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Abstract 
The goal of this paper is to control the trajectory of the flight path of six degree of 

freedom flying body model using Model predictive control (MPC) controller. MPC controller 

with constraints will be developed and able to compensate for constraints that represent 

physical limits of actuators in pitch and yaw angles. The design of MPC controller with linear 

system for the six degree of freedom flying body is described. MPC controllers are 

computationally intensive because an on-line optimization problem is formed and solved at 

each control cycle. 
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1. Introduction 

In recent years, the requirements for the quality of automatic control increased 

significantly due to increased complexity of plants and sharper specifications of product. This 

paper will address the design of optimal variable structure controllers applied to a six degree 

of freedom missile model. The six degree of freedom missile model is the solution to obtain a 

detailed accurate data about the missile trajectory. Linear model of the investigated systems 

will be considered. The linearization will be obtained during two phases that are boost phase 

and sustain phase so the controllers are designed for two linear time invariant LTI models. 

The paper objectives are 

• To develop a general flexible sophisticated mathematical model of flight trajectory 

simulation for a hypothetical anti tank missile, which can be used as a base line 

algorithm contributing for design, analysis, and development of such a system and 

implement this model using Simulink to facilitate the design of  its control system 

• Developing control system, by using MPC control techniques  

 This paper is organized as follows. Section 2 reviews mathematical model of six degree of 

freedom missile equations and linearization model is represented. Section 3 gives MPC 
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controller design. Section 4 presents control applications and results. Finally, conclusions are 

outlined in section 5. 
 

2. Mathematical model of the missile 

The model constitutes the six degree of freedom (6-DOF) equations that break down 

into those describing kinematics, dynamics (aerodynamics, thrust, and gravity), command 

guidance generation systems, and autopilot (electronics, instruments, and actuators). The 

input to this model is launch conditions, target motion, and target trajectory characterization, 

while the outputs are the missile flight data (speed, acceleration, range, etc.) during 

engagement.  
 

2.1 nonlinear six degree of freedom missile model 

The basic frames needed for subsequent analytical developments are the ground, body 

and velocity coordinate systems. The origins of these coordinate systems are the missile 

center of gravity (c.g). In the ground coordinate system, the X  −Z  lie in the horizontal plane 

and the Y axis completes a standard right-handed system and points up vertically. In the body 

coordinate system, the positive X  axis coincides with the missile's center line and it is 

designated as roll-axis. The positive Z axis is to the right of the X  axis in the horizontal 

plane and it is designated as the pitch axis. The positive Y  axis points upward and it is 

designed as the yaw axis. The body axis system is fixed with respect to the missile and moves 

with the missile. In the velocity coordinate system, X   coincides with direction of missile 

velocity(  ), which related to the directions of missile flight. The axis Z  completes a 

standard right-handed system, [6, 11]. 
 

The pitch plane is X-Y plane, the yaw plane is X-Z plane, and the roll plane is Y-Z 

plane. The ground coordinate system and body coordinate system are related to each other 

through Euler’s angles (Φ,Ψ,Υ). The ground coordinate system and velocity coordinate 

system are related to each other through the angles(θ,σ). In addition, the velocity coordinate 

system is related to the body frame through the angle of attack (α) in the pitch plane and 

angle of attack (β) in the yaw plane (sideslip angle). The angles between different coordinate 

systems are shown in Fig. 1, [6, 11]. 

The relation between the body and the velocity coordinate systems can be given as follows 

 

 X Y Z  =  cos (β)cos (α)   cos(β) sin(α) −sin (β)−sin (α)sin (β)cos (α) cos(α)sin (β) sin(α) 0  cos (β)   X Y Z                                                      (1) 
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The body and velocity axes system as well as forces, moments and other quantities are shown 

in Fig. 2 

 
Fig. 1 The angles between different coordinate systems 

 
Fig. 2 Forces, moments and other quantities 

 

