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Abstract: Design of optimal controllers is indeed a multi-objective 
optimisation problem. Non-dominated sorting in genetic algorithms-II  
(NSGA-II) is a popular algorithm for solving multi-objective optimisation 
problems. This paper investigates the application of NSGA-II technique for  
the tuning of a proportional-integral-derivative (PID) controller for a class  
of identical two area-thermal power stations including the generation rate 
constraint (GRC) and boiler nonlinear dynamics as well as the governor dead 
band (GDB). The design objective is to improve the damping of frequency 
fluctuation in two-area power system when subjected to a disturbance in their 
loads. The proposed technique is applied to generate Pareto set of global 
optimal solutions to the given multi-objective optimisation problem. Further, 
the two PID controllers in each area are assumed to have identical structures 
(same parameters). Simulation results using the tuned multi-objectives-based 
GA PID controller are presented. The effectiveness of the proposed scheme is 
confirmed using MATLAB-Simulink software. 
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1 Introduction 

Despite significant strides in the development of advanced control schemes over the past 
three decades, the classical proportional-integral-derivative (PID) controller and its 
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variants remain the controllers of choice in many industrial applications (Bevrani et al., 
2011; Khodabakhshian and Hooshmand, 2010). PID controller structure remains an 
engineer’s preferred choice because of its structural simplicity, reliability, and the 
favourable ratio between performance and cost. Beyond these benefits, it also offers 
simplified dynamic modelling, lower user-skill requirements, and minimal development 
effort, which are issues of substantial importance to engineering practice. The 
performance of the PID controller depends on its setting of parameters. A lot of tuning 
methods have been presented in the literatures; these include designs based on guess-and 
check or trial and error tuning method, such as Ziegler-Nichols (Z-N) and Cohen-Coon 
methods (C-C). These conventional methods are hard to provide the desired performance 
and some fine tuning is further required. Design of an optimal PID controller requires 
optimisation of multiple performance measures that are often non-commensurable and 
competing with each other. Owing to multiple and conflicting objectives, an optimal PID 
controller that simultaneously minimises all objectives is usually not attainable. For 
example, while designing a control system, we would usually like to have a high-
performance controller, but we also want to achieve desired performance with little 
control efforts (cost). One approach to design the optimal controllers is the classical 
weighted-sum approach where the objective function is formulated as a weighted sum of 
the objectives. But the problem lies in the correct selection of the weights to characterise 
the decision-makers preferences. In recent years, the multi-objective problems are solved 
to find non-inferior (Pareto-optimal, non-dominated) solutions (Deb, 2001). Control 
systems optimisation problems involving the optimisation of multiple objective functions 
require high computational time and effort (Carvalho et al., 1995; Liao and Li, 2002; 
Coello, 1999). As conventional techniques are difficult to apply, modern heuristic 
methods are preferred to obtain Pareto optimal set (Sivasubramani and Swarup, 2011; Cai 
et al., 2010; Panda, 2009). 

Moreover, operation of power systems requires matching the total generation with the 
total load demand and with the associated system losses (Kundur, 1994). To achieve this 
goal, load frequency control (LFC) is introduced. In practice, LFC is one of the most 
important issues in power system design and operation for supplying sufficient and 
reliable electric power with good quality. The main objective of LFC is to control the real 
power output of generating units in response to changes in system frequency and tie-line 
power interchange within specified limits (Kothari and Nagrath, 2003). 

