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Summary. Fix 2 < n < ω and let CAn denote the class of cyindric algebras of dimension n.
Roughly CAn is the algebraic counterpart of the proof theory of first order logic restricted to
the first n variables which we denote by Ln. The variety RCAn of representable CAns reflects
algebraically the semantics of Ln. We show using a so-called blow up and blur construction
that several varieties (in fact infinitely many) containing and including the variety RCAn are
not atom-canonical. A variety V of Boolean algebras with operators is atom-canonical, if
whenever A ∈ V is atomic, then its Dedekind-MacNeille completion, sometimes referred to
as its minimal completion, is also in V. From our hitherto obtained algebraic results we show,
employing the powerful machinery of algebraic logic, that the celebrated Henkin-Orey omit-
ting types theorem, fails dramatically for Ln even if we allow certain generalized models that
are only locally classical.

1.1 Introduction

Persistence properties and omitting types: The technical notion of a modal logic corre-
sponds to the one of a variety of Boolean algebras with operators (BAOs). which provides
algebraic semantics for modal logic. We assume familiarity with the very basics of the well
developed duality theory between BAOs and multimodal logic; the class of all BAOs corre-
sponds to the minimal normal multimodal logic; this correspondence is established by form-
ing quotient Lindenbaum-Tarski algebras. Prominent examples of BAOs are relation, cylin-
dric and polyadic algebras. Relation algebras (RA) correspond to so–called arrow logic, while
cylindric algebras of dimension n (CAn) and the relativized versions of the representable CAns,
correspond to Ln and its guarded and clique-guarded fragments [6] dealt with below. Atom-
canonicity, a well known persistence property in modal logic, is concerned with closure under
forming Dedekind-MacNeille completions (sometimes occuring in the literature under the
name of the minimal completions) of atomic algebras in the variety V, because for an atomic
A ∈ V, CmAtA is its Dedekind-MacNeille completion. Canonicity is the most famous per-
sistence property in modal logic. Though RCAn is canonical [4], it is not atom-canonical for
2 < n < ω [9]. We shall see that (non-) atom-canonicity of subvarieties of RCAn is closely re-
lated to (the failure) of some version of the omitting types theorem (OTT) in modal fragments
of Ln. While the classical Orey-Henkin OTT holds for Lω,ω , it is known [2] that the OTT
fails for Ln in the following (strong) sense. For every 2 < n≤ l < ω , there is a countable and
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complete Ln atomic theory T , and a single type, namely, the type consisting of co-atoms of T ,
that is realizable in every model of T , but cannot be isolated by a formula φ using l variables.
Such φ will be referred to henceafter as a witness. Here we prove stronger negative OTTs
for Ln when types are required to be omitted with respect to certain (much wider) generalized
semantics, called m-flat and m–square with 2 < n < m < ω . Considering such clique-guarded
semantics swiftly leads us to rich territory.

Blow up and blur constructions in connection to failure of OTTs: From now on fix
2 < n < ω . To violate a special case of OTT for the clique guarded fragments of Ln, which
we refer to below as Vaught’s Theorem, we use a blow up and blur construction applied to
a finite extremely simple (so-called rainbow) CAn (to be defined below) to prove non-atom
canonicity of infinitely many varieties of CAns. This subtle construction may be applied to
any two classes L ⊆ K of completely additive BAOs. One takes an atomic A /∈ K (usually
but not always finite), blows it up, by splitting one or more of its atoms each to infinitely
many subatoms, obtaining an (infinite) countable atomic Bb(A)∈L, such that A is blurred in
Bb(A) meaning that A does not embed in Bb(A), but A embeds in the Dedekind-MacNeille
completion of Bb(A), namely, CmAtBb(A). Then any class M say, between L and K, that
is closed under forming subalgebras will not be atom–canonical, for Bb(A) ∈ L(⊆M), but
CmAtBb(A) /∈ K(⊇M) because A /∈M and SM = M. We say, in this case, that L is not
atom–canonical with respect to K. This method is applied to K = SRaCAl , l ≥ 5 and L =
RRA in [6, §17.7] and to K = RRA and L = RRA∩RaCAk for all k ≥ 3 in [2], and will
be applied below to K = SNrnCAt(n), with t(n) = n(n+ 1)/2+ 1, where Nrn denotes the
operation of forming the n-neat reduct [4, Defintion 2.6.38] (to be defined below) and L =
RCAn, Ra denotes the operator of forming relation algebra reducts (applied to classes) of
CAs, respectively, [4, Definition 5.2.7]. The last example will be used to show that OTT fails
for the so-called m-clique guarded fragments of Ln, sometimes referred to as its m-packed
fragments, or simply packed fragments, where the class of models omitting non-principal
types is substantially broadened to allow m-square models for any 2n≤ m≤ ω .

