤ b. But b is an atom of D, and a is
non–zero in D, too, so it must be the case that a = b ∈ AtA. Thus AtB ⊆ AtA and we are
done.

The next Lemma strengthens the main Theorem in [13], and will be used later.

Lemma 5.7. Let 1 < n < ω. There are two atomic cylindric algebras A and B having
uncountably many atoms, such that A ∈ NrnCAω, A ≡∞,ω B and B /∈ SdNrnCAn+1.

Proof. We first need to slighty modify the construction in [13, Lemma 5.1.3, Theorem 5.1.4]
reformulating it as a ‘splitting argument’. The algebras A and B constructed in op.cit satisfy
that A ∈ NrnCAω, B /∈ NrnCAn+1 and A ≡ B. As they stand, A and B are not atomic,
but they it can be fixed that they are to be so giving the same result, by interpreting the
uncountably many tenary relations in the signature of M defined in [13, Lemma 5.1.3], which
is the base of A and B to be disjoint in M, not just distinct. The construction is presented
this way in [12], where (the equivalent of) M is built in a more basic step-by–step fashon. We
work with 2 < n < ω instead of only n = 3. The proof presented in op.cit lift verbatim to
any such n. Let u ∈ nn. Write 1u for χM

u (denoted by 1u (for n = 3) in [13, Theorem 5.1.4].)
We denote by Au the Boolean algebra Rl1uA = {x ∈ A : x ≤ 1u} and similarly for B, writing
Bu short hand for the Boolean algebra Rl1uB = {x ∈ B : x ≤ 1u}. We show that ∃ has a
winning strategy in an Ehrenfeucht–Fräıssé-game over (A,B) concluding that A ≡∞ B. At
any stage of the game, if ∀ places a pebble on one of A or B, ∃ must place a matching pebble,
on the other algebra. Let ā = ⟨a0, a1, . . . , an−1⟩ be the position of the pebbles played so far
(by either player) on A and let b̄ = ⟨b0, . . . , bn−1⟩ be the the position of the pebbles played
on B. ∃ maintains the following properties throughout the game: For any atom x (of either
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algebra) with x · 1Id = 0 then x ∈ ai ⇐⇒ x ∈ bi and ā induces a finite partion of 1Id in A of
2n (possibly empty) parts pi : i < 2n and b̄ induces a partion of 1Id in B of parts qi : i < 2n.
Furthermore, pi is finite ⇐⇒ qi is finite and, in this case, |pi| = |qi|. That such properties can
be maintained is fairly easy to show. Using that M has quantifier elimination we get, using
the same argument in op.cit that A ∈ NrnCAω. The property that B /∈ NrnCAn+1 is also still
maintained. To see why consider the substitutin operator ns(0, 1) (using one spare dimension)
as defined in the proof of [13, Theorem 5.1.4]. Assume for contradiction that B = NrnC, with
C ∈ CAn+1. Let u = (1, 0, 2, . . . n − 1). Then Au = Bu and so |Bu| > ω. The term ns(0, 1)
acts like a substitution operator corresponding to the transposition [0, 1]; it ‘swaps’ the first
two co–ordinates. Now one can show that ns(0, 1)

CBu ⊆ B[0,1]◦u = BId, so |ns(0, 1)CBu| is
countable because BId was forced by construction to be countable. But ns(0, 1) is a Boolean
automorpism with inverse ns(1, 0), so that |Bu| = |ns(0, 1)CBu| > ω, contradiction.

Now we show that the algebra B outside SdNrnCAω ∩At ⊇ SdNrnCAω ∩ CRCAn. Take κ
the signature of M to be 22

ω
and assume for contradiction that B ∈ SdNrnCAω ∩At. Then

B ⊆d NrnD, for some D ∈ CAω and NrnD is atomic. For brevity, let C = NrnD. Then
by the first item of Lemma 5.6 RlIdB ⊆d RlIdC. Since C is atomic, then by the following
item of the same Lemma RlIdC is also atomic. Using the same reasoning as above, we get
that |RlIdC| > 2ω (since C ∈ NrnCAω.) By the choice of κ, we get that |AtRlIdC| > ω.
By density using Lemma 5.6, AtRlIdC ⊆ AtRlIdB. But by the construction of B, we have
|RlIdB| = |AtRlIdB| = ω, which is a contradiction and we are done.