With the increasing of complexity of modern power systems, applications of 
advanced control methods on the LFC problem have been reported in the last decade, 
e.g., optimal control (Ibraheem, 2004), adaptive control (Zribi et al., 2005), robust control 
(Tan and Xu, 2009; Tan, 2009), intelligent control (Cam, 2007), internal model control 
(Tan, 2010, 2011), predictive control (Liu et al., 2010), sliding-mode control (SMC) as a 
form of variable structure control (Utkin, 1992). A complete review of recent 
philosophies in LFC control strategies can be found in Shayeghi et al. (2009). Static 
Output Feedback gains and Linear Matrix Inequality are one of the most effective and 
efficient tool in control design, which can stabilise the system (Tripathy et al., 1984). The 
Robust adaptive control schemes have also been developed to deal with the changes in 
system parametric behaviour (Ghany, 2008). An intelligent controller such as PID-ANN, 
PI-fuzzy and optimal control applied to LFC have been reported in Stankovic (1998) and 
Parmar et al. (2010). Using genetic algorithm (GA) to scale the PI fuzzy controller in 
LFC has been reported in Chang and Fu (1997). 
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As far as power system models are concerned, a linear model around a nominal 
operating point is usually used in the LFC controller design. However, power system 
components are inherently nonlinear, so the implementation of LFC strategies based on a 
linearised model on an essentially nonlinear system does not necessarily ensure the 
stability of the system (Broujeni et al., 2011). As Tripathy et al. pointed out, the effects  
of these nonlinearities tend to produce continuous oscillations in the area frequency  
and tie-line power transient response (Vrdoljak et al., 2010). For the LFC problem, the 
nonlinearities of governor dead band (GDB) and generation rate constraint (GRC) are 
usually involved. A common technology to handle the nonlinearities is to design a 
controller for the linear nominal system; then, the linear model-based controller is 
directly imposed on the nonlinear system (Lu and Liu, 1995; Ramakrishna and Bhatti, 
2008; Tripathy et al., 1992; Panda, 2009). 

Nowadays, power system LFC complex problems are being solved with the use of 
evolutionary computation (EC) such as differential evolution (DE) (Rama Sudha et al., 
2010), GAs, practical swarm optimisations (PSO) (Yousuf et al., 2010; Dorigo et al., 
2007; Clere and Kennedy, 2002; Kennedy and Eberhart, 1995), and ant colony 
optimisation (ACO) (Bevrani, 2009). There are some of the heuristic techniques having 
immense capability of determining global optimum. Classical approach-based 
optimisation for controller gains is a trial and error method and extremely  
time consuming when several parameters have to be optimised simultaneously and 
provides suboptimal result. Some authors have applied GA to optimise controller  
gains more effectively and efficiently than the classical approach. Recent research  
has brought out some deficiencies in GA performance (Haupt, 2004; Whitley, 2005; 
Konak et al., 2006; Nanda et al., 2009). A more recent and powerful evolutionary 
computational technique ‘bacterial foraging’ (BF) is found to be user friendly and is 
adopted for simultaneous optimisation of several parameters (Passino, 2002; Srinivas and 
Deb, 1995). 

The non-dominated sorting genetic algorithm (NSGA) proposed by Srinivas and Deb 
(Deb et al., 2002) has been widely used successfully to solve many multi-objective 
problems. However, the main demerit of this approach has been its high computational 
complexity, lack of elitism, and need for specifying a tunable parameter called sharing 
parameter. Deb et al. (2002) proposed an improved version of NSGA, called NSGA-II 
which has a better sorting algorithm, incorporates elitism and no sharing parameter need 
to be chosen a priori. By using of Pareto optimal set and Pareto optimal front which 
NSGA-II algorithm offers, designer can select the controller coefficients based on the 
priority of objectives. 

In this study, multi-objective GA based on NSGA-II is used to determine the 
parameters of the PID controllers in two areas power system. Two similar PID controller 
gains (Kp, Ki and Kd) for each area have been proposed. A multi objective fitness function 
has been introduced to be minimised in the sense of NSGAII. 

This paper is organised as follows: Section 2 introduces the NSGA-II algorithm. 
Section 3 explains the main components of the NSGA-II algorithm. In part 4, the 
application of the proposed methodology has been investigated for the nonlinear power 
system LFC problem. Section 5 shows the main conclusion of this paper. 
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2 Non-dominated shorting genetic algorithm-II 

A multi-objective optimisation (MOO) problem differs from a single-objective 
optimisation problem because it contains several objectives that require optimisation. In 
case of single objective optimisation problems, the best single design solution is the goal. 
But for  
multi-objective problems, with several and possibly conflicting objectives, there is 
usually no single optimal solution. 