There are 6 dynamic equations (3 for translational motion and 3 for rotational motion) 

and 6 kinematic equations (3 for translational motion and 3for rotational motion) for a missile 

with six degrees of freedom. The equations are somewhat simpler, if the mass is constant. The 

missile 6DOF equations in velocity coordinate system are given as following, [6] F = m ̇                                                                                                                                  (2) F = m  θ̇                                                                                                                               (3) F = −m  cos( θ) σ̇                                                                                                               (4) 
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M  =  I  ̇ −  I − I                                                                                                         (5) M  =  I  ̇ − (I − I  )                                                                                                      (6) M  = I  ̇ −  I − I                                                                                                          (7) Ẋ =   cos( θ) cos(σ)                                                                                                              (8) Ẏ =   sin(θ)                                                                                                                          (9) Ż = −  cos(θ) sin(σ)                                                                                                         (10) Ψ̇ = (  cos(Υ)−   sin(Υ))/ cos(Φ)                                                                              (11) Φ̇ =    sin(Υ) +  cos(Υ)                                                                                                (12) Υ̇ =   − tan(Φ)(  cos(Υ)−  sin(Υ)) =   − Ψ̇ sin(Φ)                                         (13) 
 

In these equations, F , F , F  are component of forces acting on missile in velocity coordinate 

system; M  ,M  ,M  are moments acting on missile in body coordinate system;   ,  ,   are 

angular velocity in body coordinate system; I  ,I  ,I  are moments of inertia in body coordinate 

system; X is missile range; Y is missile altitude; Z is horizontal displacement of the missile; 

and  m is missile mass. The forces and the moments acting on missile are due to thrust, 

gravity and aerodynamic forces and moments are given as following, [4, 6, 11]. F = T cos( α− δα) cos(β− δ )− QS C  + C  α + β   −m  sin (θ)                         (14) F = T sin( α− δα) + QSC α −m  cos (θ)                                                                     (15) F = −T cos( α− δα) sin(β− δ )− QSC β                                            (16) M  = DQSm                                                           (17) M  = −T cos( δα) sin δ  X  + DQS  m ββ + m                  (18) M  = T sin(δα)X  + DQS  m αα + m                                                                           (19) 

In these equations,C , C  , C , C  are aerodynamic force coefficient; m  , m β ,  m  , m α, m    
are aerodynamic moment coefficients; D is the diameter of maximum cross section area of 

body; S is the reference area; Q is the dynamic pressure; δα is the nozzle deflection angle in 

the pitch plane; δ  is the nozzle deflection angle in the yaw plane; T is the thrust force; X   is 

the distance between center of gravity (c.g) and the nozzle; and    is acceleration due to 

gravity and is taken to be constant 9.81 m/sec2. 
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2.2 Linearization of six degree-of-freedom missile (LTI model) 

The linearized model takes the following form 
 ẋ = A x + Bu                                                                                                                          (20) y = C x + Du                                                                                                                          (21) x = [  θ σ Χ Y Z Ψ Φ Υ       ]      u = [δ δ t]                                                 y = [Ψ Φ]  

 

Where matrices A, B, C and D are matrix coefficient of LTI system; x is state vector; u is 

input vector; y is output vector.  

Missile solid propellant thrust will be divided into two phases, first phase is Boost phase that 

will take about 5.8 sec of total flight time (0≤ t < 5.8sec) and thrust force T=Tmax. The 

second phase is Sustain phase that will start after boost region until the impact with target 

(5.8≤ t < 25sec) and thrust force T=Tmin. Therefore, we will discuss the linearization of 

missile motion equation at boost and sustain phases.  
 

A linear time-invariant (LTI) model is implemented in a boost phase around the 

operating point at  t = 0 sec. A linear time-invariant (LTI) model is implemented in sustain 

phase around the operating point at t = 5.8 sec. Open loop LTI model of missile motion 

equation is represented in Fig.3, [2, 9]. 

 
Fig.3 Open loop LTI model of six degree-of-freedom missile equation 

 

 

 



3. Model Predictive Control (MPC) design 

Model Predictive Control (MPC) is an advanced method of process control that has 

been in use in the process industries since the 1980s. MPC is a control strategy that is suitable 

for optimizing the performance of constrained systems. Constrains are present in all control 

systems due to actuators physical limits, boundaries of safe operation and lower limits for 

product quality. The MPC uses the same powerful linear dynamic modeling that employ 

transfer functions, state-space matrices, or a combination of the two. MPC systems rely on the 

idea of generating values for process inputs as solutions of an on-line (real-time) optimization 

problem. This problem is based on a process model and process measurements, [5, 10, 12]. 
 

