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CHAPTER 1 

Basic Laws of Thermodynamics 

1.1 The first law of thermodynamics 

1.1.1 Systems and processes 

A system is defined as a definite portion of space separated by its surroundings by a definite 

boundary. A classical system in thermodynamics is the piston – cylinder duet. 

A process is a mechanism by which the state of the system (temperature, pressure, etc.) is 

changed. It is termed reversible if as the system reaches equilibrium, any infinitesimal 

change in the conditions of the system (such as temperature) can cause the process to 

reverse. The main thermodynamic processes are: 

• Isothermal processes, in which the temperature of the system remains constant. 

• Adiabatic processes, in which no heat is transferred to or from the system. 

• Isochoric processes, in which the volume of the system remains constant. 

• Isobaric processes, in which the pressure of the system remains constant. 

1.1.2 State properties 

A state property is a property that only depends on the initial and final states of a system. 

If an amount of heat 𝑄 is supplied to a system so that this system performs an amount of 

work 𝑊 on its surroundings, then the internal energy of that system will decrease by an 

amount ∆𝑈 that does not depend on any particular path chosen to perform the heat supply 

or work performed (isothermal, adiabatic, etc.). This way, the internal energy is a state 

function, while heat and work are not. Later, some other state properties like enthalpy and 

entropy will be introduced.  

1.1.3 Statement of the first law 

Following the previous discussion, it can be deduced that: 

∆𝑈 = 𝑄 − 𝑊          (1.1) 

Conventionally, heat supplied to a system and work done by the system are considered 

positive, while the reverse actions confer negative values to the two variables. 

If an infinitesimal amount of heat 𝛿𝑄 is supplied to the system, and an amount of work 𝛿𝑊 

is performed, then the internal energy change takes the form: 

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊          (1.2) 

It is to be noted that heat (and work) cannot be written as 𝑑𝑄 since upon integration 

between an initial state 𝑄1 and a final state 𝑄2, one gets 𝑄2 − 𝑄1. This would indicate that 

the change in heat supplied does not depend on the way it is supplied, which contradicts 

the fact that the amount of heat supplied depends on the path taken by the system (The type  
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of thermodynamic process). That is why 𝛿𝑄 simply integrates to 𝑄 and, as well, 𝛿𝑊 

integrates to 𝑊. 

1.1.4 Calculation of work 

Consider the classical example of a frictionless piston of cross-sectional area 𝐴 that moves 

along the internal surface of a cylinder a distance 𝑑𝐿 due to the expansion of the gas inside 

it (Figure 1). 

The infinitesimal work done by the cylinder equals: 

 𝛿𝑊 = 𝐹. 𝑑𝐿 = 
𝐹

𝐴
 𝐴. 𝑑𝐿 = 𝑝. 𝑑𝑉       (1.3) 

For example, in case of an isothermal process, 𝑇 remains constant so that, if the gas is 

considered to behave ideally, then for 1 mole one can write: 𝑝 = 
𝑅𝑇

𝑉
. Substitution in 

equation (1.3), we get: 

𝛿𝑊 = 
𝑅𝑇

𝑉
. 𝑑𝑉 

Assuming the initial and final volumes to be 𝑉1 and 𝑉2 , we get on integration: 

𝑊 = 𝑅𝑇 ln
𝑉2

𝑉1
          (1.4) 

 

 

 

 

Fig 1.1: Cylinder – piston system 

1.1.5 Enthalpy and heat capacity 

The enthalpy of a system is defined as: 

𝐻 = 𝑈 + 𝑝𝑉           (1.5) 

The heat capacity of a system, on the other hand, is defined as follows: 

𝐶 = 
𝛿𝑄

𝑑𝑇
           (1.6) 

Substituting by equations (1.3) and (1.6) in (1.2), one gets: 

𝑑𝑈 = 𝐶. 𝑑𝑇 − 𝑝. 𝑑𝑉          (1.7) 

Differentiation of equation (1.5) yields: 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉. 𝑑𝑝        (1.8) 

From the above two equations, one gets: 
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𝑑𝐻 = 𝐶. 𝑑𝑇 + 𝑉. 𝑑𝑝          (1.9) 

Since, in dealing with solids, the pressure is usually maintained constant, then 𝑑𝑝 = 0 and 

the above equation becomes: 𝑑𝐻 = 𝐶. 𝑑𝑇. 

This defines the heat capacity of a system at constant pressure: 

𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)

𝑝
           (1.10) 

From equation (1.8), if pressure is kept constant, then, referring to equation (1.2): 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 = 𝛿𝑄 

So that the heat supplied to a system under isobaric conditions is equal to the change in 

enthalpy of the system. 

Heat capacities of solids are usually expressed in the unit: J.mol-1.K-1 and identify with 

their specific heats. At moderate to elevated temperatures, it is usually related to 

temperature through an empirical relation in the form: 

𝐶𝑝 = 𝑎 + 𝑏𝑇 + 𝑐𝑇−2         (1.11) 

The constants 𝑎, 𝑏 and 𝑐 are empirical and can be obtained for any specific solid from 

special tables. Some values are reported in Table 1.1 

Table 1.1: Heat capacity constants for some substances (J.mol-1K-1) 

Substance 𝒂 𝒃 × 𝟏𝟎𝟑 𝒄 × 𝟏𝟎−𝟓 𝑻 range (K) 

SiO2 (quartz) 46.9 34.2 –11.32 298–848 

BCl3 (l) 70.41 11.89 –10.20 298–1000 

MnSiO3 (s) 110.0 16.21 –25.79 298–1500 

TiO2 (rutile) 67.31 18.71 –14.85  750–950 

Ag (s) 21.20 8.55 1.50 298–1235 

Ag (l) 30.5 - - 1235–1600  

AgCl (s) 32.11 4.19 –11.32 298–735 

MnO (s) 47.9 10.2 –4.59 298–1500 

 

1.1.6 Heats of formation 

Calculations of heat effects needs the definition of a standard sate for each physical state 

of the material. The usual standard states for the three common states of mater are: 

• For solids and liquids: The stable form of the material at the specified temperature and 

1 atm. pressure. 

• For gases: The specified temperature and 1 atm. pressure. 

In general, the common practice is to consider 298K as the reference temperature. Since 

solid reactions frequently take place at constant pressures, it is customary to use the term  
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enthalpy rather than heat of formation. Table 1.2 illustrates the values of the enthalpies of 

formation (∆𝐻𝑓
0) of some common substances in kJ.mol-1. 

Table 1.2: Enthalpy of formation of some solids (kJ.mol-1) 

Substance SiO2 (quartz) MnSiO3 (s) TiO2 (rutile) Al2O3 (s) CaO (s) CaCO3 (s) MnO (s) CO2 (g) 

∆𝑯𝒇
𝟎

 –860  –1320 –944 –1670  –636 –1206 –384 –394 

 

1.1.7 Heats of reaction 

To estimate the heat of a certain reaction, it is customary to use the heats of formation of 

both reactants and products and apply the simple rule: 

∆𝐻𝑟 = ∑ 𝛼𝑖𝑝∆𝐻𝑓𝑖  (products) − ∑ 𝛼𝑖𝑟∆𝐻𝑓𝑖 (reactants)    (1.11) 

Where 𝛼𝑖𝑝and 𝛼𝑖𝑟 are the stoichiometric coefficients of products and reactants 

respectively. 

The heat calculated using standard states of reactants and products is termed the standard 

heat of reaction, normally reported at 298 K. 

For example, if it is required to estimate the heat of calcination of CaCO3 (s) to CaO (s) 

and CO2 (g) at 298 K, then, using the data in Table 1.2, one gets: 

∆𝐻𝑟 = (−636 − 394) − (−1206) = 176 kJ.mol-1. 

If now, it is required to estimate ∆𝐻𝑟 at any other temperature, like 𝑇 K, then it is necessary 

to follow a cycle in the following form: 

Reactants at 𝑇 K → Reactants at 298 K → Products at 298 K → Products at 𝑇 K 

The determination of the enthalpy associated with the first and third steps, one uses the 

integrated form of equation (1.10) written as follows for the first step: 

∆𝐻 = ∫ 𝐶𝑝𝑟 . 𝑑𝑇
298

𝑇
          (1.12) 

Example 1.1 

Using the data in Tables 1.1 and 1.2, estimate the enthalpy of the following reaction at 

800K. 

MnSiO3 (s) = MnO (s) + SiO2 (quartz) 

Solution: 

First, the heat of reaction at 298 K is calculated: 

∆𝐻𝑅
0 = (−860 − 384) − (−1320) = 𝟕𝟔 kJ.mol-1. 