Therefore, the decision maker is required to select a solution from a finite set by 
making compromises. A suitable solution should provide an acceptable performance over 
all objectives. There are two approaches to solve the MOO problems. One approach is the 
classical weighted-sum approach where the objective function is formulated as a 
weighted sum of the objectives. But the problem lies in the correct selection of the 
weights or utility functions to characterise the decision-makers preferences. In the second 
approach, a set of solutions called Pareto-optimal solution are generated and the decision 
is taken after the optimisation. 

The ability to handle complex problems, involving features such as discontinuities, 
multimodality, disjoint feasible spaces and noisy function evaluations reinforces  
the potential effectiveness of GA in optimisation problems. Although, the conventional 
GA is also suited for some kinds of MOO problems, it is still difficult to solve  
those MOO problems in which the individual objective functions are in the conflict 
condition. 

A generic single-objective GA can be easily modified to find a set of multiple  
non-dominated solutions in a single run. The ability of GA to simultaneously search 
different regions of a solution space makes it possible to find a diverse set of solutions for 
difficult problems with non-convex, discontinuous, and multi-modal solutions spaces. 
The crossover operator of GA exploits structures of good solutions with respect to 
different objectives to create new non-dominated solutions in unexplored parts of the 
Pareto front. In addition, most multi-objective approach does not require the user to 
prioritise, scale, or weigh objectives. Therefore, GA has been the most popular heuristic 
approach to multi-objective design and optimisation problems. Pareto-based fitness 
assignment was first proposed by Goldberg, the idea being to assign equal probability of 
reproduction to all non-dominated individuals in the population (Goldberg, 1989). The 
method consisted of assigning rank 1 to the non-dominated individuals and removing 
them from contention, then finding a new set of non-dominated individuals, ranked 2,  
and so forth. NSGA-II differs from a simple GA only in the way the selection operation 
is performed. The superiority of NSGA-II lies in the way multiple objectives are reduced 
to a single fitness measure by the creation of number of fronts, sorted according to  
non-domination. 

Implementation of NSGA-II requires the determination of some fundamental issues. 
In the present paper, after initialising the population the following schemes are employed 
(Deb, 2001; Deb et al., 2002; Goldberg, 1989): 
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2.1 Non-dominated sorting 

The initialised population is sorted based on non-domination using the following shorting 
algorithm. 

• For each individual I in the main population MP, find the set of individuals SI, that is 
dominated by i. 

• Find the number of individuals that dominate I, Ni. 

• For each individual j in MP, if I dominates j, then add j to set SI. If j dominates I, 
increment the domination counter Ni for i. 

• If no individuals dominate I then I belongs to the first front; set rank of individual I 
to 1, i.e., irank = 1. Update the first front set by adding I to front one. 

• Repeat the above procedure for all the individuals I in main population MP. 

• Initialise the front counter f = 1. For kth non-empty front Fk, the set S for sorting the 
individuals at (k + 1)th front is done. For each individual I in Fk, and for each 
individual j in SI, domination count for individual j is decremented. If Nj = 0 then 
none of the individuals in the subsequent fronts would dominate j. Hence the rank of 
j is taken as k + 1 and the set S is updated with individual j. 

• Increment the front counter and set S becomes the next front. 

2.2 Crowding distance 

The basic scheme behind the crowing distance calculation is the determination of 
Euclidian distance between each individual in a front based on their m objectives in the m 
dimensional space. All the individuals in the population are assigned a crowding distance 
value as the individuals are selected based on rank and crowding distance. Crowding 
distance is assigned front wise as below: 

For each front Fk, i is the number of individual: 

• For all the individuals initialise the distance to be zero. Fk(dj) = 0, where j 
corresponds to the jth individual in front Fk. 

• For each objective function m, sort the individuals in front Fk based on objective m,  
I = sort (fk, m). 

• Boundary values for each individual are assigned infinite value, 1di = ∞  and .ndi = ∞  
For p = 2 to (n – 1). 

( ) ( ) max min
( 1). ( 1).

p p
m m

I p m I p mI d I d
f f

+ − −= +
−

 (1) 

where I(p),m is the value of the mth function of the pth individual in I. 
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2.3 Selection and recombination 

The selection is performed using a crowded comparison operator ac as below: 

• Individuals in front Fk are ranked as prank = i. 