1.2 The algebras and some basic concepts

For a set V , B(V ) denotes the Boolean set algebra 〈℘(V ),∪,∩,∼, /0,V 〉. Let U be a set and α

an ordinal; α will be the dimension of the algebra. For s, t ∈ αU write s≡i t if s( j) = t( j) for
all j 6= i. For X ⊆ αU and i, j < α, let

CiX = {s ∈ αU : (∃t ∈ X)(t ≡i s)}

and
Di j = {s ∈ αU : si = s j}.

〈B(αU),Ci,Di j〉i, j<α is called the full cylindric set algebra of dimension α with unit (or
greatest element) αU . Any subalgebra of the latter is called a set algebra of dimension α .
Following [4], Csα denotes the class of all subalgebras of full set algebras of dimension α .
The (equationally defined) CAα class is obtained from cylindric set algebras by a process of
abstraction.

Definition 1. Let α be an ordinal. By a cylindric algebra of dimension α , briefly a CAα , we
mean an algebra

A= 〈A,+, ·,−,0,1,ci,di j〉κ,λ<α
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where 〈A,+, ·,−,0,1〉 is a Boolean algebra such that 0,1, and di j are distinguished elements
of A (for all j, i < α), − and ci are unary operations on A (for all i < α), + and . are binary
operations on A, and such that the following equations are satisfied for any x,y ∈ A and any
i, j,µ < α:

(C1) ci0 = 0,
(C2) x≤ cix (i.e.,x+ cix = cix),
(C3) ci(x · ciy) = cix · ciy,
(C4) cic jx = c jcix,
(C5) dii = 1,
(C6) if i 6= j,µ , then d jµ = ci(d ji ·diµ ),
(C7) if i 6= j, then ci(di j · x) · ci(di j ·−x) = 0.

Our main results involve the central notion of neat reducts:

Definition 2. Let α < β be ordinals and B ∈ CAβ . Then the α–neat reduct of B, in symbols
NrαB, is the algebra obtained from B, by discarding cylindrifiers and diagonal elements
whose indices are in β ∼ α , and restricting the universe to the set Nrα B = {x ∈B : {i ∈ β :
cix 6= x} ⊆ α}.

Let α be any ordinal. If A ∈ CAα and A ⊆ NrαB, with B ∈ CAβ (β > α), then we say
that A neatly embeds in B, and that B is a β–dilation of A, or simply a dilation of A if β

is clear from context. For K ⊆ CAβ , and α < β , NrαK = {NrαB : B ∈ K} ⊆ CAα . Let α

be an ordinal. Then RCAα is defined to be the subdirect product of set algebras of dimension
α . A cartesian square of dimension α is a set of the form αU (U some non-empty set);
these appear as top elements of Csα s. We let Gsα denote the class of generalized set algebras
of dimension α; A ∈ Gsα ⇐⇒ A has top element a disjoint union of cartesian squares of
dimension α and the cylindric operations are defined like in set algebras. It is known that
RCAα = IGsα = SNrαCAα+ω , and that for 2 < α k≥ 1, SNrαCAα+k+1 ( SNrαCAα+k [8].
The class of completely representable CAα s is denoted by CRCAα .

Definition 3. Let α b an ordinal. Then A ∈ CAα is completely representable, if there exists
B ∈ Gsα and an isomorphism f : A→B such for all X ⊆ A, f (∏X) =

⋂
x∈X f (x) whenever

∏X exists. In this case we may say that A is cmpletel representable via f

If A is an atomic CAα , then an isomorphism f : A→B, where B ∈ Gsα with top element V ,
is atomic, if

⋃
a∈AtA f (a) = V . It can be easily shown that A is completely representable via

f ⇐⇒ A is atomic and f is an atomic representation [5].

