Cairo University

FGSSR

Msc521 (Discrete Structures) Prof. Ali A. A-Rahman Lecture 3

١

Department of Mathematical Statistics

Permutations with Repetition

(3.1) Introduction.

Suppose that we have $A = \{b, a, c\}$ and we want to find some 4-permutations of A in which any element of $\{a, b\}$ appears only one time while c appears two times. In this case, we have permutations in the form: abcc, acbc, accb …etc.

The question now is: how can we find the number of such permutations. To achieve this work manually, let $A = \{a, b, c_1, c_2\}$, then the number of 4-permutations (using the product rule) is 4! = 24. Write all this 24 permutations, then remove the indices 1,2 so that the permutations abc_1c_2 , and abc_2c_1 will be abcc. Continuing in this manner, we shall find that the 4-permutations will be 12.

In the same manner, one can think of 5-permutations of A in which any element of $\{a, b\}$ appears only one time while c appears three times. In this case, it is easy to see that we have permutations like: *abccc*, *acbcc*, *accbc* and so on.

It is clear that, we can think of permutations in which any element of *A* appears more than one time. The general rule to find the number permutations in case of repetition is given in the following theorem.

Theorem(3.1)

Let $A = \{a_1, a_2, \dots, a_n\}$. The number of *n*-permutations in which a_1 appears n_1 times, a_2 , appears n_2 times, \dots , a_r appears *r* times such that $n_1 + n_2 + \dots + n_r = n$ will be:

 $\frac{n!}{n_1! \times n_2! \times \cdots \times n_r!} = \frac{n!}{\prod_{i=1}^r n_i!} \ .$

Example (3.1): How many arrangements of all of six letters in pepper.

Solution: we have n = 6, p is repeated 3 times, so $n_1 = 3$, e is repeated 2 times, so $n_2 = 2$, and r is repeated one time, so $n_3 = 1$ such that $n_1 + n_2 + n_3 = 6$, hence the number of permutations= $\frac{6!}{3! \times 2! \times 1!} = \frac{6 \times 5 \times 4 \times (3!)}{3! \times 2!} = 60$.

Example (3.2): HOw many arrangements of all letters in the word MASSASAUGA.

Solution: we have m is repeated 1 time, a 4 times, s 3 times, g 1 time, and g 1 time, therefore the number of permutations =

 $\frac{10!}{1!\times4!\times3!\times1!\times1!} = \frac{10\times9\times8\times7\times6\times5\times4!}{1!\times4!\times3!\times1!\times1!} = 25200.$

Example (3.3): Determine the number of (staircase)paths in the x y plane from (2,1) to (7,4) where path is made up of individual steps going one unit to the right (R) or one unit upward (U).

Solution: Note that to move from (2,1) to (7,4) under these conditions you have to move 5 units (7-2=5)along the X-axis and3 units (4-1=3) along the Y-axis, .i.e., we have sequence of steps in the form UUURRRRR. Therefore our question now is

"haw many arrangements (8-permutation) in which R is repeated 5 times and U is repeated 5 times?", hence

The number of paths $=\frac{8!}{3!\times5!}=56$ paths.

Combination

Let $A = \{a_1, a_2, \dots, a_n\}$. We are interested in the number of subsets of A. Clearly the empty set is a subset of A. Also, there are n subsets of A of size one namely, $\{a_1\}, \{a_2\}, \dots, \{a_n\}$. Moreover, there are some subsets of size 2, namely, $\{a_i, a_j\}$, for $i \neq j$ and i, $j \in \{1, 2, \dots, n\}$, there are some subsets of size 3,namely, $\{a_i, a_j, a_k\}$, for $i \neq j \neq k$ and $i, j, k \in \{1, 2, \dots, n\}$ and so on. Finally, we have one subset of size n, namely A itself.In general, let C be a subset of A of size r and our question now is " how many subsets of A of size r". To answer this question, denote by C(n, r) the number of subsets of size r. Note that for have r! arrangements (r-permutation). Therefore, we have the following equation:

$$(r!) \times C(n,r) = P(n,r).$$

Hence,

$$C(n,r) = \frac{P(n,r)}{r!} , \qquad 0 \le r \le n.$$
$$= \frac{n!}{r! \times (n-r!)} , \qquad 0 \le r \le n.$$
$$= \frac{n \times (n-1) \times (n-2) \times \dots (n-r+1)}{r!} , \qquad 0 \le r \le n.$$

Some special cases:

- (1) C(n, 0) = 1
- (2) C(n, 1) = n

(3)
$$C(n, 2) = \frac{n(n-1)}{2}$$

$$(4) \qquad C(n,n) = 1$$

Remarks(3.1)

- (1) one must recall that C(n, r) means the number of ways to choose r elements from n elements without repetition and neglecting order of choice.
- (2) One must recall that P(n, r) means the number of ways to choose r elements from n elements without repetition but taking into account the order of choice.

Example(3.4) :

In how many ways can set of 5 letters be selected from the English letters.

Solution: The word "select" means choosing without order and without repetition. Therefore, number of selection will be $C(26,5) = \frac{P(26,5)}{5!} = \frac{26 \times 25 \times 24 \times 23 \times 22}{5 \times 4 \times 3 \times 2 \times 1} =$

Example(3.5):

A club has 25 members.

(a) How many ways are there to choose 4 members of the club to serve on an executive committee?

 $^{26 \}times 5 \times 23 \times 22$

(b) How many ways are there to choose president, vice president, secretary, and treasurer of the club?

Solution:

(a) Number of ways $\frac{P(25,4)}{4!} = \frac{25 \times 24 \times 23 \times 22}{4 \times 3 \times 2 \times 1} = 12650$ In The 2nd part the order is important. therefore,

 $P(25,4) = 25 \times 24 \times 23 \times 22 = 303600$

Example(3.6):

How many license plates consisting of three letters followed by three digits contain no letter or digit twice?

Solution :

Number of license $P(26,3) \times P(10,3) = 11232000$.