Next, the enthalpy of the first step is calculated from: 
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∆𝐻1 = ∫ 110 + 16.21 × 10−3𝑇 − 25.79 × 105𝑇−2. 𝑑𝑇

298

800

= −54256J. mol−1

≡ −54.26 kJ. mol−1 

Similarly, for the third step: 

∆𝐻3 = ∫ (46.9 + 47.9) + (10.2 + 34.2) × 10−3𝑇 − (11.32 + 4.59) × 105𝑇−2. 𝑑𝑇
800

298
=

56476 J. mol−1 ≡ 56.48 kJ. mol−1. 

Hence: ∆𝐻800 = ∆𝐻1 + ∆𝐻𝑅
0 + ∆𝐻3 = 𝟕𝟖. 𝟐𝟐 𝐤𝐉. 𝐦𝐨𝐥−𝟏 

Note that in most cases involving similar reactions, the heat of reaction does not depend 

much on temperature. The difference between the heat of reaction at 298K and 800K does 

not exceed 3%. The reason is the comparable values of specific heats of solid materials. 

 1.2 The second law of thermodynamics 

1.2.1 Definition of entropy 

Whereas the first law predicts the thermal characteristics of a chemical reaction, yet it 

cannot predict the possibility of its occurrence in the first place. For example, as we write 

a reaction in the form A (s) + B(s) = C (s), one cannot predict beforehand, by mere 

application of the first law, that this reaction will take place as written. The thermodynamic 

entity that is used for that prediction is termed entropy, the definition of which will be 

given later. 

If we consider a system (s) and its surroundings (surr), then an infinitesimal change in the 

entropy of both will result in what is known as the total change of entropy of the process: 

𝑑𝑆 = 𝑑𝑆𝑆 + 𝑑𝑆𝑠𝑢𝑟𝑟 

One interesting property of entropy changes is that the total variation in entropy 𝑑𝑆 = 0 

for reversible processes and 𝑑𝑆 > 0 for irreversible processes. Actually, this is a way of 

stating the second law. The formal definition of the entropy of a system undergoing a 

reversible process is as follows: 

𝑑𝑆 = 
𝛿𝑄

𝑇
           (1.13) 

Although 𝑄 is not a function of state, the entropy is. So that, if the process involves 

changing the temperature from 𝑇1to 𝑇2, then this equation can be integrated to give: 

∆𝑆 = ∫
𝑑𝑄

𝑇

𝑇2

𝑇1
           (1.14) 

Hence, for a reversible process, the first law can be written in the form: 

𝑑𝑈 = 𝑇. 𝑑𝑆 − 𝛿𝑊           

When dealing with ideal gases, for example, from equation (1.3), one gets: 

𝑑𝑈 = 𝑇. 𝑑𝑆 − 𝑝. 𝑑𝑉         (1.15) 
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Example 1.2 

Deduce a formula to calculate the entropy change when one mole of an ideal gas is heated 

reversibly from 𝑇1to 𝑇2 under conditions of constant pressure 𝑝. 

Solution: 

From equation (1.10), one can write for a constant pressure process: 𝑑𝑄 = 𝐶𝑝. 𝑑𝑇 

From equation (1.14): 

∆𝑆 = ∫
𝐶𝑝.𝑑𝑇

𝑇

𝑇2

𝑇1
  

Assuming the heat capacity to be fairly constant over the temperature range, then: 

∆𝑆 = 𝐶𝑝. ln(𝑇2 𝑇1⁄ ) J.mol-1K-1 

Note that since 𝑝 is constant the volume of the gas is proportional to its temperature so that:  

∆𝑆 = 𝐶𝑝. ln(𝑉2 𝑉1⁄ ) J.mol-1K-1 

1.2.2 Entropy change for isothermal phase transitions. 

By phase transitions is meant one of the following cases: 

• Melting: Solid ↔ Liquid  

• Allotropic transition: A (I) ↔ A (II) 

• Boiling: Liquid ↔ Vapor 

• Sublimation: Solid ↔ Vapor 

According to the phase rule, these changes occur at a constant temperature =  𝑇𝑡. In that 

case, if the enthalpy change associated with the transition = ∆𝐻𝑡, then, the corresponding 

entropy change will simply equal: 

∆𝑆𝑡 = 
∆𝐻𝑡

𝑇𝑡
           (1.16) 

1.2.3 Entropy change for irreversible processes. 

The definition of entropy by equation (1.13) is restricted to reversible processes. To 

illustrate the method of calculation for irreversible processes, consider the following 

example:  

Let the freezing point of a substance = 𝑇𝑚 and let a certain temperature = 𝑇∗ < 𝑇𝑚 . 

Accordingly, while it is possible to melt or freeze the material reversibly at 𝑇𝑚, it is 

impossible to do so at 𝑇∗. This is since reversibility assumes that the process can be 

reversed by an infinitesimal change in temperature. To calculate the entropy of melting at 

𝑇∗ for the transition: A (s) → A (l), the following cycle is adopted that consists of 

consecutive reversible processes: 

A (s) at 𝑇∗= A (s) at 𝑇𝑚  (i) 

A (s) at 𝑇𝑚 = A (l) at 𝑇𝑚   (ii) 

A (l) at 𝑇𝑚 =A (l) at 𝑇∗  (iii) 
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The entropy of the process can be calculated by adding the entropies of the three steps as 

follows: 

∆𝑆 = ∫
𝐶𝑝(𝑠).𝑑𝑇

𝑇

𝑇𝑚

𝑇∗  + 
∆𝐻𝑚

𝑇𝑚
 + ∫

𝐶𝑝(𝑙).𝑑𝑇

𝑇

𝑇∗

𝑇𝑚
 

The following example illustrates these steps. 

Example 1.3 

Silver melts at 1235 K. The latent heat of fusion = 11.2 kJ.mol-1. Calculate the entropy 

change of the system and surroundings in case of freezing of undercooled liquid silver at 

1073.   

Solution: 

As explained above, the following steps are undertaken: 

Ag (l) → Ag (l): 1073 K to 1235 K: 

∆𝑆1 = ∫
𝐶𝑝(𝑙).𝑑𝑇

𝑇

1235

1073   = 30.5 ln
1235

1073
 = 4.29 J.mol-1K-1 (See table 1.1). 

Ag (l) → Ag (s): at 1235 K:      ∆𝑆2 = 
−11200

1235
 = −9.07 J.mol-1K-1 (Exothermic heat) 

Ag (s) → Ag (s): 1235 K to 1073 K: 

∆𝑆3 = ∫
𝐶𝑝(𝑠).𝑑𝑇

𝑇

1073
1235  = ∫

(21.2+8.55×10−3𝑇+1.5×105𝑇−2.𝑑𝑇

𝑇

1073

1235
 = −4.39 J.mol-1K-1 

Thus, the change in entropy of the system = 4.29 − 9.07 − 4.39 = −𝟗. 𝟏𝟕 J.mol-1K-1 

To obtain the entropy change of surroundings, one first must calculate the amount of heat 

transferred to the surroundings which is the amount of heat produced by the cycle. 

Ag (l) → Ag (l): 1073 K to 1235 K:    ∆𝐻1 = ∫ 𝐶𝑝𝑙 . 𝑑𝑇
1235

1073
  = 30.5 × (1235 − 1073)  =   

4941 J.mol-1 

Ag (l) → Ag (s): at 1235 K: ∆𝐻2 = −11200 J.mol-1 

Ag (s) → Ag (s): 1235 K to 1073 K: 

∆𝐻3 = ∫ 21.2 + 8.55 × 10−3𝑇 + 1.5 × 105𝑇−2. 𝑑𝑇

1073

1235

= −5051 J. mol−1 

Thus, the heat transferred to surroundings = 4941 − 11200 − 5051 = −11310 J. mol−1 

The heat gained by surroundings is therefore 11310 J. mol−1 

The change in entropy of surroundings = ∆𝑆𝑠𝑢𝑟𝑟 = 
11310

1073
 = 10.54 J. mol−1K−1 

We note that the total change in entropy = −9.17 + 10.54 = 𝟏. 𝟑𝟕 𝐉. 𝐦𝐨𝐥−𝟏𝐊−𝟏 > 0, 

which conforms to what has been previously mentioned in Section 1.2.1. 
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1.2.4 An application: The difference between 𝑪𝒗 and 𝑪𝒑 

As previously explained, solid state processes usually take place at constant pressure so 

that we are usually concerned with isobaric changes occurring in the system. However, 

since the volume changes in solids are minor, it is also necessary to consider the case of 

constant volume behavior. To that aim, on defines the heat capacity at constant volume in 

a manner like that used in equation (1.10) for 𝐶𝑝. 