In the following Up, Ur, P and H denote the operations of forming ultraproducts, ultra-
roots, products and homomorphic images, respectively.

Theorem 5.8. 1. Any class K such that NrnCAω ∩ CRCAn ⊆ K ⊆ CRCAn ∩ SdNrnCAω ∩
CRCAn or any class K between CRCAn∩SdNrnCAω and ScNrnCAn+3, K is not elemen-
tary.

2. Any class K such that AtNrnCAω ⊆ K ⊆ AtNrnCAω is not elementary.

Proof. 1. Two atomic algebras A and B are constructed in Lemma 5.7 such that, A ∈
NrnCAω, B /∈ SdNrnCAn+1 and A ≡ B. Thus B ∈ El(NrnCAω ∩ CRCAn) ∼ SdNrnCAω.
Since El(NrnCAω ∩CRCAn) * SdNrnCAω ∩CRCAn, there can be no elementary class between
NrnCAω ∩ CRCAn and SdNrnCAω ∩ CRCAn. Having already eliminated elementary classes
between SdNrnCAω ∩ CRCAn and ScNrnCAn+3, we are done.

2. We prove the following: α be a countable atom structure. If ∃ has a winning strategy
in Hω(α), then any algebra F having atom structure α is completely representable and there
exists a complete D ∈ RCAω such that α ∼= AtNrnD. In particular, Cmα ∈ NrnCAω and
α ∈ AtNrnCAω. Combined with the proof of theorem 5.4 we will be done. For this purpose,
let x ∈ D formed as above. Then x = (xa : a ∈ α), where xa ∈ Da. For b ∈ α let πb : D→ Db

be the projection map defined by πb(xa : a ∈ α) = xb. Conversely, let ιa : Da → D be the
embedding defined by ιa(y) = (xb : b ∈ α), where xa = y and xb = 0 for b ̸= a. Suppose
x ∈ NrnD \ {0}. Since x ̸= 0, then it has a non-zero component πa(x) ∈ Da, for some
a ∈ α. Assume that ∅ ̸= ϕ(xi0 , . . . , xik−1

)Da = πa(x), for some L-formula ϕ(xi0 , . . . , xik−1
).

We have ϕ(xi0 , . . . , xik−1
)Da ∈ NrnDa. Pick f ∈ ϕ(xi0 , . . . , xik−1

)Da and assume thatMa, f |=
b(x0, . . . xn−1) for some b ∈ α. We show that b(x0, x1, . . . , xn−1)

Da ⊆ ϕ(xi0 , . . . , xik−1
)Da . Take

any g ∈ b(x0, x1 . . . , xn−1)
Da , so thatMa, g |= b(x0, . . . xn−1). The map {(f(i), g(i)) : i < n}

is a partial isomorphism of Ma. Here that short hyperedges are constantly labelled by λ
is used. This map extends to a finite partial isomorphism θ of Ma whose domain includes
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f(i0), . . . , f(ik−1). Let g
′ ∈Ma be defined by

g′(i) =

{
θ(i) if i ∈ dom(θ)
g(i) otherwise

We have Ma, g
′ |= ϕ(xi0 , . . . , xik−1

). But g′(0) = θ(0) = g(0) and similarly g′(n − 1) =
g(n − 1), so g is identical to g′ over n and it differs from g′ on only a finite set. Since
ϕ(xi0 , . . . , xik−1

)Da ∈ NrnDa, we get thatMa, g |= ϕ(xi0 , . . . , xik), so g ∈ ϕ(xi0 , . . . , xik−1
)Da

(this can be proved by induction on quantifier depth of formulas). This proves that

b(x0, x1 . . . xn−1)
Da ⊆ ϕ(xi0 , . . . , xik)

Da = πa(x),

and so
ιa(b(x0, x1, . . . xn−1)

Da) ≤ ιa(ϕ(xi0 , . . . , xik−1
)Da) ≤ x ∈ Da \ {0}.

Now every non–zero element x of NrnDa is above a non–zero element of the following form
ιa(b(x0, x1, . . . , xn−1)

Da) (some a, b ∈ α) and these are the atoms of NrnDa. The map defined
via b 7→ (b(x0, x1, . . . , xn−1)

Da : a ∈ α) is an isomorphism of atom structures, so that α ∈
AtNrnCAω.