3.1 Model Predictive Control of SISO Plant 

Fig. 4 shows block diagram of single input single output (SISO) plant MPC controller. 

The main objective is to hold a single unmeasured output yu at a reference value (or setpoint), 

r, by adjusting a single manipulated variable (or actuator) u. The SISO plant actually has 

multiple inputs (manipulated variable input u, measured disturbance v and unmeasured 

disturbance d). The controller receives the measured disturbance v directly .This allows the 

controller to compensate for measured disturbance impact on yu immediately rather than 

waiting until the effect appears in the measured output ym. This is called feedforward control. 

MPC design always provides feeback compensation for unmeasured disturbances and 

feedforward compensation for any measured disturbance, The MPC design removes the 

estimated noise z component of the measurement (filtering). [9]. 
 

 
Fig.4 Block diagram of SISO plant MPC controller 
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3.2 MPC strategy 
 

The methodology of all the controllers belonging to the MPC family is characterized 

by the following strategy, [5]: 

1. The future outputs for a determined prediction horizon P (future sampling periods      

P ≥ 1) are predicted at each sampling instant k using the process model. These 

prediction outputs y k + i│k  for i=1…..P depend on the known values up to instant k 

(past input and output) and on the future control signals u k + i− 1│k  for i=1…..M     

(M is control horizon for future moves and 1≤ M ≤ P) which are those to be sent to the 

system and calculated. The prediction future output can be explained briefly in        

[10, 12]. 

2. The set of future control signals u k + i− 1│k  is calculated by optimizing a 

determined criterion to keep the process as close as possible to the reference trajectory 

r(k+i) that can be the setpoint itself or a close approximation of it. This criterion 

usually takes the form of a quadratic function of the errors between the predicted 

output signal and the predicted reference trajectory. The control effort is included in 

the objective function in most cases. An explicit solution can be obtained if the 

criterion is quadratic, the model is linear, and there are no constraints; otherwise an 

iterative optimization method has to be used. Some assumptions about the structure of 

the future control law are also made in some cases, such as that it will be constant 

from a given instant.  

3. The control signal u k│k  is sent to the process whilst the next control signals 

calculated are rejected, because at the next sampling instant y(k+1) is already known 

and step 1 is repeated with this new value and all the sequences are brought up to date. 

Thus the u k + 1│k + 1  is calculated, which in principle will be different from the u k + 1│k  because of the new information available, using the receding horizon 

concept.   

Fig. 5 shows the state of a hypothetical SISO MPC system that has been operating for 

many sampling instants. Integer k represents the current sampling instant. The current 

measured output, y(k), and previous measurements y(k-1), y(k-2)............... are known and are 

the filled circles in Fig. 5 (a), [7, 9]. 

Fig. 5 (b) shows the controller’s previous moves, u(k-4), u(k-3), …, u(k-1) as filled 

circles. As is usually the case, a zero-order hold receives each move from the controller and 

holds it until the next sampling instant, causing the step-wise variations shown in Fig. 5 (b). 

 



 

Fig. 5 MPC controller at the kth sampling instant 
 

3.3 Objective function 
For the basic formulation of predictive control, we shall assume that the plant model is 

linear, that the objective function (cost function) is quadratic, and that constraints are in the 

form of linear inequalities. Furthermore, we shall assume that the cost function does not 

penalize particular values of the input vector u(k), but only changes of the input vector, ∆u(k) = u(k)− u(k− 1). This formulation coincides with that used in the majority of the 

predictive control literature. To make the useful formulation, we shall not assume the state 

variables can be measured, but that is obtained an estimate x ( k|k) of the state x(k). Signals  u(k + i− 1|k) will denote a future value of the input u. Signals  x(k + i|k) and  y(k + i|k) 

will denote the predictions, made at time k, of the variables x and y at time k+i, [5]. 