𝐶𝑣 = (
𝜕𝑈

𝜕𝑇
)

𝑉
           (1.17) 

A relation between the two heat capacities will be derived for solid materials. The proof is 

too complicated to be presented. So, only the main definitions are shown: 

It can be proved that: 

𝐶𝑝 = 𝐶𝑉 + (
𝜕𝑉

𝜕𝑇
)

𝑝
𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑉
         (1.18) 

We now define the volume expansion coefficient of a solid as follows: 

𝛼 = 
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑝
  K-1            (1.19)  

While the compressibility coefficient is defined as: 

𝛽 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
 Pa-1            (1.20)  

Now, we expand 𝑑𝑉 as a perfect differential as function of 𝑇 and 𝑝: 

𝑑𝑉 = (
𝜕𝑉

𝜕𝑝
)

𝑇
. 𝑑𝑝 + (

𝜕𝑉

𝜕𝑇
)

𝑝
. 𝑑𝑇       (1.21) 

At constant volume, 𝑑𝑉 = 0. If the expression is then divided by 𝑑𝑇, we get: 

0 = (
𝜕𝑉

𝜕𝑝
)

𝑇
(

𝜕𝑝

𝜕𝑇
)

𝑉
+ (

𝜕𝑉

𝜕𝑇
)

𝑝
        (1.22) 

(
𝜕𝑝

𝜕𝑇
)

𝑉
= −

(
𝜕𝑉

𝜕𝑇
)

𝑝

(
𝜕𝑉

𝜕𝑝
)

𝑇

          (1.23) 

Combining equations (1.18), (1.19), (1.20) and (1.23), we finally get: 

𝐶𝑝 = 𝐶𝑉 +
𝛼2𝑉𝑇

𝛽
         (1.24) 

The importance of this result is that it usually easy to experimentally determine 𝐶𝑝, while 

the determination of 𝐶𝑉 is extremely difficult since it is not practical to keep a solid from 

expanding when heated. The following table illustrates some typical values of the 

investigated parameters for copper at different temperatures. 
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Table 1.3: Properties of copper 

𝑻 K 𝒂 × 𝟏𝟎𝟔   K-1    𝜷 × 𝟏𝟎𝟏𝟏  𝐏𝐚−𝟏 𝑪𝒑 𝐉. 𝐦𝐨𝐥−𝟏𝐊−𝟏 𝑪𝑽 𝐉. 𝐦𝐨𝐥−𝟏𝐊−𝟏 

100 31.5 0.72 16.2 16.1 

200 45.6 0.748 22.6 22.2 

300 48 0.762 23.6 23.1 

800 60.7 0.922 28 25.7 

1200 69.7 1.03 30.7 26.3 

 

Example 1.4 

Determine the work done on a copper body when the pressure is increased from 1 to 1000 

atm at 300K. (Density of copper = 8.96 g.cm-3)  

Solution: 

Since the atomic weight of copper = 63.55, then: molar volume = 
63.55

8.96
 = 7.0926  

cm3.mol-1 ≡ 7.0926 × 10−6 m3.mol-1 

The pressure is increased from 𝑝1 = 101325 to 𝑝2 = 101325000 Pa 

The work is obtained from: 𝑊 = ∫ 𝑝. 𝑑𝑉
𝑝2

𝑝1
= − ∫ 𝑉𝛽𝑝. 𝑑𝑝

𝑝2

𝑝1
  (From equation 1.20) 

𝑊 = −7.0926 × 10−6  × 0.762 × 10−11 × 0.5 × [1.013 × 108)2 − (101325)2] =

−𝟎. 𝟐𝟕𝟕 𝐉. 𝐦𝐨𝐥−𝟏 . 

1.2.5 Some empirical rules for entropy of transition 

In this section are presented two common empirical rules that can be used to predict the 

entropy of fusion and that of vaporization of solids at their transition temperatures. 

• Richard’s rule 

According to that rule, the entropy of melting of a solid at its melting point is approximately 

equal to 9.2 𝐉. 𝐦𝐨𝐥−𝟏𝐊−𝟏 . However, this rule serves only as a rough guide whenever 

experimental values are not available. Table 1.5 shows the entropy of fusion of some solid 

materials, revealing that this rule is far from being universal. 

Table 1.5: Entropy of fusion and vaporization of some solids (kJ.mol-1K-1) 

Material Cu Fe Ni Co SiO2 CaO MgO Al2O3 TiO2 NaCl 

∆𝑺𝒇 6.73 8.49 9.96 9.16 4.79 18.9 24.8 48.1 7.3 23.83 

∆𝑺𝒗 113.6 111.5 116.1 96.4 ND 98.6 85.3 ND 103.2 126.6 

 

• Trouton’s rule 

This rule states that the entropy of vaporization of melts is about 89 𝐉. 𝐦𝐨𝐥−𝟏𝐊−𝟏. 
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As can be seen in Table 1.5, this rule is of approximate character, although the values of 

entropy of vaporization fluctuate around the Trouton value.   

 

1.2.6 The physical meaning of entropy 

The best way to understand the concept of entropy is through its statistical meaning. 

Without going into details, it suffices to say that entropy is a measure of the disorder in a 

system. Heating a gas will cause the velocity of its particles to increase, thus increasing 

disorder and hence entropy. A cooler gas will therefore possess lower value of entropy so 

that if the two gases are connected, heat will flow from the higher to the lower temperature 

system. It can be proved that the entropy of the final state of the system will be higher than 

the sum of entropies of the two initial systems: 

Consider two similar bodies possessing an equal number of moles  𝑛 and having the same 

heat capacities 𝐶. Let the first be heated to 500K, while the second is at 300K. If they are 

allowed to contact, heat will flow from the first to the second until an equilibrium 

temperature is attained. Because of their similarity, this temperature will be 400K.  

The change in entropy of the first body ∆𝑆1 = 𝑛 ∫
𝐶

𝑇
. 𝑑𝑇

400

500
 = −0.233𝑛𝐶 

The change in entropy of the second body ∆𝑆2 = 𝑛 ∫
𝐶

𝑇
. 𝑑𝑇

400

300
 = 0.287𝑛𝐶 

The net change in entropy of the entire system = ∆𝑆1 + ∆𝑆2 = 0.054𝑛𝐶 > 0  

We see therefore that the entropy of the final state is higher than of entropy of the two 

initial systems. 

1.2.7 The statistical interpretation of entropy 

(a) Introduction 

 The concept of entropy is closely related to some statistical concepts to the extent that a 

special branch of thermodynamics, known as statistical thermodynamics, is devoted to the 

subject. In the following are presented some preliminary principles. 

Consider 9 different objects to be distributed to three people so that the first takes 4, the 

second 3 and the third takes the remaining 2. It can be proved that the total number of ways 

of performing that task is: 

𝑁 = 
9!

4!3!2!
 

In general, if 𝑛 objects are to be distributed on 𝑖 cells, so that 𝑛1 are to be placed in the first 

cell, 𝑛2 in the second, etc., then the total number of ways to perform this distribution is: 

𝑤 = 
𝑛!

𝑛1!𝑛2!𝑛3!…
           (1.25) 

It is obvious that 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 … + 𝑛𝑖 

 



  CHE701 Thermodynamics of solids 
 

11 

 

 

The variable 𝑊 is known as the thermodynamic probability and refers to the number of 

ways 𝑛 particles can be distributed in 𝑖 positions. Strictly speaking, it is not a probability 

term, but rather the number of different probabilities related to the process. 

Boltzmann has defined the absolute entropy of a system by the law: 

𝑆 = 𝑘. ln 𝑊           (1.26) 

Where, 𝑘 is the Boltzmann constant (1.380649 × 10-23 m2.kg.s-2.K-1) 

It is worth noticing that if the 𝑛 objects are identical, then the number of ways to distribute 

them on 𝑖 cells is: 

𝑤 = 
𝑛+𝑖−1!

𝑛!𝑖−1!
           (1.27) 

(b) An application 

A famous application of that principle is the determination of the entropy of mixing of two 

different species.  

First, it should be noted that on dealing with molecules present in any species, the numbers 

involved are enormous, being in the 1020 range. In that case, the factorial 𝑛! can be obtained 

using the Stirling approximation: 

𝑛! ≈ √2𝑛𝜋. 𝑛𝑛. 𝑒−𝑛          (1.28) 

Taking logarithms: 

ln 𝑛! ≈ ln √2𝜋 +
1

2
ln 𝑛 + 𝑛 ln 𝑛 − 𝑛 

For extremely large values of 𝑛, the first two terms can be neglected. One gets: 

ln 𝑛! ≈ 𝑛 ln 𝑛 − 𝑛          (1.29) 

For example, although 50 is not an extremely large number, still we have: 

50! = 3.0414 × 1064 → ln 50! = 148.48 

While, if equation (1.28) is applied, we get: 

ln 50! ≈ 50 ln 50 − 50 = 145.60 

The error is about 1.94%. 