• From the crowding distance Fk(dj), the ranks are compared using the comparison 
operator αc i.e., pαcq if prank < qrank or if p and q belong to the same front Fk then 
Fk(dp) > Fk(dq). 

By using tournament selection with crowed comparison-operator, the individuals are 
selected. Selection for individuals for next generation is performed by combining the 
current generation population and the offspring population. Elitism is ensured as all the 
previous and current best individuals are added in the population. Based on  
non-domination, population is sorted and the new generation is completed by each front 
subsequently until current population size is obtained 

2.4 Genetic operators 

2.4.1 Crossover 
Simulated binary crossover scheme is employed in the present study which simulates the 
binary crossover observed in nature given as below: 

( ) ( )1, 1, 2,1 1 2k k k k kγ p γ p⎡ ⎤= − + +⎣ ⎦α  (2) 

( ) ( )21, 1, 2,1 1 2k k k k kγ p γ p⎡ ⎤= + + −⎣ ⎦α  (3) 

where αi,k is the ith child with kth component, pi,k the selected parent and αk is the random 
generated sample (≥ 0) obtained from a uniformly sampled random number u between  
(0, 1) defined by: 

( )[ ]1
( ) , if 1

2

cεcε γ
p γ γ

+
= ≤ ≤  (4) 

( )[ ]21
( ) , if 1

2

cεcε γ
p γ γ

++
= >  (5) 

1
( 1)( ) (2 ) εγ u u +=  (6) 

[ ]
1

( 1)( ) 1 2(1 ) εγ u u += −  (7) 

where εc is distribution index for crossover. 

2.4.2 Mutation 
The polynomial mutation is employed in the presented study and can be defined as: 

( )u l
k k k kc p p p k= + − Δ  (8) 
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where ck is the child, pk the parent and u
kp  and l

kp  are the upper and lower bounds on the 
parent components respectively. ∆k is the small deviation calculated as below: 

( )( )
1

12 1, if 0.5mεk n nr r+Δ = − <  (9) 

( )( )
1

11 2 1 1 , if 0.5mεk n nr r+
⎡ ⎤Δ = − − − ≥⎣ ⎦  (10) 

where rn is an uniformly sampled random number between (0, 1) and εm is mutation 
distribution factor. 

3 Application to load frequency control 

3.1 Application of NSGA-II 

In the present study, after initialising the population the individuals in the populations are 
sorted based on non-domination into each front. The first front being completely  
non-dominant set in the current population and the second front being dominated by the 
individuals in the first front only and the front goes so on. 

Each individual in the each front are assigned rank (fitness) values or based on front 
in which they belong to. Individuals in first front are given a fitness value of 1 and 
individuals in second are assigned fitness value as 2 and so on. In addition to fitness 
value a new parameter called crowding distance is calculated for each individual. 

 The crowding distance is a measure of how close an individual is to its neighbours. 
Large average crowding distance will result in better diversity in the population. Parents 
are selected from the population by using binary tournament selection based on the rank 
and crowding distance. An individual is selected in the rank is lesser than the other or if 
crowding distance is greater than the other. 

The selected population generates offspring from crossover and mutation operators, 
which will be discussed in detail in a later section. The population with the current 
population and current offspring is sorted again based on non-domination and only the 
best N individuals are selected, where N is the population size. 

The selection is based on rank and the crowding distance of the last front. The 
objective function given in Eq. (16) is evaluated for each individual by simulating the 
system dynamic model. The population of NSGA-II is taken as 100 individuals (binary 
representation) and evolutionary cycle has stopping criterion of 100 generations. The 
flow chart of the NSGA-II algorithm used in this work is shown in Figure 1. 