6 Other notions of representability

Theorem 6.1. Let κ be an infinite cardinal. Then there exists an atomless C ∈ CAω such
that for all 2 < n < ω, NrnC is atomic, with |At(NrnC)| = 2κ, NrnC ∈ LCAn, but NrnC is not
completely representable.

Proof. We use the following uncountable version of Ramsey’s theorem due to Erdos and
Rado: If r ≥ 2 is finite, k an infinite cardinal, then expr(k)

+ → (k+)r+1
k where exp0(k) = k

and inductively expr+1(k) = 2expr(k). The above partition symbol describes the following
statement. If f is a coloring of the r + 1 element subsets of a set of cardinality expr(k)

+

in k many colors, then there is a homogeneous set of cardinality k+ (a set, all whose r + 1
element subsets get the same f -value). Let κ be the given cardinal. We use a variation on
the construction which is a simplified more basic version of a rainbow construction where
only the two predominent colours, namely, the reds and blues are available. The algebra C
will be constructed from a relation algebra possesing an ω-dimensional cylindric basis. To
define the relation algebra we specify its atoms and the forbidden triples of atoms. The
atoms are Id, gi0 : i < 2κ and rj : 1 ≤ j < κ, all symmetric. The forbidden triples of atoms
are all permutations of (Id, x, y) for x ̸= y, (rj , rj , rj) for 1 ≤ j < κ and (gi0, g

i′
0 , g

i∗
0 ) for

i, i′, i∗ < 2κ. Write g0 for {gi0 : i < 2κ} and r+ for {rj : 1 ≤ j < κ}. Call this atom structure α.
Consider the term algebra R defined to be the subalgebra of the complex algebra of this atom
structure generated by the atoms. We claim that R, as a relation algebra, has no complete
representation, hence any algebra sharing this atom structure is not completely representable,
too.

Assume for contradiction that R has a complete representation M. Let x, y be points
in the representation with M |= r1(x, y). For each i < 2κ, there is a point zi ∈ M such that
M |= gi0(x, zi)∧r1(zi, y). Let Z = {zi : i < 2κ}. Within Z, each edge is labelled by one of the κ
atoms in r+. The Erdos-Rado theorem forces the existence of three points z1, z2, z3 ∈ Z such
thatM |= rj(z

1, z2)∧rj(z2, z3)∧rj(z3, z1), for some single j < κ. This contradicts the definition
of composition in R (since we avoided monochromatic triangles). Let S be the set of all atomic
R-networksN with nodes ω such that {ri : 1 ≤ i < κ : ri is the label of an edge in N} is finite.
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Then it is straightforward to show S is an amalgamation class, that is for all M,N ∈ S if
M ≡ij N then there is L ∈ S with M ≡i L ≡j N , witness [7, Definition 12.8] for notation.
Now let X be the set of finite R-networks N with nodes ⊆ κ such that:

1. each edge of N is either (a) an atom ofR or (b) a cofinite subset of r+ = {rj : 1 ≤ j < κ}
or (c) a cofinite subset of g0 = {gi0 : i < 2κ} and

2. N is ‘triangle-closed’, i.e. for all l,m, n ∈ nodes(N) we haveN(l, n) ≤ N(l,m);N(m,n).
That means if an edge (l,m) is labelled by Id thenN(l, n) = N(m,n) and ifN(l,m), N(m,n) ≤
g0 then N(l, n) · g0 = 0 and if N(l,m) = N(m,n) = rj (some 1 ≤ j < ω) then N(l, n) · rj = 0.

For N ∈ X let N̂ ∈ Ca(S) be defined by

{L ∈ S : L(m,n) ≤ N(m,n) for m,n ∈ nodes(N)}.

For i ∈ ω, let N�−i be the subgraph of N obtained by deleting the node i. Then if N ∈
X, i < ω then ĉiN = N̂�−i. The inclusion ĉiN ⊆ (N̂�−i) is clear. Conversely, let L ∈ ̂(N�−i).