Consider now a component A consisting of 𝑛 𝐴 molecules mixed with a component B 

consisting of 𝑛𝐵 molecules such that 𝑛 = 𝑛𝐴 + 𝑛𝐵  so that the solution consists of 1 mole. 

In that case the number of molecules of solution is the Avogadro’s number 𝑁0. 

If the entropies of A, B and the solution are 𝑆𝐴, 𝑆𝐵 , 𝑆𝐴𝐵 respectively, then the entropy of 

mixing is the change in entropy associated with the mixing operation is: 

∆𝑆𝑚 = 𝑆𝐴𝐵 − 𝑆𝐴 − 𝑆𝐵          

From equation (1.26), we can write: 
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∆𝑆𝑚 = 𝑘(ln 𝑊𝐴𝐵 − ln 𝑊𝐴 − ln 𝑊𝐵)  

𝑊𝐴 is the number of ways to distribute 𝑛𝐴 molecules in 𝑛𝐴 sites so that every site will 

contain one molecule. Since all A molecules are indistinguishable, then 𝑊𝐴 = 1.  Likewise, 

𝑊𝐵 = 1.  Hence the above equation simplifies to: 

∆𝑆𝑚 = 𝑘 ln 𝑊𝐴𝐵          (1.30) 

𝑊𝐴𝐵 is the number of ways of distributing 𝑛𝐴 molecules of A in 𝑛 = 𝑛𝐴 + 𝑛𝐵 sites and 𝑛𝐵 

molecules of B in the same 𝑛 sites. Following equation (1.25), this results in: 

𝑊𝐴𝐵 = 
𝑁0!

𝑛𝐴!𝑛𝐵!
          (1.31) 

∆𝑆𝑚 = 𝑘(ln 𝑛! − ln 𝑛𝐴! − ln 𝑛𝐵 !)       (1.32) 

Applying equation (1.29): 

∆𝑆𝑚 = 𝑘(𝑛 ln 𝑛 − 𝑛 − 𝑛𝐴ln 𝑛𝐴 + 𝑛𝐴 − 𝑛𝐵 ln 𝑛𝐵 + 𝑛𝐵)     

Since 𝑛 = 𝑛𝐴 + 𝑛𝐵 , this reduces to: 

∆𝑆𝑚 = 𝑘(𝑛 ln 𝑛 − 𝑛𝐴ln 𝑛𝐴 − 𝑛𝐵 ln 𝑛𝐵)

= 𝑘[𝑛𝐴(ln(𝑛𝐴 + 𝑛𝐵) − 𝑛𝐴 ln 𝑛𝐴 + 𝑛𝐵(ln(𝑛𝐴 + 𝑛𝐵) − 𝑛𝐵 ln 𝑛𝐵 

∆𝑆𝑚 = −𝑘(𝑛𝐴 + 𝑛𝐵) (
𝑛𝐴

𝑛𝐴 + 𝑛𝐵

ln
𝑛𝐴

𝑛𝐴 + 𝑛𝐵

+
𝑛𝐵

𝑛𝐴 + 𝑛𝐵

ln
𝑛𝐵

𝑛𝐴 + 𝑛𝐵

) 

Denoting 
𝑛𝐴

𝑛𝐴+𝑛𝐵
 by 𝑋𝐴 and 

𝑛𝐵

𝑛𝐴+𝑛𝐵
 by 𝑋𝐵 (mol. fractions) and = −𝑘(𝑛𝐴 + 𝑛𝐵) = −𝑘. 𝑁0 =

−𝑅 (general gas constant). We get the following expression: 

∆𝑆𝑚 = −𝑅(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)       (1.33) 

This result will be proved later in Chapter 3 from a classical thermodynamic point of view. 

 

1.3 The free energy function 

1.3.1 Definition and meaning  

Consider a system that loses heat reversibly to its surroundings. Then its entropy will 

change by: 

𝑑𝑆 = 
𝛿𝑄

𝑇
 

Under isobaric conditions, this is written as: 

𝑑𝑆 = 
𝑑𝐻

𝑇
 

Therefore, 𝑑𝐻 − 𝑇. 𝑑𝑆 = 0 

If the process is irreversible, it may be proved that in that case: 
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𝑑𝐻 − 𝑇. 𝑑𝑆 < 0         (1.34) 

This equation offers a criterion for deciding whether a process will occur spontaneously or 

not. In other words, it can be used to judge, for example, the possibility of occurrence of a 

chemical reaction under a specified set of conditions. 

This has led to define the free energy function as follows: 

𝐺 = 𝐻 − 𝑇. 𝑆          (1.35) 

Upon differentiation, one gets: 

𝑑𝐺 = 𝑑𝐻 − 𝑇. 𝑑𝑆 − 𝑆. 𝑑𝑇 

Under isothermal conditions, this equation yields: 

𝑑𝐺 = 𝑑𝐻 − 𝑇. 𝑑𝑆         (1.36) 

This shows that the change in free energy is appropriate to judge whether a process can 

take place spontaneously or not, using the following criterion as per equation (1.34): 

For spontaneous processes under isothermal conditions: 𝒅𝑮 < 𝟎.  

1.3.2 Important relations for ∆𝑮 

In the following is presented the proof of two important expression in thermodynamics that 

relates free energy to other thermodynamic properties. 

(a) First relation: 

𝐺 = 𝐻 − 𝑇. 𝑆 

Dividing by 𝑇 and differentiating with respect to 𝑇, we get: 

(
𝜕(

𝐺

𝑇
)

𝜕𝑇
)

𝑃

= (
𝜕(

𝐻

𝑇
)

𝜕𝑇
)

𝑃

− (
𝜕𝑆

𝜕𝑇
)

𝑃
        (1.37) 

(
𝜕(

𝐺

𝑇
)

𝜕𝑇
)

𝑃

=
1

𝑇
(

𝜕𝐻

𝜕𝑇
)

𝑃
+ 𝐻 (

𝜕(
1

𝑇
)

𝜕𝑇
)

𝑃

− (
𝜕𝑆

𝜕𝑇
)

𝑃
      (1.38) 

Now, 
1

𝑇
(

𝜕𝐻

𝜕𝑇
)

𝑃
=

𝐶𝑝

𝑇
  and   (

𝜕(
1

𝑇
)

𝜕𝑇
)

𝑃

= −
1

𝑇2      

Substituting in equation (1.38): 

(
𝜕(

𝐺

𝑇
)

𝜕𝑇
)

𝑃

= −
𝐶𝑝

𝑇
−

𝐻

𝑇2 − (
𝜕𝑆

𝜕𝑇
)

𝑃
       (1.39) 

On the other hand, for reversible isobaric processes: 

𝑑𝑆 = 
𝑑𝐻

𝑇
    Thus, 𝑑𝐻 = 𝑇. 𝑑𝑆 → 𝐶𝑝. 𝑑𝑇 = 𝑇. 𝑑𝑆, which can be written in the form: 
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(
𝜕𝑆

𝜕𝑇
)

𝑃
=

𝐶𝑝

𝑇
          (1.40) 

Substituting in equation (1.38): 

(
𝜕(

𝐺

𝑇
)

𝜕𝑇
)

𝑃

=
𝐶𝑝

𝑇
−

𝐻

𝑇2 −
𝐶𝑝

𝑇
= −

𝐻

𝑇2       (1.42) 

This is usually written in the form: 

(
𝜕(

𝐺

𝑇
)

𝜕(
1

𝑇
)
)

𝑃

= 𝐻          (1.43) 

Usually, the following form is more of use: 

(
𝜕(

∆𝐺

𝑇
)

𝜕(
1

𝑇
)

)
𝑃

= ∆𝐻         (1.44) 

Example 1.5 

When a reaction was carried out at 300K, the change in free energy = −38.5 kJ. mol−1, 

while it reached −23.6 kJ. mol−1 when carried out at 350K. Calculate the average value of 

the enthalpy of that reaction over the temperature range 300K – 350K. . 

Solution: 

𝑇1 = 300 → ∆𝐺1 = −38.5             𝑇2 = 350 → ∆𝐺2 = −23.6 

Hence:  

∆𝐺1

𝑇1
 = −0.128  

∆𝐺2

𝑇2
 = −0.0674 

The net variation in 
∆𝐺

𝑇
 due to change in temperature = −0.0674 − (−0.128) = 0.061 

The variation in 
1

𝑇
=

1

350
−

1

300
 = −0.00476 

Hence: ∆ (
∆𝐺

𝑇
) = 0.061  ∆ (

1

𝑇
) = −0.00476 

(
𝜕(

∆𝐺

𝑇
)

𝜕(
1

𝑇
)

)
𝑃

≈ (
∆(

∆𝐺

𝑇
)

∆(
1

𝑇
)

)
𝑃

= ∆𝐻 = 
0.061

−0.00476
 = −𝟏𝟐. 𝟖𝟐 𝐤𝐉. 𝐦𝐨𝐥−𝟏      

(b) Second relation: 

From equation (1.8): 

𝑑𝐻 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉. 𝑑𝑝 

And since: 

 𝑑𝐺 = 𝑑𝐻 − 𝑇. 𝑑𝑆 − 𝑆. 𝑑𝑇 
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Therefore: 

𝑑𝐺 = 𝑑𝑈 + 𝑝𝑑𝑉 + 𝑉. 𝑑𝑝 − 𝑇. 𝑑𝑆 − 𝑆. 𝑑𝑇 

From the first law, we get:  

𝑑𝐺 = 𝛿𝑄 + 𝑉. 𝑑𝑝 − 𝑇. 𝑑𝑆 − 𝑆. 𝑑𝑇  And from equation (1.13), 𝛿𝑄 = 𝑇. 𝑑𝑆. 

