Cairo University

FGSSR

Discrete Structures (Msc521)

Lecture 4

Department of Mathematical Statistics

Prof. Ali A. A-Rahman

Fundamentals of Logic

Definition 4.1 A proposition or a statement is a declarative sentence that is either true or false but not both.

Example 4.1: The following sentences are propositions:

P: Combinatorics is a required course for probability.

Q: 2+3=7.

R: Margarete Mitchel wrote Gone with Mind.

Remarks 4.1:

- (1) Each statement is a primitive statement since it cannot be broken down into simpler statement.
- (2) Each statement has one truth value (true or false) but not both ,i.e., statement P is true, statement Q is false, and statement R is true.

New statements can be obtained from existing ones in some ways as follows:

(1)Transform a given statement P into the statement $\neg P$ which denotes its negation and is read as "Not P".

Example 4.2:

 $\neg P$: Combinatorics is not a required course for Probability.

$$\neg Q: \quad 2+3 \neq 7.$$

- (2)Combine two or more statements into a compound statements the following logical connectives:
 - (a) <u>Conjunction</u>: The conjunction of any statements P, Q is denoted by P∧ Q and read as P and Q, For example, "combinatorics is required course for probability and Margarete wrote Gone with Wind".
 - (b) <u>Disjunction</u>: The expression P ∨ Q denote the disjunction of any two statements P, Q and is read as " "P or Q". For example, "Combinatorics is a required course for probability or Margarete wrote Gone with Wind".
 - (c) Implication : We say that " P implies Q" and write $P \rightarrow Q$ to designate the sentence, " if P then Q". For example," if combinatorics is a required course for probability then Margarete wrote Gone with Mind".P is called premise (antecedent), or hypothesis of the implication while Q is called consequent or conclusion of the implication. Here are some of the ways that used to express that $P \rightarrow Q$ is true
 - (1) *Q* if *P*
 - (2) If P is true then Q is true
 - (3) *P* is true only if *Q* is true.
 - (4) For P to be true it is necessary that Q be true.
 - (5) For Q to be true, it is sufficient that P be true.

Remark 4.2

Note that when statements are combined in this manner, there need not be any causal relationship between the statements for the implication to be true.

(d)<u>Bicoditional</u>: The biconditional of two statements P, Q is denoted by $P \leftrightarrow Q$, which is read " P if and only if Q"or "P is necessary and sufficient for Q". For example, Combinatorics is a required course for if and only if 2 + 3 = 7. We can write "P if and only if Q" as "P iff Q".

Remarks 4.3 :

- (1) A sentence such as "The number x is an integer" is not a statement because its truth value (true or false) cannot be determined until a numerical value is assigned for x.
- (2) Sentences such as the exclamation "What a beautiful evening" are not statement.
- (3) Sentences like the command " Get up and do your exercises" are not statement.

The following tables give the possible truth values of the compound statements:

(a)Negation:

(b) Conjunction :

$$\begin{array}{cccc} P & Q & P \land Q \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

Note that the compound statement will be true only when each component is true.

(c) Inclusive Disjunction:

Р	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Note that the compound statement will be false only when each component is false.

(d) Exclusive Disjunction:

Р	Q	$P \underline{\vee} Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Note that the compound statement is true only when only one of its components is true.

(e) Conditional" If then":

$$\begin{array}{cccc} P & Q & P \rightarrow Q \\ T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Note that the compound statement is false only when the hypothesis is true and the conclusion is false.

(f) Biconditional "iff":

Ρ	Q	$P \leftrightarrow Q$
Т	Т	T
Т	F	F
F	Т	F
F	F	T

Note that the compound statement is true only when both components have the same truth value.

Example 4.3: Let *P* be the proposition "2 + 3 = 5" and *Q* be the proposition " the moon is made of cheese" Find the symbolic form of the following statements:

- (a) $2+3 \neq 5$.
- (b) $2+3 \neq 5$ and the moon is not made of cheese.
- (c) $2+3 \neq 5$ or the moon is made of cheese.
- (d) If $2+3 \neq 5$ then the moon is made of cheese.

(e) That the moon is made of cheese implies that $2 + 3 \neq 5$.

Solution:

(a) $\neg P$. (b) $\neg P \land \neg Q$. (c) $\neg P \lor Q$. (d) $\neg P \rightarrow Q$. (e) $0 \rightarrow \neg P$.

Example 4.4: Let P, Q be primitive statements for which the implication $P \rightarrow Q$ is false. Determine the truth values for :

(a)
$$P \land Q$$
 (b) $\neg P \lor Q$. (c) $\neg Q \rightarrow \neg P$

Solution : Since $P \rightarrow Q$ is false, we conclude that P is true ,and Q is false,

Hence, $\neg P$ is false and $\neg Q$ is true, therefore (*a*) is false, (*b*) is false, and (*c*) is true.

Example 4.5 :

Construct a truth table for each of the following compound statements , P, Q, and r denote primitive statements.

- (a) $\neg (P \lor \neg Q) \rightarrow \neg P$. (b) $P \rightarrow (Q \rightarrow r)$. (c) $(P \rightarrow Q) \rightarrow r$. (d) $(P \rightarrow Q) \rightarrow (Q \rightarrow P)$. (e) $[P \land (P \rightarrow Q)] \rightarrow Q$.
- (f) $(P \land Q) \rightarrow P$.
- (g) $Q \leftrightarrow (\neg P \lor \neg Q)$.
- (h) $[(P \rightarrow Q) \land (Q \rightarrow r)] \rightarrow (P \rightarrow r).$

We shall solve (a) and (b) as examples and leave the rest for the students.

Solution: (a)

Р	Q	È	Ì	A	À	С	
Т	T	F	F	T	F	Τ	
Т	F	T	T	T	F	Τ	
F	T	T	F	F	Τ	Т	
F	F	T	T	Т	F	Τ	

Where we write $\neg P$ as \dot{P} , $\neg Q$ as \dot{Q} , $P \lor \neg Q$ as A, $\neg (P \lor \neg Q)$ as \dot{A} , and $\neg (P \lor \neg Q) \rightarrow \neg P$ as C.

(b)

Р	Q	r	A	B
T	Τ	T	T	T
T	Т	F	F	F
T	F	Τ	T	T
T	F	F	Τ	T
F	Τ	Τ	T	T
F	Τ	F	F	T
F	F	T	T	T
F	F	F	T	T

Where, we write , $Q \rightarrow r$ as A, and $P \rightarrow (Q \rightarrow r)$ as B.