1.3 Non-atom canonicity of any V between SNrnCA2n and RCAn

1.3.1 Clique guarded semantics

We study (locally well–behaved) relativized representations of RCAn , in analogy to the re-
lation algebra case dealt with in [6, Chapter 13]. Examples include m–flat and m–square rep-
resentations, where 2 < n < m < ω . It will always be the case, unless otherwise explicitly
indicated, that 1 < n < m < ω; n denotes the dimension. We identify notationally a set algebra
with its universe. Let M be a relativized representation of A ∈ CAn, that is, there exists an
injective homomorphism f : A→℘(V ) where V ⊆ nM and

⋃
s∈V rng(s) =M. For s ∈V and

a ∈ A, we may write a(s) for s ∈ f (a). This notation does not refer to f , but whenever used
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then either f will be clear from context, or immaterial in the context. We may also write 1M for
V . Let L(A)m be the first order signature using m variables and one n–ary relation symbol for
each element of A. Allowing infinitary conjunctions, we denote the resulting signature taken
in L∞,ω by L(A)m

∞,ω .
An n–clique, or simply a clique, is a set C ⊆ M such (a0, . . . ,an−1) ∈ V = 1M for all

distinct a0, . . . ,an−1 ∈C. Let

Cm(M) = {s ∈ mM : rng(s) is an n clique}.

Then Cm(M) is called the n–Gaifman hypergraph, or simply Gaifman hypergraph of M, with
the n–hyperedge relation 1M. The n-clique–guarded semantics, or simply clique–guarded se-
mantics, |=c, are defined inductively. Let f be as above. For an atomic n–ary formula a ∈ A,
i ∈ nm, and s ∈ mM, M,s |=c a(xi0 , . . .xin−1) ⇐⇒ (si0 , . . .sin−1) ∈ f (a). For equality, given
i < j < m, M,s |=c xi = x j ⇐⇒ si = s j. Boolean connectives, and infinitary disjunctions, are
defined as expected. Semantics for existential quantifiers (cylindrifiers) are defined inductively
for φ ∈ L(A)m

∞,ω as follows: For i < m and s ∈ mM, M,s |=c ∃xiφ ⇐⇒ there is a t ∈ Cm(M),
t ≡i s such that M, t |=c φ .

Definition 4. Let A ∈ CAn, M a relativized representation of A and L(A)m be as above.
1) Then M is said to be m–square if for all s̄ ∈ Cm(M),a ∈ A, i < n, and for any injective

map l : n→ m, if M |= cia(sl(0) . . . ,sl(n−1)), then there exists t̄ ∈ Cm(M) with t̄ ≡i s̄, and
M |= a(tl(0), . . . , tl(n−1)).

2) M is said to be (infinitary) m–flat if it is m–square and for all φ ∈ (L(A)m
∞,ω )L(A)

m,
for all s̄ ∈ Cm(M), for all distinct i, j < m, we have M |=c [∃xi∃x jφ ←→∃x j∃xiφ ](s̄).

The proof of the following lemma can be distilled from its relation algebra (RA) analogue
[6, Theorem 13.20]. A set V (⊆ nU) is diagonizable if s ∈V =⇒ s◦ [i| j] ∈V . We write Sc for
the operation of forming complete subalgebras. Complete m-square or m flat representations
are defined lke the classical case. For two BAOs, A and B having the same signature, we write
A⊆c B, if A is a complete subalgebra of B.

Lemma 1. [13, Section 5], [6, Theorems 13.45, 13.36]. Assume that 2 < n < m < ω and let A
be a BAO having the same signature as CAn and satisfying all the CAn axioms except possibly
for commutativity of cylindrifications. (1) Then A∈ SNrnCAm ⇐⇒ A has an infinitary m–flat
representation ⇐⇒ A has an m–flat representation. Furthermore, if A is atomic, then A has
a complete infinitary m–flat representation ⇐⇒ A ∈ ScNrn(CAm∩At).
(2) We can replace infinitary m-flat and CAm by m-square and Dm, respectively, where Dm are
set algebras having a diagonizable top element V with operations defined like Csm restricted
to V .

Definition 5. Let M be a variety of completely additive BAOs.
(1) Let A ∈M be a finite algebra. We say that D ∈M is obtained by blowing up and

blurring A if D is atomic, A does not embed in D, but A embeds into CmAtD.
(2) Assume that K⊆ L⊆M, such that SL= L.
(a) We say that K is atom-canonical with respect to L if for every atomic D∈K CmAtD /∈

L. In particular, K is atom–canonical ⇐⇒ K atom-canoincal with respect to itself.
(b) We say that a finite algebra A ∈M detects that K is not atom–canonical with respect

to L, if A /∈ L, and there is a(n atomic) D ∈ K obtained by blowing up and blurring A.