We seek M ≡i L with M ∈ N̂ . This will prove that L ∈ ĉiN , as required. Since L ∈ S
the set T = {ri /∈ L} is infinite. Let T be the disjoint union of two infinite sets Y ∪ Y ′,
say. To define the ω-network M we must define the labels of all edges involving the node i
(other labels are given by M ≡i L). We define these labels by enumerating the edges and
labeling them one at a time. So let j ̸= i < κ. Suppose j ∈ nodes(N). We must choose
M(i, j) ≤ N(i, j). If N(i, j) is an atom then of course M(i, j) = N(i, j). Since N is finite,
this defines only finitely many labels of M . If N(i, j) is a cofinite subset of g0 then we let
M(i, j) be an arbitrary atom in N(i, j). And if N(i, j) is a cofinite subset of r+ then let
M(i, j) be an element of N(i, j) ∩ Y which has not been used as the label of any edge of M
which has already been chosen (possible, since at each stage only finitely many have been
chosen so far). If j /∈ nodes(N) then we can let M(i, j) = rk ∈ Y some 1 ≤ k < κ such that
no edge of M has already been labelled by rk. It is not hard to check that each triangle of M
is consistent (we have avoided all monochromatic triangles) and clearly M ∈ N̂ and M ≡i L.

The labeling avoided all but finitely many elements of Y ′, so M ∈ S. So ̂(N�−i) ⊆ ĉiN .
Now let X̂ = {N̂ : N ∈ X} ⊆ Ca(S). Then the subalgebra of Ca(S) generated by X̂ is

simply obtained from X̂ by closing under finite unions. Thus R is relation algebra reduct of
C ∈ CAω but has no complete representation. Let n > 2. Let B = NrnC. Then B ∈ NrnCAω,
is atomic, but has no complete representation for plainly a complete representation of B
induces one of R. In fact, because B is generated by its two dimensional elements, and its
dimension is at least three, its Df reduct is not completely representable. We show that the
ω–dilation C is atomless. For any N ∈ X, we can add an extra node extending N to M
such that ∅ ( M ′ ( N ′, so that N ′ cannot be an atom in C. Then NrnC (2 < n < ω) is
atomic, but has no complete representation. By Lemma 2.4, ∃ has a winning strategy in
Gω(AtNrnC), hence she has a winning strategy in Gω(AtNrnC), a fortiori in Gk(AtNrnC) for
all k ∈ ω, hence by coding the winning strategy’s of the Gk’s in first order sentences, we get
that NrnC satisfies these first order sentences which are precisely (by definition) the Lyndon
conditions.

By observing from the last part of the proof of the previous Theorem that NrnCAω ⊆
LCAn(= ElCRCAn) and similarly for RAs, we have RaCAω ⊆ LRRA = (ElCRRA), we immea-
diately get:

Corollary 6.2. (Hirsch and Hodkinson) For 2 < n < ω, the classes CRCAn and CRRA are
not elementary.
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Theorem 6.3. For 2 < n < ω the following hold:

1. CRCAn ⊆ ScNrn(CAω ∩At) ∩At. At least two of the last three claseses are distinct.

2. All reverse inclusions in the first item hold if atomic algebras considerered have countably
many atoms.

3. All classes in the first item are closed under Sc a fortiori Sd, P (products), but are not
closed under S nor H (homomorphic images) nor Ur (ultraroots). Their elementary
closure coincides wih LCAn.

4. NrnCAω ( SdNrnCAω ( ScNrnCAω ⊆ ELScNrnCAω ( RCAn. Furthermote strictness of
inclusions can be witnessed by atomic algebras.

Proof. We prove more considering infinite dimensions. To adapt to the infinite dimensional
case, we define complete representability with respect to (generalized) weak set algebras of
the same infinite dimension in the sense of [5]. This coincides with the usual definition for
finite dimensions for in the finite dimensional case obviously weak set algebras are just set
algebra (of the same dimension). Suppose that A has complete representation. Assume that
M is the base of a complete representation of A, whose the unit is a weak generalized space,

that is, 1M =
∪

αU
(pi)
i pi ∈ αUi, where

αU
(pi)
i ∩ αU

(pj)
j = ∅ for distinct i and j, in some index

set I, that is, we have an isomorphism t : B→ C, where C ∈ Gsα has unit 1M, and t preserves

arbitrary meets carrying them to set–theoretic intersections. For i ∈ I, let Ei =
αU