3.1.1 Best compromise solution 
The notion of Pareto-optimality is only a first step towards solving a MOO problem. The 
choice of a suitable compromise solution from all non-inferior alternatives is not only 
problem dependent, it generally depends also on the subjective preferences of a decision 
agent, the decision maker. Thus, the final solution to the problem is the result of both an 
optimisation process and a decision process. 
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Figure 1 Flowchart of NSGA-II algorithm 

 

 

The solution having the maximum value of li is the best compromise solution. The 
optimal controller parameters obtained by the above approach for the signals are given in 
Table 1. 
Table 1 Two-area PID controller parameters using multi-objective GA and PSO technique 

PID parameters Kp1 = Kp2 Ki1 = Ki2 Kd1 = Kd2 
Multi objective GA values 4.9995 3.0106 4.9984 
PSO values 3.8041 7.3970 9.9572 
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3.2 Multi-objective function 

In many real-life problems, objectives under consideration conflict with each other, and 
optimising a particular solution with respect to a single objective can result in 
unacceptable results with respect to the other objectives (Liao and Li, 2002). 

A reasonable solution to a multi-objective problem is to investigate a set of solutions, 
each of which satisfies the objectives at an acceptable level without being dominated by 
any other solution (Coello, 1999). 

Being a population-based approach, GA are well suited to solve MOO problems. A 
generic single-objective GA can be modified to find a set of multiple non-dominated 
solutions in a single run. The ability of GA to simultaneously search different regions of a 
solution space makes it possible to find a diverse set of solutions for difficult problems 
with non-convex, discontinuous and multi-modal solutions spaces. The cross over 
operator of GA may exploit structures of good solutions with respect to different 
objectives to create new non-dominated solutions (Liao and Li, 2002). 

The goal of MOO is to find as many of these solutions as possible. If reallocation of 
resources cannot improve one cost without raising another cost, then the solution is 
Pareto optimal. A Pareto GA returns a population with many members on the Pareto 
front. The population is ordered based on dominance. 

Several different algorithms have been proposed and successfully applied to various 
problems such as (Coello, 1999): vector-evaluated GA (VEGA), multi-objective GA 
(MOGA), a non-dominated sorting GA (NSGA) and non-dominated sorting GA (NSGA 
II) which is used in the proposed research. 

4 Nonlinear load frequency control model 

Non-reheat type nonlinear two areas electric power system represented by a block 
diagram of a closed loop controlled system model is shown in Figure 2 for two-area 
electric power system, where fi is the area’s frequency (Hz), Ri is regulation constant 
(Hz/unit), Tgi is speed governor time constant (sec), Tti is turbine time constant (sec), Hi is 
inertia constant (s) and Di is area parameter (Mw/Hz) where i = 1,2. 

The model includes the effect of GRC and limits on the position of the governor 
valve, which are caused by the mechanical and thermodynamic constraints in practical 
steam turbines systems. 

A typical value of 0.01 p.u./min has been included in the model as stated in Cai et al. 
(2010). 

Area control error (ACE) signal is used as the plant output of each power generating 
area. Driving ACEs in all areas to zeros will result in zeros for all frequency and tie-line 
power errors in the system. So it can be defined as: 

,1, , ,i tie ij i ii n j i
ACE P b f

= ≠
= Δ + Δ∑ …

 (11) 

where Bi is the frequency response characteristic for area i: 

1
i i

i
b D

R
= +  (12) 
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Figure 2 Nonlinear two-area power system Simulink model with multi-objective GA-tuned PID 
controller 

 

Percentage of overshoot and settling time are two more objective functions have been 
added to the objective function to define the multi-objective GA problem as explained 
later. The PID controllers in both the areas were considered to be identical. The control 
signal for the conventional PID controller can be given in the following equation: 

( ) ( ) ( )ii c iU s G s ACE s= − ×  (13) 

( )( ) i
i p d tie i i

KU s K K s P b f
s

⎛ ⎞= − + + Δ + Δ⎜ ⎟
⎝ ⎠

 (14) 

Now a performance indices can be defined as J1, J2 and J3 as given below 

( ) ( ) ( )
( ) ( ) ( )

1 1 2
0 0

2 1 2

3 1 2

. . . . . . tie

tie

J ACE dt ACE dt

J Maximum P O f Maximum P O f Maximum P O P
J Settling Time f Settling Time f Settling Time P

∞ ∞
= +

= Δ + Δ + Δ

= Δ + Δ + Δ

∫ ∫
 (15) 

where P.O. stands for the percentage overshoot. Based on these performance indices J1, 
J2, and J3 the optimisation problem can be stated as: 
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( )1 2 3, ,Minimize j j jℑ  

Subjected to: 
min max

,, ,

min max
,, ,

min max
,, ,

p lp l p l

i li l i l

d ld l d l

K K K

K K K

K K K

≤ ≤

≤ ≤

≤ ≤

 (16) 

where Kp,l, Ki,l, Kd,l are the controller’s parameters of the lth area. 