From now on, unless otherwise indicated, n is fixed to be a finite ordinal > 2.
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Definition 6. An n–dimensional atomic network on an atomic algebra A ∈ CAn is a map
N : n∆ → AtA, where ∆ is a non–empty finite set of nodes, denoted by nodes(N), satisfying
the following consistency conditions for all i < j < n:

(i) If x̄ ∈ nnodes(N) then N(x̄)≤ di j ⇐⇒ x̄i = x̄ j,
(ii) If x̄, ȳ ∈ nnodes(N), i < n and x̄≡i ȳ, then N(x̄)≤ ciN(ȳ),

Definition 7. (1) Assume that A ∈ CAn is atomic and that m,k ≤ ω . The atomic game
Gm

k (AtA), or simply Gm
k , is the game played on atomic networks of A using m nodes

and having k rounds [7, Definition 3.3.2], where ∀ is offered only one move, namely, a
cylindrifier move: Suppose that we are at round t > 0. Then ∀ picks a previously played
network Nt (nodes(Nt)⊆ m), i < n, a ∈ AtA, x̄ ∈ nnodes(Nt), such that Nt(x̄)≤ cia. For
her response, ∃ has to deliver a network M such that nodes(M)⊆ m, M ≡i N, and there
is ȳ ∈ nnodes(M) that satisfies ȳ≡i x̄ and M(ȳ) = a.
We write Gk(AtA), or simply Gk, for Gm

k (AtA) if m≥ ω .
(2) The ω–rounded game Gm(AtA) or simply Gm is like the game Gm

ω (AtA) except that
∀ has the option to reuse the m nodes in play.

The following Lemma is proved in [14, Lemma 4.3] and [13, Lemma 5.8]:

Lemma 2. Let 2 < n < ω , and assume that m > n. If A ∈ ScNrnCAm is atomic, then ∃ has
a winning strategy in Gm(AtA). If A ∈ CAn, and A has a complete m-square representation
then ∃ has a winning strategy in Gm

ω (AtA).

1.3.2 Blowing up and blurring finite rainbow cylindric algebas

The most general exposition of CA rainbow constructions is given in [7, Section 6.2, Definition
3.6.9] in the context of constructing atom structures from classes of models. Our models are
just coloured graphs [5]. Let G, R be two relational structures. Let 2< n<ω . Then the colours
used are:

• greens: gi (1≤ i≤ n−2), gi
0, i ∈ G,

• whites : wi : i≤ n−2,
• reds: ri j (i, j ∈ R),
• shades of yellow : yS : S a finite subset of ω or S = ω .

A coloured graph is a graph such that each of its edges is labelled by the colours in the above
first three items, greens, whites or reds, and some n− 1 hyperedges are also labelled by the
shades of yellow. Certain coloured graphs will deserve special attention.

Definition 8. Let i ∈ G, and let M be a coloured graph consisting of n nodes x0, . . . ,xn−2,z.
We call M an i - cone if M(x0,z) = gi

0 and for every 1≤ j≤ n−2, M(x j,z) = g j, and no other
edge of M is coloured green. (x0, . . . ,xn−2) is called the base of the cone, z the apex of the
cone and i the tint of the cone.

The rainbow algebra depending on G and R from the class K consisting of all coloured graphs
M such that:

1. M is a complete graph and M contains no triangles (called forbidden triples) of the fol-
lowing types:
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(g,g
′
,g∗),(gi,gi,wi) any 1≤ i≤ n−2, (1.1)

(g
j
0,g

k
0,w0) any j,k ∈ G, (1.2)

(ri j, r j′k′ , ri∗k∗) unless |{( j,k),( j′,k′),( j∗,k∗)}|= 3 (1.3)

(1.4)

and no other triple of atoms is forbidden.
2. If a0, . . . ,an−2 ∈M are distinct, and no edge (ai,a j) i < j < n is coloured green, then the

sequence (a0, . . . ,an−2) is coloured a unique shade of yellow. No other (n−1) tuples are
coloured shades of yellow. Finally, if D = {d0, . . . ,dn−2,δ} ⊆M and M � D is an i cone
with apex δ , inducing the order d0, . . . ,dn−2 on its base, and the tuple (d0, . . . ,dn−2) is
coloured by a unique shade yS then i ∈ S.