(pi)
i . Take

fi ∈ α+ωU
(qi)
i where qi � α = pi and let Wi = {f ∈ α+ωU

(qi)
i : |{k ∈ α + ω : f(k) ̸= fi(k)}| <

ω}. Let Ci = ℘(Wi). Then Ci is atomic; indeed the atoms are the singletons. Let x ∈ NrαCi,
that is cix = x for all α ≤ i < α + ω. Now if f ∈ x and g ∈ Wi satisfy g(k) = f(k) for all
k < α, then g ∈ x. Hence NrαCi is atomic; its atoms are {g ∈ Wi : {g(i) : i < α} ⊆ Ui}.
Define hi : A → NrαCi by hi(a) = {f ∈ Wi : ∃a′ ∈ AtA, a′ ≤ a; (f(i) : i < α) ∈ t(a′)}. Let
D = PiCi. Let πi : D → Ci be the ith projection map. Now clearly D is atomic, because it
is a product of atomic algebras, and its atoms are (πi(β) : β ∈ At(Ci)). Now A embeds into
NrαD via J : a 7→ (πi(a) : i ∈ I). If x ∈ NrαD, then for each i, we have πi(x) ∈ NrαCi,
and if x is non–zero, then πi(x) ̸= 0. By atomicity of Ci, there is an α–ary tuple y, such that
{g ∈Wi : g(k) = yk} ⊆ πi(x). It follows that there is an atom of b ∈ A, such that x ·J(b) ̸= 0,
and so the embedding is atomic, hence complete. We have shown that A ∈ ScNrαCAα+ω and
we are done.

(2) By [13, Theorem 5.3.6] the class CRCAn coincides wit the class ScNrnCAω on atomic
algebras with countably many atoms. Then together with [8, Theorem 3.3.3] we are done.

(3) We start with CRCAn. Closure under P is straightforward. We show that ScCRCAn =
CRCAn. Assume that D ∈ CRCAn and A ⊆c D. Identifying set algebras with their domain,
let f : D → ℘(V ) be a complete representation of A where V is a Gsn unit. We claim
that g = f � A establishes the required complete representation of A. Let X ⊆ A, then for
x ∈ X(⊆ A), we have f(x) = g(x), so that

∪
x∈X g(x) =

∪
x∈X f(x) = V , since it is given

that f is a complete representation and we are done. Let C be any of the two remaining
classes. Closure under Sc follows from that ScScC = ScC. Closure under P follows from
from that PScC ⊆ ScPC, and that PNrnCAω = NrnCAω. Non closure under S is trivial for
a subalgebra of an atomic algebra may well be non atomic. We prove non closure under H
for all three clases in one go. Take a family (Uii ∈ N) of pairwise disjoint non-empty sets.
Let Vi = nUi(i ∈ N). Take the full Gsn A with universe ℘(V ) where V =

∪
i∈N Vi. Then
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A ∈ CRCAn ⊆ C. Let I be the ideal of elements of A intersecting with only finitely many
elements of the Vis. Then A/I is non-atomic, and so is outside all three classes.

Now we approach closure under ultraroots (Ur). Let C ∈ CAn ∼ CRCAn be atomic
having countable many atoms and elementary equivalent to a B ∈ CRCAn. Such algebras
exist (as shown above, see e.g the algebra CZ,N used in the proof of Theorems 5.4 and 5.5,
or [6]). Since all the given classes are closed under ultraproducts, it must be the case that
B /∈ UrC of any of the given three classes C, since by the Keisler- Shelah ultrapower Therorem
ElK = UrUpK. Now we show pseudo-elementarity of NrnCAm (which is known to be non
elementray [12]). If m is finite, then the psuedo-elementary class NrnCAm can be defined in
two sorted theory in a fairly straightforward manner. When m = ω, things are slightly (but
not much more) involved. One proceeds as follows defining NrnCAω in a three sorted theory:
Use a sort of the CAn (c), the second sort is for the Boolean reduct of the CAn (b), and the
third sort is for the set od dimensions (δ). For any infinite ordinal µ the defining theory of
for NrnCAµ = NrnCAω will include sentences requiring that the constants iδ for i < ω are
distinct, and the last two sorts defines a CAω. There is a function Ib from sort (c) to sort (b)
and one stipulates sentences forcing that Ib is injective and respects the CAn operations. For
example for all xc and i < n Ib(cix

c)) = cbi(I
b(xc)). One finally requires that that Ib maps

onto set of n-dimensional elements. This can be expressed vai (*):

∀yb(∀zδ(zδ ̸= 0δ, . . . (n− 1)δ =⇒ cb(zδ, yb) = yb)) ⇐⇒ ∃xc(yb = Ib(xc))).