4.1 Best compromise solution 

The notion of Pareto-optimality is only a first step towards solving a MOO problem. The 
choice of a suitable compromise solution from all non-inferior alternatives is not only 
problem dependent, it generally depends also on the subjective preferences of a decision 
agent, the decision maker. Thus, the final solution to the problem is the result of both an 
optimisation process and a decision process. In order to choose the optimal controller 
parameter among the Pareto optimal set, a Fuzzy-based approach is employed in the 
present paper. The jth objective function of a solution in a Pareto optimal set jj is 
represented by a membership function µj defined as (Panda, 2009): 

min

max
min max

max min

max

1,

,

0,

l l

ll
j ll l

l l

l l

j j
j j

μ j j j
j j

j j

⎧ ⎫
⎪ ⎪−⎪ ⎪= < <⎨ ⎬−⎪ ⎪
⎪ ⎪⎩ ⎭

 (17) 

where max
lj  and min

lj  are the maximum and minimum values of the lth objective function 
jj for l = 1,2, and n = 3. 

For each solution i, the membership function µi is calculated as 

1

1 1

n i
jji

m n i
ji j

μ
μ

μ

=

= =

=
∑

∑ ∑
 (18) 

where n is the number of objectives functions and m is the number of solutions. The 
solution having the maximum value of µi is the best compromise solution (Panda, 2009). 

4.2 Simulation results 

To simplify the study, the two interconnected areas were considered identical. So the 
optimal parameter chosen such that Gc1 = Gc2 = Gc and B1 = B2 = B. The Pareto front 
technique has been applied to select the minimum optimal value of the performance 
index defined in equation (16) as explained before (Cam, 2007). In the simulation, the 
GA runs for 25 generations with a population size of 100. The other particle swarm 
parameters are given as: 
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• c0 (percentage of old velocity) = 0.65 

• c1 (percentage towards global optimum) = 2 

• c2 (percentage towards local optimum) = 2 

• x0range (range of uniform initial distribution of positions) = [0 10] 

• vstddev (std. deviation of initial velocities) = 1. 

The parameters of the NSGA-II algorithm used in this work is given as: 

• population size = 100 

• elite count = 30 

• number of generations = 100 

• crossover and mutation probabilities were chosen as 0.9 and 0.01 respectively. 

The nominal system parameters are: 

• First area 

Tg1 = 0.08; Kr1 = 0.5; Tr1 = 10; KP1 = 120; TP1 = 20; T12 = 0.086; Rth1 = 2.4; 
Kth1 = 1; B1 = 0.425 

• First area 

Tg2 = 0.08; Kr2 = 0.5; Tr2 = 10; KP2 = 120; TP2 = 20; T12 = 0.086; Rth2 = 2.4; 
Kth2 = 1; B2 = 0.425 

• First boiler 

K1 = 0.85; K2 = 0.095; K3 = 0.92; Cb1 = 200; Td1 = 0.1; Krb1 = 0.03; Tib1 = 26; 
Trb1 = 69; TF1 = 10 

• Second boiler 

K1 = 0.85; K2 = 0.095; K3 = 0.92; Cb2 = 200; Td2 = 0.1; Krb2 = 0.03; Tib2 = 26; 
Trb2 = 69; TF2 = 10 

• GRC of area one 

Tt1 = 0.3; Saturation limit [0.1: –0.1] 

• GRC of area two 

Tt1 = 0.3; saturation limit [0.1: –0.1] 

• Generator dead band of area one 

band width = 0.0001 

• Generator dead band of area two 

band width = 0.0001. 