 A cost function J penalizes deviations of the predicted controlled outputs  y(k + i|k) 

from a reference trajectory r(k + i). The reference trajectory may depend on measurements 

made up to time k, in particular, its initial point is the output measurement y(k). The reference 

trajectory may also be a fixed set point, or some other predetermined trajectory. The general 

expression for such an objective function (cost function) will be, [5, 10, 12]: 
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 J =   y k + i│k − r(k + i)   ( ) +   ∆u k + i− 1│k    ( ) 
   

 
    (22) 

           ⎩⎪⎨
⎪⎧u   ≤ u k + i− 1│k ≤ u                           i = 1, … … , M ∆u   ≤ ∆u k + i − 1│k ≤ ∆u                    i = 1, … … , M y   ≤ y k + i│k ≤ y                                     i = 1, … … , P ∆u k + i − 1│k = 0                                    i = M + 1, … … , P

  (23)

   Where:  

• Q(i), R(i) are nonnegative optimization weight coefficients. 

• ‖x‖  = x Qx 

In some methods the second term, which considers the control effort, is not taken into 

account, whilst in others the values of the control signal (not its increment) also appear 

directly. 
 

3.4 Constraints 
  In practice all process are subject to constraints. The actuators have a limited field of 

action and a determined slew rate, as is the case of the valves, limited by the positions of 

totally open or closed and by the response rate. Constructive reasons, safety or environmental 

ones, or even the sensor scopes themselves can cause limits in the process variables such as 

levels in tanks, flows in piping, or maximum temperatures and pressures; moreover, the 

operational conditions are normally defined by the intersection of certain constraints for 

basically economic reasons, so that the control system will operate close to the boundaries. 

All of this makes the introduction of constraints in the function to be minimized necessary. 

Normally, bounds in the amplitude and limits in the output will be considered, [3, 12]. 

By adding constraints to the objective function, the minimization becomes more 

complex, so that the solution cannot be obtained explicitly as in the unconstrained case. 

Constraints may be either hard or soft. A hard constraint must not be violated. Unfortunately, 

under some conditions a constraint violation might be unavoidable (e.g., an unexpected, large 

disturbance), and a realistic controller must allow for this. The MPC does so by softening 

each constraint, making a violation mathematically acceptable, though discouraged. The 

designer may specify the degree of softness in each case, making selected constraints less 

likely to be violated than others. Briefly, you specify a tolerance band for each constraint. If 

the tolerance band is zero, the constraint is hard (no violation allowed). Increasing the 

tolerance band softens the constraint. The tolerance band is not a limit on the constraint 
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violation, however. (If it were, you would still have a hard constraint.) You need to view it 

relative to other constraints, [9]. 
 

4. Control application and results 

In this section, the autonomous flight of six degree of freedom flying body is 

simulated. The goal is to control the trajectory of the flight path of six degree of freedom 

flying body model using MPC controller. The design of MPC controller with LTI system for 

the six degree of freedom flying body is described. This design has been implemented in a 

simulation environment under Matlab’s toolbox Simulink. 
 

4.1 LTI Model description 

A linear time-invariant (LTI) model is implemented around the operating point at        t = 0 sec. The state and input at this point are described as following 

 x = [8.6 0.6108 0 0 0 0 0 0.6108 0 0 0 0]      u = [0 0 0]               
  

The nozzle deflection angle in pitch plane (δ ) and yaw plane (δ ) are limited with ±28.5° 

(±0.5rad). 

4.2 Building demand generator (Reference trajectory) 

 
The pitch demand programmer is an exponential command and is described as Φ = Φ  − (Φ − Φ    /  )                                                                                             (24) 

 

where Φ   is the missile-launching angle with respect to the horizon;  Φ ,Φ  are vertical 

position angles depending on target position. For our simulation Φ  = 35°;  Φ = Φ =30°;    = 2.1788 sec . 

 

The yaw demand programmer is an exponential command and is described as   =   (1−    /  )                                                                                                             (25) 

where   is horizontal position angle depending on target position. For our simulation   = 5°;    = 0.2 sec 
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4.3MPC Controller design 
 

 To design an MPC controller the MPC toolbox in Matlab’s toolbox Simulink has 

been used. The controller design requires a LTI model of the plant that is to be controlled. 