Let G and R be relational structures as above. Take the set J consisting of all surjective maps
a : n→ ∆ , where ∆ ∈ K and define an equivalence relation ∼ on this set relating two such
maps iff they essentially define the same graph [5]; the nodes are possibly different but the
graph structure is the same. Let At be the atom structure with underlying set J ∼. We de-
note the equivalence class of a by [a]. Then define, for i < j < n, the accessibility relations
corresponding to i jth–diagonal element, and ith–cylindrifier, as follows:

(1) [a] ∈ Ei j iff a(i) = a( j),
(2) [a]Ti[b] iff a � nr{i}= b � nr{i},
This, as easily checked, defines a CAn atom structure. The complex CAn over this atom

structure will be denoted by AG,R. The dimension of AG,R, always finite and > 2, will be
clear from context. For rainbow atom structures, there is a one to one correspondence between
atomic networks and coloured graphs [5, Lemma 30], so for 2 < n < m≤ω , we use the graph
versions of the games Gm

k , k ≤ ω , and Gm played on rainbow atom structures of dimension
m [5, pp.841–842]. The the atomic k rounded game game Gm

k where the number of nodes are
limited to n to games on coloured graphs [5, lemma 30]. The game Gm lifts to a game on
coloured graphs, that is like the graph games Gm

ω [5], where the number of nodes of graphs
played during the ω rounded game does not exceed m, but ∀ has the option to re-use nodes.
The typical winning strategy for ∀ in the graph version of both atomic games is bombarding ∃
with cones having a common base and green tints until she runs out of (suitable) reds, that is
to say, reds whose indicies do not match [5, 4.3].

Definition 9. A CAn atom structure At is weakly representable if there is an atomic A∈RCAn
such that At = AtA; it is strongly representable if CmAt ∈ RCAn.

These two notions are distinct, cf. [9] and the following Theorem1; see also the forthcoming
Theorem 2.

Theorem 1. Let 2< n<ω and t(n)= n(n+1)/2+1. The variety RCAn is not-atom canonical
with respect to SNrnCAt(n). In fact, there is a countable atomic simple A ∈ RCAn such that
CmAtA does not have an t(n)-square,a fortiori t(n)- flat, representation.

Proof. The proof is long and uses many ideas in [9]. We will highlight only the differences in
detail from the proof in [9] needed to make our result work. When parts of the proof coincide
we will be more sketchy. The proof is divided into four parts:

1: Blowing up and blurring B f forming a weakly representable atom structure At:
Take the finite rainbow CAn, B f where the reds R is the complete irreflexive graph n, and the
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greens are {gi : 1 ≤ i < n−1}∪{gi
0 : 1≤ i ≤ n(n−1)/2}, endowed with the cylindric oper-

ations. We will show B detects that RCAn is not atom-canonical with respect to SNrnCAt(n)
with t(n) as specified in the statement of the theorem. Denote the finite atom structure of B f
by At f ; so that At f = At(B f ). One then defines a larger the class of coloured graphs like in
[9, Definition 2.5]. Let 2 < n < ω . Then the colours used are like above except that each red
is ‘split’ into ω many having ‘copies’ the form rli j with i < j < n and l ∈ω , with an additional
shade of red ρ such that the consistency conditions for the new reds (in addition to the usual
rainbow consistency conditions) are as follows:

• (ri
jk,r

i
j′k′ ,r

i∗
j∗k∗) unless i = i′ = i∗ and |{( j,k),( j′,k′),( j∗,k∗)}|= 3

• (r,ρ,ρ) and (r, r∗,ρ), where r, r∗ are any reds.

The consistency conditions can be coded in an Lω,ω theory T having signture the reds with
ρ together with all other colours like in [7, Definitio 3.6.9]. The theory T is only a first order
theory (not an Lω1,ω theory) because the number of greens is finite which is not the case
with [7] where the number of available greens are countably infinite coded by an infinite
disjunction. One construct an n-homogeneous model M is as a countable limit of finite models
of T using a game played between ∃ and ∀like in [9, Theorem 2.16]. In the rainbow game ∀
challenges ∃ with cones having green tints (gi

0), and ∃ wins if she can respond to such moves.
This is the only way that ∀ can force a win. ∃ has to respond by labelling appexes of two
succesive cones, having the same base played by ∀. By the rules of the game, she has to use a
red label. She resorts to ρ whenever she is forced a red while using the rainbow reds will lead
to an inconsistent triangle of reds; [9, Proposition 2.6, Lemma 2.7]. The number of greens
make [9, Lemma 3.10] work with the same proof. using only finitely many green and not
infinitely many.