   

 

   

   
 

   

   

 

   

    Application of multi-objective PID controller for LFC 151    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 (a) Boiler dynamics model of area one (b) Boiler dynamics model of area two (c) GRC 
of area one (d) GRC of area two 

  
(a)     (b) 

  
(c)     (d) 

Figure 4 (a) Frequency and ACE changes of the two areas after disturbance without controller 
(b) Frequency and ACE changes of the two areas after disturbance with multi-
objectives GA-based PID controller (c) Frequency and ACE changes of the two areas 
after disturbance with PSO-based PID controller 
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Figure 4 (a) Frequency and ACE changes of the two areas after disturbance without controller 
(b) Frequency and ACE changes of the two areas after disturbance with multi-
objectives GA-based PID controller (c) Frequency and ACE changes of the two areas 
after disturbance with PSO-based PID controller (continued) 

 
(b) 

 
(c) 

By using the Simulink model shown in Figures 2 and 3(a), 3(b), 3(c), as well as 3(d)  
in conjunction with equations (4)–(7), optimal controller parameters were obtained with 
multi-objective GA technique as shown in Table 1. We assume in this case that the two PID 
controllers are similar in parameters, i.e., 1 2i iK K=  and 1 2 .d dK K=  This condition can be 
released in other circumstance by considering two different PID controller’s parameters. 
This will add a little computational effort to the algorithm but in general it is acceptable 
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(less than a minute). The deal with different PID structures in the two areas is not a 
difficult task and can be done with the same steps mentioned in this article. 

Figure 4(a) show the time domain performance of the frequency deviation in first 
area, second area and ACE index in both areas without controller. The great oscillation 
behaviour of the three curves is noticeable together with non-zero steady state value. 

On the other hand, Figure 4(b) illustrates the frequency deviation in first area, second 
area and ACE index in both areas under the proposed multi-objective GA PID controller 
with step change of 0.01 p.u. in area 1 and zero in area 2 (Tammam et al., 2012a, 2012b, 
2012c). A small percentage overshoot and a settling time is obtained in this case which is 
an advantage of applying this optimisation technique in getting the values of the PID 
controller’s three parameters. 

Moreover, Figure 4(c) delineates the behaviour of the PID controller based on the 
particle swarm optimisation (PSO) technique with similar loading conditions in order to 
compare the results with Figure 4(b) of the multi-objective GA. The overshoots of the 
frequency changes in the two areas in case of applying the proposed method is higher 
than those of the proposed multi-objective GA. One more fact about the performance of 
the two methods: the proposed multi-objective GA and the PSO method, the ISE error 
criterion in case of the first method is much lower than the second PSO algorithm 
(Tammam et al., 2012a, 2012b, 2012c). The ISE error criterion is defined as: 

• Area 1 integral of squared error for area 1 (ISE): 

2
1 1

0
( )ISE ACE t dt

∞
= ∫  (19) 

• Area 2 integral of squared error for area 2 (ISE): 

2
2 2

0
( )ISE ACE t dt

∞
= ∫  (20) 

• Ptie ISE (integral of squared error for tie line): 

2
0

( )Ptie tieISE dp t dt
∞

= ∫  (21) 

where ACE1, ACE2 and dptie are the area 1 and area 2 control error as well as the change 
in the tie-power between the two areas (Tammam et al., 2012a, 2012b, 2012c). The 
minimum of this index, the better performance of the controller is. 
Table 2 Response characteristics using multi-objective GA-tuned PID technique for two-area 

 Overshoot Settling time (sec) 
Multi-objective GA-tuned PID technique 
First area frequency (Hz) 2.8276e-04 13.6317 
Second area frequency (Hz) 3.7764e-04 16.0556 
Tie line power (p.u) 2.4532e-04 14.1005 
PSO tuned PID technique 
First area frequency (Hz) 0.2229 20.3678 
Second area frequency (Hz) 0.2229 20.3678 
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5 Conclusions 

In this proposed study, a non-dominated sorting multi-objective GA-based PID tuning 
technique has been investigated for automatic LFC of a nonlinear two-area electric power 
system. 

For this purpose, a PID controller has been proposed for each area. The PID’s gains: 
Kp, Ki and Kd of each area have been calculated and compared with the results of PSO 
technique. 

It has been shown that the proposed control algorithm is effective and provides 
significant improvement in system performance. 
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