We therefore obtain the following important relation: 

𝑑𝐺 = 𝑉. 𝑑𝑝 − 𝑆. 𝑑𝑇         (1.45) 

 

   PROBLEMS 

1. Calculate the amount of enthalpy change when the temperature of MnSiO3 (s) is raised 

from 300K to 1000K. 

2. Calculate the enthalpy change for the calcination of CaCO3 (s) at 1000K. 

3. Prove that in an isothermal reversible process at temperature 𝑇, the change in entropy 

of a mole of an ideal gas when its pressure is raised from 𝑝1 to 𝑝2 can be obtained from 

the expression: 

      ∆𝑆 = 𝑅 ln
𝑝1

𝑝2

 

4. Sodium chloride melts at 801oC and its latent heat of fusion = 27.95 kJ.mol-1. Calculate 

the entropy change of the system and surroundings in case of freezing of undercooled 

liquid NaCl at 700oC.  (Heat capacity of NaCl (s) = 50 J.mol-1.K-1 and for NaCl (l) ≈ 

61.5 J.mol-1.K-1). 

5. Determine the entropy change when the pressure applied on a copper body of volume 

5 L is raised reversibly from 1 to 104 atm at 300K.   

6. The free energy of a reaction can be obtained from the expression: 

∆𝐺 = −16.8 + 0.00368𝑇 − 0.0721 ln 𝑇  kJ.mol-1 (𝑇 in K) 

Calculate ∆𝑆 and ∆𝐻 for that reaction at 400K. 

7. 100 identical molecules of a gas are to be distributed on 50 sites. Evaluate the number 

of ways this can be done.  
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CHAPTER 2  

Thermodynamics of chemical reactions 

2.1 Physical transitions 

2.1.2 Order of transitions 

When the free energy of a transition is plotted against one of the state variables (𝑇, 𝑝, 𝑉) 

then the shape of the curve determines the order of transition. The transition is said to be 

of first order if the plot of 𝐺 against 𝑇 (for example) is continuous, but that of (
𝜕𝐺

𝜕𝑇
)

𝑃
is not. 

For example, it is clear from Figure1 that the plot of 𝐺 against 𝑇 is continuous at the 

transition temperature 𝑇𝑡. On the other hand, a plot of (
𝜕𝐺

𝜕𝑇
)

𝑃
against 𝑇 shows a 

discontinuity at the transition temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: Fist order transition 

 

 

𝑮 

𝑻 𝑻𝒕 

(
𝝏𝑮

𝝏𝑻
)

𝑷
 

𝑻 𝑻𝒕 
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In the same way, a plot of 𝐻 against 𝑇 will be continuous at the transition temperature from 

solid to liquid, whereas a plot of 𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)

𝑃
against 𝑇 will show discontinuity at the 

melting temperature (Figure 2.1) 

In second order transitions, such as order – disorder transformations in alloys, will display 

continuous behavior for both 𝐺 − 𝑇 and (
𝜕𝐺

𝜕𝑇
)

𝑃
– 𝑇 plots. However, a plot of 

𝜕2𝐺

𝜕𝑇2 will show 

a discontinuity at the transition temperature. 

2.1.3 Effect of pressure on phase transition temperature 

Since for a reversible process, 𝑑𝐺 = 𝑑𝐻 − 𝑇. 𝑑𝑆 = 0, then the free energies of both phases 

must be equal. If a reversible transition takes place in the form: 

 A (I) ↔ A(II) 

Then 𝑑𝐺I = 𝑑𝐺II 

From equation (1.45):  

𝑑𝐺 = 𝑉. 𝑑𝑝 − 𝑆. 𝑑𝑇 

Hence, at the transition temperature 𝑇𝑡: 

𝑉1. 𝑑𝑝 − 𝑆1. 𝑑𝑇 = 𝑉2. 𝑑𝑝 − 𝑆2𝑑𝑇 

Rearranging, we get: 

𝑑𝑝

𝑑𝑇
= 

𝑆2−𝑆1

𝑉2−𝑉1
           (2.1) 

From equation (1.16): 

 𝑆2 − 𝑆1 = ∆𝑆𝑡 = 
∆𝐻𝑡

𝑇𝑡
 

So that equation (2.1) takes the following form, known as Clapeyron equation: 

𝑑𝑝

𝑑𝑇
=

∆𝐻𝑡

∆𝑉.𝑇𝑡
            (2.2) 

This is particularly applied in cases of melting – freezing and allotropic transitions. 

Example 2.1 

Tin melts at 505K and possesses a heat of melting = 7.029 kJ.kg-1. The density of solid tin 

= 7.28 g.cm-3 while that of liquid tin is 6.98 g.cm-3 and its atomic mass = 118.7. Estimate 

the change in its melting temperature when the pressure is raised from 1 to 100 atm.  

Solution: 

First, equation (2.2) can be rewritten to read: 
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∆𝑝

∆𝑇
=

∆𝐻𝑡

∆𝑉.𝑇𝑡
  

∆𝑝 = (100 − 1) × 1.013 × 105 = 1.0029 × 107Pa 

∆𝐻𝑡 = 7.029 × 118.7 = 834.34 J.mol-1 

𝑇𝑡 = 505 K 

Atomic volume of solid = 𝑉1 = 
118.7

7.28
 = 16.264 cm3.mol-1 ≡ 1.6264 × 10−5 m3.mol-1 

Atomic volume of liquid = 𝑉2 = 
118.7

6.98
 = 17 cm3.mol-1 ≡ 1.7 × 10−5 m3.mol-1 

∆𝑉 = 0.736 × 10−6 m3.mol-1 

Substituting in equation (2.2): 

1.0029×107

∆𝑇
=

834.34

0.736×10−6×505
   

Hence: ∆𝑻 = 𝟒. 𝟒𝟔𝟕 𝐊  

We can conclude from the previous result that there is an increase of about 1% in melting 

temperature corresponding to a one-hundred-fold increase in pressure. This means that a 

𝑝 − 𝑇 plot will result in an almost vertical line. Most solids slightly expand in volume on 

melting so that the line possesses a faint positive slope. Only in some rare cases, does the 

solid contract on melting as in water and bismuth, in which case the vertical line will be 

slightly deviated to the left, having a negative slope (Figure 2.2). 

 

 

 

 

 

 

Fig 2.2: Different cases of volume change on melting 

Consider now the case of vaporization of a liquid or a solid (sublimation). If the vapor 

formed is assumed to behave ideally, then we may write, for 1 g mole of vapor: 

𝑝𝑉 = 𝑅𝑇 

Also, in this case, the volume of solid can be neglected compared to that of the vapor, so 

that: ∆𝑉 ≈ 𝑉𝑔 and equation (2.2) can be rewritten as: 

𝒑 

𝑻 

∆𝑽 < 𝟎 ∆𝑽 = 𝟎 ∆𝑽 > 𝟎 
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𝑑𝑝

𝑑𝑇
=

∆𝐻𝑡

𝑉𝑔.𝑇
=

𝑝.∆𝐻𝑡

𝑅𝑇2   

This equation, known as the Clausius – Clapeyron equation, is best written as: 

𝑑 ln 𝑝

𝑑𝑇
=

∆𝐻𝑡

𝑅𝑇2           (2.3) 

If the temperature range investigated is relatively narrow, then ∆𝐻𝑡 may be assumed 

constant, in which case this equation is integrated to yield:  

ln 𝑝 = −
∆𝐻𝑡

𝑅𝑇
 + 𝐶          (2.4) 

This means that a plot of ln 𝑝 against the reciprocal of temperature will yield a straight line 

of slope = −
∆𝐻𝑡

𝑅
. 

Example 2.2 

The vapor pressure of molten silver (Pa) is related to temperature (K) by the relation:  

log 𝑝 = −14900𝑇−1 − 0.85 log 𝑇 + 14.32 

From a suitable plot, deduce the latent heat of vaporization of silver at its melting 

temperature (1235K). Compare with the published data of 251 kJ.mol-1. 