2. Representing a term algebra (and its completion) as (generalized) set algebras:
Having M at hand, one constructs two atomic n–dimensional set algebras based on M, sharing
the same atom structure and having the same top element. The atoms of each will be the set of
coloured graphs, seeing as how, quoting Hodkinson [9] such coloured graphs are ‘literally in-
divisible’. Now Ln and Ln

∞,ω are taken in the rainbow signature (without ρ). Continuing like in
op.cit, deleting the one available red shade, set W = {ā ∈ nM : M |= (

∧
i< j<n¬ρ(xi,x j))(ā)},

and for φ ∈ Ln
∞,ω , let φW = {s ∈ W : M |= φ [s]}. Here W is the set of all n–ary assign-

ments in nM, that have no edge labelled by ρ . Let A be the relativized set algebra with
domain {ϕW : ϕ a first-order Ln− formula} and unit W , endowed with the usual concrete
quasipolyadic operations read off the connectives. Classical semantics for Ln rainbow for-
mulas and their semantics by relativizing to W coincide [9, Proposition 3.13] but not with
respect to Ln

∞,ω rainbow formulas. Hence the set algebra A is isomorphic to a cylinric set
algebra of dimension n having top element nM, so A is simple, in fact its Df reduct is sim-
ple. Let E = {φW : φ ∈ Ln

∞,ω} [9, Definition 4.1] with the operations defined like on A the
usual way. CmAt is a complete CAn and, so like in [9, Lemma 5.3] we have an isomorphism
from CmAt to E defined via X 7→

⋃
X . Since AtA = AtTm(AtA), which we refer to only by

At, and TmAtA ⊆ A, hence TmAtA = T mAt is representable. The atoms of A, TmAtA and
CmAtA = CmAt are the coloured graphs whose edges are not labelled by ρ . These atoms
are uniquely determined by the interpretion in M of so-called MCA formulas in the rainbow
signature of At as in [9, Definition 4.3].

3. Embedding An+1,n into Cm(At(Bb(An+1,n, r,ω))): Let CRG f be the class of coloured
graphs on At f and CRG be the class of coloured graph on At. We can (and will) assume that
CRG f ⊆CRG. Write Ma for the atom that is the (equivalence class of the) surjection a : n→M,
M ∈ CGR. Here we identify a with [a]; no harm will ensue. We define the (equivalence)
relation ∼ on At by Mb ∼ Na, (M,N ∈ CGR) :
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• a(i) = a( j)⇐⇒ b(i) = b( j),
• Ma(a(i),a( j)) = rl ⇐⇒ Nb(b(i),b( j)) = rk, for some l,k ∈ ω,
• Ma(a(i),a( j)) = Nb(b(i),b( j)), if they are not red,
• Ma(a(k0), . . . ,a(kn−2)) = Nb(b(k0), . . . ,b(kn−2)), whenever defined.

We say that Ma is a copy of Nb if Ma ∼ Nb (by symmetry Nb is a copy of Ma.) Indeed, the
relation ‘copy of’ is an equivalence relation on At. An atom Ma is called a red atom, if Ma has
at least one red edge. Any red atom has ω many copies, that are cylindrically equivalent, in
the sense that, if Na ∼Mb with one (equivalently both) red, with a : n→N and b : n→M, then
we can assume that nodes(N) = nodes(M) and that for all i < n, a � n ∼ {i} = b � n ∼ {i}.
In CmAt, we write Ma for {Ma} and we denote suprema taken in CmAt, possibly finite, by
∑. Define the map Θ from An+1,n = CmAt f to CmAt, by specifing first its values on At f , via

Ma 7→ ∑ j M( j)
a where M( j)

a is a copy of Ma. So each atom maps to the suprema of its copies.
This map is well-defined because CmAt is complete. We check that Θ is an injective homo-
morphim. Injectivity is easy.. We check preservation of all the CAn extra Boolean operations.

• Diagonal elements. Let l < k < n. Then:

Mx ≤Θ(d
CmAt f
lk ) ⇐⇒ Mx ≤∑

j

⋃
al=ak

M( j)
a

⇐⇒ Mx ≤
⋃

al=ak

∑
j

M( j)
a

⇐⇒ Mx = M( j)
a for some a : n→M such that a(l) = a(k)

⇐⇒ Mx ∈ dCmAt
lk .

• Cylindrifiers. Let i < n. By additivity of cylindrifiers, we restrict our attention to atoms
Ma ∈ At f with a : n→M, and M ∈ CRG f ⊆ CRG. Then:

Θ(c
CmAt f
i Ma) = f (

⋃
[c]≡i[a]

Mc) =
⋃

[c]≡i[a]

Θ(Mc)

=
⋃

[c]≡i[a]
∑

j
M( j)

c = ∑
j

⋃
[c]≡i[a]

M( j)
c = ∑

j
cCmAt

i M( j)
a

= cCmAt
i (∑

j
M( j)

a ) = cCmAt
i Θ(Ma).