Multi input multi output MPC controller is designed where one MPC controller is used during 

boost and sustain phases. 

4.3.1 Controller parameters 

The rate at which MPC operates is       , where    is control interval (sampling 

period), N is the number of controls in the control history that are applied to the plant.  N =1 is 

chosen since this is the value N typically takes. The value of     is important since it is the 

length of each prediction step and the duration each control input is held constant. The 

method for choosing     for this problem is based on tracking performance. After further tests   = 0.01     is chosen since this value of     gives the best tracking performance to a 

sequence of pitch and yaw demand generator programs. [1]  

Selecting the prediction horizon P was also affected by the controller. To keep the 

controller simple, the prediction horizon P and control horizon M were set equal to each other. 

After further tests a value of P=M=1 was chosen since these value of P, M give the best 

tracking performance to a sequence of pitch and yaw demand generator program. [1] 

Optimization parameters (Q, R) start with identity matrices; the values were changed 

through trial and error to improve the tracking performance to a sequence of pitch and yaw 

demand generator program [1]. After further tests a values of Q, R was chosen as following 
 

  =  3.1899 00 3.1899 ,  = 0 (26)

 
4.4 PID controller design 

 
The PID controller has three unknown parameter   ,    and    that are required to be 

designed. Hence, the present problem of controller tuning can be solved by an application of 

the particle swarm optimization (PSO) algorithm for optimization on a three-dimensional 

solution space, each particle having a three-dimensional position and velocity vector. The 

initial positions of the i th particles of the swarm can be represented by a three dimensional 

vector, and then the initial values are randomly generated based on the extreme values. PSO 

algorithm and its parameters chosen can be explained briefly in [8, 13].  
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The position vector of the best particle gives the optimized parameter of integer PID 

controller as following, [8] 

• The PID controller parameters for pitch angle during boost phase are                        = 20.432,    = 4.1353,    = 1.241. 

• The PID controller parameters for pitch angle during sustain phase are                      = 30.2494,    = 20.6635,    = 5.4857. 

• The PID controller parameters for yaw angle during boost phase are                          = −20.432,    = −4.1353,    = −1.241. 

• The PID controller parameters for yaw angle during sustain phase are                       = −30.2494,    = −20.6635,    = −5.4857. 
 

4.5 Results 

  

Fig. 6 Pitch and yaw angles with MPC controller vs. time 
 

  
Fig. 7 Pitch and yaw angles with PID controller vs. time 
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Fig.8 Pitch error and yaw error comparisons with PID and MPC  

 

The pitch error is the difference between pitch demand program (pitch reference 

trajectory) and pitch angle response. Fig.8 represents the pitch error comparison with PID and 

MPC. The pitch error with MPC has high overshoot and high oscillation at starts of boost and 

sustain phases (at t=0 and t=5.8sec) and also it has small steady state error during sustain 

phase However, for pitch error with  PID controller has small overshoot and there is no 

oscillation. 

The yaw error is the difference between yaw demand program (yaw reference 

trajectory) and yaw angle response. Fig.8 represents the yaw error with PID and MPC. The 

yaw error of nonlinear system with MPC has high overshoot at start of boost (at t=0) and it 

has high oscillation at start of sustain phase (t=5.8sec), also the steady state error increases 

during sustain phase. However, for yaw error with PID controller has small overshoot.  
 

5. Conclusion 

The design of PID controllers gave the best response for pitch and yaw angles where 

there is no oscillation (chattering) and has small overshoot. The parameters optimization of 

PID controllers based on PSO method was highly effective. According to optimization target, 

the PSO method could search the best global solution for PID controllers’ parameters and 

guarantee the objective solution space in defined search space.  

The design of MPC gave response less quality than that was given from PID controller 

but acceptable responses. However, MPC controller can be used to control a great variety of 

processes (one MPC controller was used instead of four PID controllers). MPC controller is a 

limited knowledge of control because its tuning is relatively easy. MPC controller is simple to 
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the treatment of constraints and relies on the idea of generating values for process inputs as 

solutions of an on-line (real-time) optimization problem.  
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