Solution: 

The following table summarizes the calculations. 

 

 

A plot of ln 𝑝 against 1/𝑇 is shown in Figure 2.3. 

The slope of the line = −33264  

This slope corresponds to a latent heat of vaporization = 276.56 kJ.mol-1 which is slightly 

different from the experimental reported value of 251, the error being 10.18%. 

 

T K log p p Pa ln p 1/T K-1 

1235 -0.37269 0.42394 0.00081 -0.85816 

1300 0.21161 1.62783 0.00077 0.48725 

1350 0.62218 4.18966 0.00074 1.43262 

1400 1.00293 10.0678 0.00071 2.30934 

1450 1.35698 22.7497 0.00069 3.12455 

1500 1.68699 48.6395 0.00067 3.88444 

1550 1.99531 98.927 0.00065 4.59438 

1600 2.284 192.308 0.00063 5.2591 
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Fig 2.3: Plot of 𝐥𝐧 𝒑 against 𝟏/𝑻 for liquid Ag 

2.2 Chemical reactions 

2.2.1 Standard free energy of a chemical reaction 

As previously mentioned, (equation 1.34) a reaction can proceed spontaneously if the 

change in free energy is negative. Despite this, some reactions with a negative free energy 

change are not observed to occur. This is mainly due to the extremely low rate of reaction, 

which is accelerated by a rise in temperature.  

Consider a system of solid reactants A and B at their standard states, due to react 

according to the following equation to yield products at their standard states (1 atm. and 

the fixed reaction temperature): 

𝑎A(𝑠) + 𝑏B(𝑠) = 𝑐C(𝑠) + 𝑑D(𝑠)    ∆𝐺0  (i) 

(𝑎, 𝑏, 𝑐, 𝑑 are stoichiometric coefficients). 

The free energy change for that reaction is termed the standard free energy of reaction 

∆𝑮𝟎. Its sign of cannot be taken as a general criterion of irreversibility (spontaneity) for 

that reaction unless all species are at their standard states. 

Under equilibrium conditions, each component will be in equilibrium with its vapor at the 

standard state vapor pressure corresponding to the reaction temperature: 

𝑎A(𝑣, 𝑝𝐴
0) =  𝑎A(𝑠)      ∆𝐺1

0 = 0 (ii) 

𝑏B(𝑣, 𝑝𝐵
0) =  𝑏B(𝑠)      ∆𝐺2

0 = 0 (iii) 

𝑐C(𝑣, 𝑝𝐶
0) =  𝑐C(𝑠)      ∆𝐺3

0 = 0 (vi) 

𝑑D(𝑣, 𝑝𝐷
0 ) =  𝑑D(𝑠)      ∆𝐺4

0 = 0 (v) 

If equations from (i) to (v) are added, we get: 

𝑎A(𝑣, 𝑝𝐴
0) + 𝑏B(𝑣, 𝑝𝐵

0) = 𝑐C(𝑣, 𝑝𝐶
0) + 𝑑D(𝑣, 𝑝𝐷

0 )  ∆𝐺0  (vi) 

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

0.00055 0.00065 0.00075 0.00085 0.00095 0.00105

ln
 p

1/T K-1



  CHE701 Thermodynamics of solids 
 

21 

 

 

The free energies of sublimation of the solid species are zero since vapor is in equilibrium 

with its solid in each case. The last equation (vi) infers that the standard free energy of the 

reaction can be calculated by dealing with vapor instead of solid phases. 

Let us assume that the vapor pressures were changed to new values 𝑝𝐴, 𝑝𝐵 , 𝑝𝐶 , 𝑝𝐷 still in 

equilibrium with their corresponding solid phases (but not at their standard states) to obtain 

the following reaction, where it is assumed that equilibrium has been reached, so that the 

free energy of reaction = 0: 

𝑎A(𝑣, 𝑝𝐴) + 𝑏B(𝑣, 𝑝𝐵) = 𝑐C(𝑣, 𝑝𝐶) + 𝑑D(𝑣, 𝑝𝐷)  ∆𝐺6 = 0 (vii) 

To evaluate the free energy change caused by the change in vapor pressures, we refer to 

equation (1.45): 

𝑑𝐺 = 𝑉. 𝑑𝑝 − 𝑆. 𝑑𝑇 

Since the temperature of reaction is assumed constant, then 𝑑𝑇 = 0 and we get: 

𝑑𝐺 = 𝑉. 𝑑𝑝 

Assuming the vapors of all components to behave ideally, then: 𝑉 = 
𝑅𝑇

𝑝
 

Substituting, one gets: 

𝑑𝐺 =
𝑅𝑇

𝑝
. 𝑑𝑝  

Integration is now performed for all four components from the initial state to the final state 

involving the new values of vapor pressures. We get: 

∆𝐺𝐼 = 𝑅𝑇  ln
𝑝𝑖

𝑝0
           (2.5) 

This equation is now written for all four components: 

𝑎A(𝑣, 𝑝𝐴
0) = 𝑎A(𝑣, 𝑝𝐴) ∆𝐺8 = 𝑎𝑅𝑇  ln

𝑝𝐴

𝑝𝐴
0      (viii) 

𝑏𝐵(𝑣, 𝑝𝐵
0) = 𝑏𝐵(𝑣, 𝑝𝐵) ∆𝐺9 = 𝑏𝑅𝑇  ln

 𝑝𝐶

𝑝𝐵
0      (ix) 

𝑐C(𝑣, 𝑝𝐶
0) = 𝑐C(𝑣, 𝑝𝐶) ∆𝐺10 = 𝑐𝑅𝑇  ln

𝑝𝐶

𝑝𝐶
0     (x) 

𝑑D(𝑣, 𝑝𝐷
0 ) = 𝑑D(𝑣, 𝑝𝐷) ∆𝐺11 = 𝑑𝑅𝑇  ln

𝑝𝐷

𝑝𝐷
0       (xi) 

Since the free energy for the global reaction = 0, we can add the equations from (viii) to 

(xi) together with (vi): 

𝑎A(𝑣, 𝑝𝐴
0) + 𝑏B(𝑣, 𝑝𝐵

0) = 𝑐C(𝑣, 𝑝𝐶
0) + 𝑑D(𝑣, 𝑝𝐷

0 )  ∆𝐺0 

𝑎A(𝑣, 𝑝𝐴) + 𝑏B(𝑣, 𝑝𝐵) = 𝑐C(𝑣, 𝑝𝐶) + 𝑑D(𝑣, 𝑝𝐷)  ∆𝐺10 + ∆𝐺11 − (∆𝐺8 + ∆𝐺9) 

∆𝐺10 + ∆𝐺11 − (∆𝐺8 + ∆𝐺9) + ∆𝐺0 = 0 
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 𝑐𝑅𝑇  ln
𝑝𝐶

𝑝𝐶
0 + 𝑑𝑅𝑇  ln

𝑝𝐷

𝑝𝐷
0 − 𝑎𝑅𝑇  ln

𝑝𝐴

𝑝𝐴
0   −𝑏𝑅𝑇  ln

𝑝𝐵

𝑝𝐵
0  +∆𝐺0 = 0 

This can be written in the form: 

𝑅𝑇.ln
(

 𝑝𝐶

 𝑝𝐶
0)

𝑐

(
 𝑝𝐴

 𝑝𝐴
0 )

𝑎 ×
(

𝑝𝐷

 𝑝𝐷
0 )

𝑑

(
 𝑝𝐵

 𝑝𝐵
0 )

𝑏 + ∆𝐺0 = 0 

The expression following the logarithm is called the equilibrium constant of reaction 𝐾𝑒 

and the latter equation takes the form: 

∆𝐺0 + 𝑅𝑇 ln 𝐾𝑒 = 0 

∆𝐺0 = −𝑅𝑇 ln 𝐾𝑒           (2.6) 

The quantity 
𝑝𝑖

𝑝0 is known as the activity of the component (𝑎𝑖).  

The expression for the equilibrium constant 𝐾𝑒 can therefore be written as: 

𝐾𝑒 =  
𝑎𝐶

𝑐

𝑎𝐴
𝑎 ×

𝑎𝐷
𝑑

𝑎𝐵
𝑏           (2.7) 

In the case of ideal gases, the standard state is taken as 1 atm. However, when we deal with 

solutions, the concept of activity must be expanded to regard it as the effective 

concentration of a component in the solution. Following this principle, the activity of a 

component in solution will be 1 if the solution is constituted from this component only: 

𝑎𝑖
0 = 1. 

Equation (2.5) can now be written as follows: 

∆𝐺𝑖 = 𝑅𝑇 ln 𝑎𝑖          (2.8) 

Returning to the original reaction, where the components are not at their standard states. 