4.: ∀ has a winning strategy in Gt(n)At(B f ); and the required result: It is straight-
forward to show that ∀ has winning strategy first in the Ehrenfeucht–Fraı̈ssé forth private
game played between ∃ and ∀ on the complete irreflexive graphs n+ 1(≤ n(n− 1)/2+ 1)
and n in n + 1 rounds EFn+1

n+1(n + 1,n) [7, Definition 16.2] since n + 1 is ‘longer’ than n.
Using (any) p > n many pairs of pebbles avalable on the board ∀ can win this game in
n + 1 many rounds. ∀ lifts his winning strategy from the lst private Ehrenfeucht–Fraı̈ssé
forth game to the graph game on At f = At(B f ) [5, pp. 841] forcing a win using t(n)
nodes. One uses the n(n− 1)/2+ 2 green relations in the usual way to force a red clique
C, say with n(n− 1)/2+ 2. Pick any point x ∈ C. Then there are > n(n− 1)/2 points y in
C{x}. There are only n(n− 1)/2 red relations. So there must be distinct y,z ∈ C{x} such
that (x,y) and (x,z) both have the same red label (it will be some rmi j for i < j < n). But
(y,z) is also red, and this contradicts [9, Definition 2.5(2), 4th bullet point]. In more detail,
∀ bombards ∃ with cones having common base and distinct green tints until ∃ is forced
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to play an inconsistent red triangle (where indicies of reds do not match). He needs n− 1
nodes as the base of cones, plus |P|+ 2 more nodes, where P = {(i, j) : i < j < n} form-
ing a red clique, triangle with two edges satisfying the same rm

p for p ∈ P. Calculating, we
get t(n) = n− 1+ n(n− 1)/2+ 2 = n(n+ 1)/2+ 1 By Lemma 2, B f /∈ SNrnCAt(n) when
2 < n < ω). Since B f is finite, then B f /∈ SNrnCAt(n), because B f coincides with its canon-
ical extension and for any D ∈ CAn, D ∈ SNrnCA2n =⇒ D+ ∈ ScNrnCA2n. But B f embeds
into CmAtA, hence CmAtA is outside the variety SNrnCAt(n), as well. By the second part of
Lemma 2, the required follows.

In both cases of RAs addressed in [6, Lemmata 17.32, 17.34, 17.35, 17.36] and CAs
adressed in Theorem 1 pproving non atom canoicity for infinitely many varieties of RAS and
CAns, respectively, the relational structures G and R used satisfy |G|= |R|+1. For RA, R= 3
and for CAns, R = n (the dimension), where the finite ordinals 3 and n are viewed as com-
plete irreflexive graphs. Using the rainbow algebras based on such graphs, we have proved that
B f (R4,3 which is the rainbow relation algebra based on the complete irreflexive graphs with
nodes m and n defined the obvious way, cf.[6, Definition 17.31]) detects that RCAn (RRA)
is not atom-canonical with repect to SNrnCAt(n) (SRaCA6) with t(n) as defined in the state-
ment of Theorem 1 Worthy of note, is that it is commonly accepted that relation algebras
have dimension three being a natural habitat for three variable first order logic. Nevertheless,
sometimes it is argued that the dimension should be three and a half in the somewhat loose
sense that RAs lie ‘halfway’ between CA3 and CA4 manifesting behaviour of each; for exam-
ple associativiy in RAs needs 4 variables to be proved From Hodkinson’s construction in [9],
we know that CmAtA /∈ SNrnCAm for some finite m > n, but the (semantical) argument used
in [9] does not give any information on the value of such m. By truncating the greens to be
n)n−1/2 (instead of the ‘overkill’ of infinitely many in [9]), and using a syntactical blow up
and blur construction, we could pin down such a value of m, namely, m = t(n) as specified in
the statement of Theorem 1, by showing that CmAt /∈ SNrnCAt(n).

For a class K of BAOs, let K∩Count denote the class of atomic algebras in K having
countably many atoms.

Proposition 1. Let 2 < n < ω .

1. For any ordinal 0≤ j, RCAn∩NrnCAn+ j ∩Count is not atom-canonical with respect to
RCAn ⇐⇒ j < ω ,

2. For any ordinal j, NrnCAn+ j ∩RCAn∩At * CRCAn,
3. There exists an atomic RCAn such that its Dedekind-MacNeille (minimal) completion

does not embed into its canonical extension.1

Proof. (1): One implication follows from [2] where for eah 2 < n < l < ω an algebra
Al ∈ RCAn ∩NrnCAl is constructed such that CmAtAl /∈ RCAn, so Al cannot be com-
pletely representable. Conversely, for any infinite ordinal j, NrnCAn+ j = NrnCAω and if
A ∈ NrnCAω ∩Count, then by [12, Theorem 5.3.6], A ∈ CRCAn, so CmAtA ∈ RCAn.