In all cases it is is clear that any algebra of the right type is the first sort of a model of this
theory. Conversely, a model of this theory will consist of A ∈ CAn (sort c) and a B ∈ CAω; the
dimension of the last is the cardinality of the δ-sorted elementsd which is ω such that that by
(*) A = NrnB. Thus the three sorted theory defines the class of neat reducts. Furthermore it
is clearly recursive. Recursive enumerability for both classes follows from [7, Theorem 9.37].

For the last required we show that LCAn = ElCRCAn = ElScNrnCAω ∩ At. Assume
that A ∈ LCAn. Then, by definition, for all k < ω, ∃ a winning strategy in the k-rounded
atomic game Gk(AtA). Using ultrapowers, followed by an elementay chain argument, like
in [8, Theorem 3.3.3], there exisis a countable atomic B, such that B ≡ A and ∃ has a
winning strategy in the ω-rounded atomic game Gω(AtB). So A ∈ ElCRCAn, because by [7,
Theorem 3.3.3], B ∈ CRCAn. One next shows that El(Sc)NrnCAω ∩At) ⊆ LCAn as follows.
Assume that A ∈ ScNrnCAω∩At. Then by Lemma 2.4, ∃ has a winning strategy in Gω(AtA).
Since we have infinitely many nodes, and infinitely many rounds, reusing the nodes in play, is
superfluous, so ∃ has a winning strategy in the usual ω-rounded atomic game Gω(AtA). This
obviously implies that ∃ has winning strategy in the k-rounded usual atomic game Gk(AtA)
for all k < ω. But this means that, by definition, that A satifies the Lyndon conditions. We
have shown that ScNrnCAω ∩At ⊆ LCAn. Since LCAn is elementary, it readily follows that
ELScNrnCAω ∩At ⊆ LCAn.

For the last item: The algebra E used in Theorem 3.6 witnesses that NrnCAω ( SdNrnCAω,
because E /∈ ElNrnCAω ⊇ NrnCAω and E ⊆d B where B is the full CAn with unit nQ and
universe ℘(nQ). We have constructed algebras with countably many atoms in ELScNrnCAω ∼
ScNrnCAω like the rainbow-like algebra CZ,N . Let A ∈ RCAn be simple, countable and atomic
such that CmAtA /∈ RCAn. These algebra exist in [10] and even finer ones were constructed
in Theorem 3.2. Then A /∈ LCAn, because AtA does not satisfy the Lyndon conditions, lest
CmAtA ∈ LCAn(⊆ RCAn) which we know is not he case. Then A ∈ RCAn ∼ El§cNrnCAω

proving the strictness of the last inclusion. Since all three algebra E,CZ,N, and A are all
atomic, we are done.
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Fix 2 < n < ω. Call an atomic A ∈ CAn weakly(strongly) representable ⇐⇒ AtA is weaky
(strongly) representable. Let WRCAn(SRCAn)) denote the class of all such CAns, respectively.
Then the class SRCAn is not elementary, and LCAn ( SRCAn ( WRCAn [8]. Recall that for a
class K of atomic BAOs, K∩Count denotes the class of algebras havng countably many atoms.

Theorem 6.4. Let 2 < n < ω. Then the following hold:

1. ScNrnCAω ∩At ∩ Count = CRCAn ∩ Count.

2. SNrnCAω ∩At = WRCAn.

3. ElScNrnCAω ∩At = LCAn.

4. PElScNrnCAω ∩At ⊆ SRCAn

Proof. The first item is already dealy with, cf. [13, Theorem 3.6.2]. Item (2) follows from
the definition, upon noting that RCAn = SNrnCAω, and the last two items follows from that
LCAn ⊆ SRCAn, that ElScNrnCAω ∩ At = LCAn, and that (it is straightforward to check
that) SRCAn is closed under P.
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