We can then write: 

𝑎A(𝑎𝐴 ) + 𝑏B(𝑎𝐵) = 𝑐C(𝑎𝐶) + 𝑑D(𝑎𝐷)   (xii)  ∆𝐺 

If all components are at their standard sates, then: 

𝑎A(𝑎𝐴 = 1 ) + 𝑏B(𝑎𝐵 = 1) = 𝑐C(𝑎𝐶 = 1) + 𝑑D(𝑎𝐷 = 1)  ∆𝐺0 

To move any component from its standard state to its actual state, one uses equation (2.8): 

𝑎A(𝑎𝐴 = 1 ) =  𝑎A(𝑎𝐴 )      ∆𝐺1 = 𝐺1 − 𝐺1
𝑜 = 𝑎𝑅𝑇 ln 𝑎𝐴 

𝑏𝐵(𝑎𝐵 = 1 ) =  𝑏B(𝑎𝐵  )      ∆𝐺2 = 𝐺2 − 𝐺2
𝑜 = 𝑏𝑅𝑇 ln 𝑎𝐵  

𝑐C(𝑎𝐶 = 1 ) =  𝑐C(𝑎𝐶  )      ∆𝐺3 = 𝐺3 − 𝐺3
𝑜 = 𝑐𝑅𝑇 ln 𝑎𝐶 

𝑑D(𝑎𝐷 = 1 ) =  𝑑D(𝑎𝐷  )      ∆𝐺3 = 𝐺4 − 𝐺4
𝑜 = 𝑑𝑅𝑇 ln 𝑎𝐷 

The free energy of equation (xii) is therefore: 
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∆𝐺 = ∑ 𝐺𝑖 = ∑ 𝐺𝑖
0 + 𝑅𝑇 ln

𝑎𝐶
𝑐

𝑎𝐴
𝑎 ×

𝑎𝐷
𝑑

𝑎𝐵
𝑏  

∆𝐺 = ∆𝐺0 +  𝑅𝑇 ln
𝑎𝐶

𝑐

𝑎𝐴
𝑎 ×

𝑎𝐷
𝑑

𝑎𝐵
𝑏         (2.9) 

Example 2.3 

Consider the equilibrium reaction mixture of Ca, Si and CaSi, dissolved in a solvent at 

1000K.Suppose that the initial activity of Ca = 0.5 and that CaSi is pure. If the standard 

free energy of the reaction Ca + Si = CaSi at that temperature is −172 kJ.mol-1, find the 

activity of Si in the equilibrium mixture. Then find the partial pressure of Ca (v) in 

equilibrium with the dissolved Ca (Vapor pressure of Ca at 1000K = 14.6 Pa). Also find 

the change in free energy for the reaction: 

Ca (𝑎 = 0.5) + Si (𝑎 = 0.4) = CaSi (𝑎 = 0.8) 

Solution: 

∆𝐺0 = −172000 J.mol-1 = −𝑅𝑇 ln 𝐾𝑒= −8.314 × 1000 ln 𝐾𝑒 → 𝐾𝑒 = 9.65 × 108 

9.65 × 108 = 
𝑎CaSi

𝑎Ca×𝑎Si
 = 

1

0.5×𝑎Si
 → 𝒂𝐒𝐢 = 𝟐. 𝟎𝟕𝟐 × 𝟏𝟎−𝟖 

The activity of Ca is 0.5, meaning that 
𝑝Ca

𝑝Ca
0  = 0.5. 

 Hence, 𝑝Ca = 0.5 × 14.6 = 𝟕. 𝟑 𝐏𝐚 

∆𝐺 = ∆𝐺0 + 𝑅𝑇 ln
𝑎CaSi

𝑎Ca×𝑎Si
→ ∆𝐺 = −172000 + 8.314 × 1000 × ln

0.8

0.5×𝟎.𝟒
  

∆𝐺 = −160474 J ≡ −𝟏𝟔𝟎. 𝟓 𝐤𝐉. 𝐦𝐨𝐥−𝟏 

Example 2.4 

Find the change in free energy for the following reaction at 1000K:  

Ca (𝑎 = 0.9) = Ca (𝑎 = 0.5) 

(a) If the components are at their standard states. 

(b) If the components have the shown activities. 

Solution: 

(a) Since Ca is at its standard sate, then 𝑎Ca = 1 and ∆𝐺0 = −𝑅𝑇 ln
1

1
 = 𝟎 

(b) ∆𝐺 = ∆𝐺0 + 𝑅𝑇 ln
0.5

0.9
= 0 + 8.314 × 1000 ln

0.5

0.9
→ ∆𝐺 = −𝟒𝟖𝟖𝟕 𝐉.mol-1 

2.2.2 Testing the feasibility of a chemical reaction 

Assume that in a chemical reaction all species are at their standard states, in which case the 

free energy change of the reaction = ∆𝐺0. For the reaction to occur, a necessary condition 

is that ∆𝐺0 < 0,  as mentioned previously.  
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In general, the standard free energies of chemical reactions are expressed as function of 

temperature, sometimes in the form: 

∆𝐺0 = 𝑎 + 𝑏𝑇 + 𝑐 log 𝑇         (2.10) 

This can be used, together with equation (2.6) to decide about the feasibility of a chemical 

reaction at a given temperature, or to predict the critical temperature above (or below) 

which the reaction can take place. This is illustrated by the following example. 

Example 2.5 

The decomposition of manganese dioxide takes place according to the following the 

equation: 

MnO2 (s) = Mn (s) + O2 (g)   

The standard free energy for that reaction (kJ.mol-1) is related to temperature (K) through 

the following expression: 

∆𝐺0 = 251.6 − 0.334𝑇 + 0.023 log 𝑇 

What is the minimum temperature at which this reaction can take place under atmospheric 

conditions? And what would be the minimum oxygen partial pressure to carry out that 

reaction at 600K? 

Solution 

Assuming both Mn and MnO2 to be pure species, then their activities = 1.  

Hence, from equation (2.6): 

∆𝐺0 = −𝑅𝑇 ln 𝑝𝑂2
 

251600 − 334𝑇 + 23 log 𝑇 = −8.314𝑇 ln 0.21 = 13𝑇 

347𝑇 − 23 log 𝑇 = 251600 

Solving, one gets 𝑻 = 𝟕𝟐𝟓. 𝟑𝑲 

To carry out that reaction at 600K, the value of ∆𝐺0 at that temperature is first determined.  
∆𝐺0 = 251600 − 334 × 600 + 23 log 600 = 51264 

51264 = −8.314 × 600 ln 𝑝𝑂2
→ 𝑝𝑂2

= 𝟑. 𝟒𝟒 × 𝟏𝟎−𝟓 atm 

2.2.3 Effect of temperature on the equilibrium constant 

Following equation (2.6): 

∆𝐺0 = −𝑅𝑇 ln 𝐾𝑒          (2.6) 

While equation (1.44) can be written as: 

(
𝜕(

∆𝐺0

𝑇
)

𝜕(
1

𝑇
)

)

𝑝

= ∆𝐻0         (1.44) 
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Hence, 
∆𝐺0

𝑇
= −𝑅 ln 𝐾𝑒 

Substituting in (1.44), one gets: 

(
𝜕 ln 𝐾𝑒

𝜕(
1

𝑇
)

)
𝑝

 = −
∆𝐻0

𝑅
 

And since 𝑑 (
1

𝑇
) =  −

1

𝑇2
. 𝑑𝑇, one gets: 

(
𝜕 ln 𝐾𝑒

𝜕𝑇
)

𝑝
= 

∆𝐻0

𝑅𝑇2         (2.10) 

Upon integration, one gets: 

ln 𝐾𝑒 = 𝐶 −
∆𝐻0

𝑅𝑇
          (2.11) 

This result implies that for endothermic reactions (∆𝐻0 > 0), the equilibrium constant will 

increase with increasing temperature, thus favoring the reaction to proceed in its positive 

direction. In exothermic reactions, an increase in temperature will negatively affect the 

yields of the products. 

Example 2.5 

If the standard enthalpy of the reaction Ca + Si = CaSi at 1000K is −185 kJ.mol-1, and the 

equilibrium constant at that temperature = 9.65 × 108, estimate its value when temperature 

is increased to 1100K. 

Solution: 

Equation (2.10) takes the form: 

(
𝜕 ln 𝐾𝑒

𝜕𝑇
)

𝑝
= 

−185000

8.314×𝑇2 = −22251.6𝑇−2 

∫ −22251.6𝑇−2. 𝑑𝑇 = ln 𝐾𝑒,1100 − ln 9.65 × 108

1100

1000

 

ln 𝐾𝑒,1100 = 20.687 + 22251.6 × (1100−1 − 1000−1) = 16.642 → 

𝑲𝒆,𝟏𝟏𝟎𝟎 = 𝟏. 𝟔𝟗 × 𝟏𝟎𝟕 

This means that increase of 10% in the reaction temperature has caused a corresponding 

decrease of about 57-fold in the value of 𝐾𝑒. 
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PROBLEMS 

1. The densities of solid and liquid copper are 8.95 and 7.93 g.cm-3 respectively. The 

melting point of copper under atmospheric pressure = 1083oC. estimate the necessary 

pressure to apply to raise the melting point to 1090oC. (Enthalpy of melting = 13.59 

kJ.mol-1). 