(2): The case j < ω , follows from the fact that the algebra An+ j used in the previous
item is in NrnCAn+ j ∩RCAn but has no complete representation. For infinite j one uses the
construction in [14, Theorem 4.5].

1In the CA context, the terminology minimal completion is misleading because A+ is
another completion of A; so supposedly the minimal completion of A should embed into A+,
which is not, as we have already seen in Theorem 1, always true. Conversely, for an atomic
Boolean algebra B, CmAtB always embeds into B+ as it should.



10 Tarek Sayed Ahmed

(3): Let A = TmAt be the CAn as defined in the proof of Theorem 1. Since CmAtA /∈
RCAn, it does not embed into A+, because A+ ∈ RCAn since A ∈ RCAn and RCAn is a
canonical variety.

1.3.3 An application on omitting types for the clique guarded fragment of Ln

Consider the following statement: There exists a countable, complete and atomic Ln first or-
der theory T in a signature L, meaning that the Tarski Lindenbuam quotient algebra FmT
is atomic, such that the type Γ consisting of co-atoms FmT is realizable in every m–square
model, but Γ cannot be isolated using≤ l variables, where n≤ l < m≤ω . A co-atom of FmT
is the negation of an atom in FmT . An m-square model of T is an m-square representation
of FmT . The last statement denoted by Ψ(l,m), is short for Vaught’s Theorem (VT) fails at
(the parameters) l and m. Let VT(l,m) stand for VT holds at l and m, so that by definition
Ψ(l,m) ⇐⇒ ¬VT(l,m). We also include l = ω in the equation by defining VT(ω,ω) as VT
holds for Lω,ω : Atomic countable first order theories have atomic countable models. It is well
known that VT(ω,ω) is a direct consequence of the Orey-Henkin OTT. From Theorem 1
and the construction in [2] using essentially the argument in [12, Proof of Theorem 3.1.1] one
obtains:

Theorem 2. For 2 < n < ω and n≤ l < ω , Ψ(n, t(n)), with t(n) = n(n+1)/2+1 and Ψ(l,ω)
hold.

Let 2 < n ≤ l < m ≤ ω . In VT(l,m), while the parameter l measures how close we are to
Lω,ω , m measures the ‘degree’ of squareness of permitted models. Using elementary calcu-
las terminology one can view liml→∞VT(l,ω) = VT(ω,ω) algebraically using ultraproducts
as follows. Fix 2 < n < ω . For each 2 < n ≤ l < ω , let Rl be the finite Maddux algebra
E f (l)(2,3), as defined on [2, p.83, §5, in the proof of Theorem 5.1] with l–blur (Jl ,El) as de-
fined in [2, Definition 3.1] and f (l)≥ l as specified in [2, Lemma 5.1] (denoted by k therein).
Let Rl = Bb(Rl ,Jl ,El) ∈ RRA where Rl is the relation algebra having atom structure de-
noted At in [2, p. 73] when the blown up and blurred algebra denoted Rl happens to be the
finite Maddux algebra E f (l)(2,3) and let Al = NrnBbl(Rl ,Jl ,El) ∈ RCAn as defined in [2,
Top of p.80] (with Rl = E f (l)(2,3)). Then (AtRl : l ∈ ω ∼ n), and (AtAl : l ∈ ω ∼ n) are
sequences of weakly representable atom structures that are not strongly representable with a
completely representable ultraproduct. Let LCAn denote the class of CAns satisfying the Lyn-
don conditions [7], which is the elementary closure of the class of completely representable
CAns. We immediately get:

Corollary 1. (Monk, Maddux, Biro, Hirsch and Hodkinson) Let 2 < n < ω . Then the set of
equations using only one variable that holds in each of the varieties RCAn and RRA, together
with any finite first order definable expansion of each, cannot be derived from any finite set of
equations valid in the variety [3, 10]. Furthermore, LCAn is not finitely axiomatizable.

Acknowledgment: We really thank Ian Hodkinson for his time, help an generosity. Ian Hod-
kinson read a first draft of this paper, spotted and correcting a serious combinatorial mistake
while refusing categoricaly to be a co-author.
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