2. The following table indicates the vapor pressure of molten aluminum (in millibar) as 

function of temperature: 

log 𝑝 -7 -6 -5 -4 -3 -2 -1 0 1 2 

𝑇 K 1020 1075 1172 1243 1374 1498 1669 1805 2023 2255 
 

 Use these data to predict the normal boiling point of the metal and its enthalpy of 

melting. 

3. Carbon is dissolved in molten iron at 1600 K at an activity = 0.0038. Determine the free 

energy change associated with an increase in its activity to 0.00572. 

4. The vapor pressure of zinc (s) at 600oC is 975 Pa. When dissolved in molten copper, its 

vapor pressure = 0.03 mmHg at that temperature. Calculate the free energy change of 

zinc due to dissolution. 

5. The vapor pressure of CO2 (atm) varies with temperature (K) following the relation: 

𝑝CO2
= 4.137 × 107𝑒−

20474
𝑇  

 Deduce the minimum temperature of calcination of CaCO3 in air, where the mol 

fraction of CO2 = 0.0005. Also deduce the standard entropy change at that temperature 

from the following data: 

• Enthalpy of formation of CaCO3 at 298 K = −1205.6 kJ.mol-1 

• Enthalpy of formation of CaO at 298 K = −635.5 kJ.mol-1 

• Enthalpy of formation of CO2 at 298 K = −394 kJ.mol-1 

• Average heat capacities on the range 300 – 800 K:  

o CaCO3 = 83.48 J.mol-1.K-1. 

o CaO = 47.5 J.mol-1.K-1. 

o CO2 = 36 J.mol-1.K-1 

6. The free energy of formation of TiCl4 gas from the following reaction is related to 

temperature by the shown expression. 

 Ti (s) + 2Cl2 (g, 1 atm) = TiCl4 (g, 1 atm)  

 ∆𝐺0 = −75.7 × 104 − 7.5𝑇. log 𝑇 + 145𝑇 J.mol-1 

 Deduce the following: 

(a) The equilibrium constant of this reaction at 1500K. 
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(b) The standard enthalpy of that reaction at that same temperature.  

(c) The standard entropy of that reaction at that same temperature. 

7. If the standard enthalpy of the reaction: 2Ti (s) + ⅓Fe2O3 (s) = 2TiO (s) + ⅔Fe (s) at 

1500K is −410 kJ and the equilibrium constant at that temperature = 8.903 × 1015, 

estimate the value of the equilibrium constant at 1400K. 

8. The standard enthalpy of a certain reaction is related to temperature by the expression: 

 ∆𝐻𝑅 = −1860 + 0.13𝑇 kJ.mol-1. 

 The standard free energy at 298K = −1705 kJ.mol-1.  

 Evaluate the standard free energy and entropy of reaction at 1000K. 
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CHAPTER 3 

Thermodynamics of Solutions 

3.1 Partial molal quantities 

3.1.1 Definitions 

Assume a certain solution consists of two components (1) and (2). Let the volume of the 

solution = 𝑉. If 1 mole of the first component (1) is added to the solution at constant 

temperature and pressure, without varying the number of moles of (2), this will cause its 

volume to increase. The volume increase per mole of added (1) is termed the partial molal 

volume of component (1). In general, for a solution composed of 𝑁 components (1), (2), 

…, (𝑖), …, (𝑁), the partial molal volume of component (𝑖) is denoted by 𝑉̅𝑖 and defined 

as: 

𝑉̅𝑖 =  (
𝜕𝑉

𝜕𝑛𝑖
)

𝑝,𝑇,𝑛1,𝑛2,…
        (3.1) 

Similar partial molal quantities can be written for enthalpy, entropy, free energy, etc. as an 

infinitesimal amount of component (𝑖) is added (𝑑𝑛𝑖), the volume of the solution will 

increase by an infinitesimal amount 𝑑𝑉. This can be expressed as a perfect differential is 

the following way: 

𝑑𝑉 = (
𝜕𝑉

𝜕𝑛1
)

𝑝,𝑇,𝑛2,𝑛3

𝑑𝑛1 + (
𝜕𝑉

𝜕𝑛2
)

𝑝,𝑇,𝑛1,𝑛3

𝑑𝑛1 + ⋯     (3.2) 

From equations (3.1) and (3.2): 

𝑑𝑉 = 𝑉̅1𝑑𝑛1 + 𝑉̅2𝑑𝑛2 + 𝑉̅3𝑑𝑛3 + ⋯ = ∑ 𝑉̅𝑖𝑑𝑛𝑖
𝑁
𝑖=1      (3.3) 

Similarly, one may write: 

𝑑𝐻 = ∑ 𝐻̅𝑖𝑑𝑛𝑖
𝑁
𝑖=1           (3.4) 

𝑑𝐺 = ∑ 𝐺̅𝑖𝑑𝑛𝑖
𝑁
𝑖=1           (3.5) 

On the other hand, if the solution contains 𝑛1 mole of component (1), 𝑛2 mole of 

component (2), etc., then one can write: 

𝑉 = 𝑉̅1𝑛1 + 𝑉̅2𝑛2 + 𝑉̅3𝑛3 + ⋯ = ∑ 𝑉̅𝑖𝑛𝑖
𝑁
𝑖=1       (3.6) 

𝐻 = 𝐻1𝑛1 + 𝐻2𝑛2 + 𝐻3𝑛3 + ⋯ = ∑ 𝐻̅𝑖𝑛𝑖
𝑁
𝑖=1       (3.7) 

𝐺 = 𝐺̅1𝑛1 + 𝐺̅2𝑛2 + 𝐺̅3𝑛3 + ⋯ = ∑ 𝐺̅𝑖𝑛𝑖
𝑁
𝑖=1       (3.8) 

Differentiation of equation (3.6) yields: 

𝑑𝑉 = ∑ 𝑉̅𝑖𝑑𝑛𝑖
𝑁
𝑖=1 + ∑ 𝑛𝑖

𝑁
𝑖=1 𝑑𝑉̅𝑖        (3.9) 
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Comparing equations (3.3) and (3.9), we reach the following results: 

∑ 𝑛𝑖
𝑁
𝑖=1 𝑑𝑉̅𝑖 = 𝑛1𝑑𝑉̅1 + 𝑛2𝑑𝑉̅2 + 𝑛3𝑑𝑉̅3 + ⋯ = 0    (3.10) 

∑ 𝑛𝑖
𝑁
𝑖=1 𝑑𝐻𝑖 = 𝑛1𝑑𝐻1 + 𝑛2𝑑𝐻̅2 + 𝑛3𝑑𝐻3 + ⋯ = 0     (3.11) 

∑ 𝑛𝑖
𝑁
𝑖=1 𝑑𝐺̅𝑖 = 𝑛1𝑑𝐺̅1 + 𝑛2𝑑𝐺̅2 + 𝑛3𝑑𝐺̅3 + ⋯ = 0     (3.12) 

The last equation being more of interest than the previous two equations, we define the 

molar fraction of a component (𝑖) as:  

𝑋𝑖 = 
𝑛𝑖

𝑁
           (3.13) 

Dividing both sides of equation (3.12) by the total number of moles (𝑁), one gets:  

∑ 𝑋𝑖
𝑁
𝑖=1 𝑑𝐺̅𝑖 = 𝑋1𝑑𝐺̅1 + 𝑋2𝑑𝐺̅2 + 𝑋3𝑑𝐺̅3 + ⋯ = 0      

This equation is known as the Gibbs – Duhem equation. 

Using the definition in equation (3.13), equations (3.6) TO (3.8) may be expressed as: 

𝑉 = ∑ 𝑉̅𝑖𝑋𝑖
𝑁
𝑖=1 = 𝑉̅1𝑋1 + 𝑉̅2𝑋2 + 𝑉̅3𝑋3 + ⋯      (3.14) 

𝐻 = ∑ 𝐻̅𝑖𝑋𝑖
𝑁
𝑖=1 = 𝐻1𝑋1 + 𝐻2𝑋2 + 𝐻̅3𝑋3 + ⋯      (3.15) 

𝐺 = ∑ 𝐺̅𝑖𝑋𝑖
𝑁
𝑖=1 = 𝐺̅1𝑋1 + 𝐺̅2𝑋2 + 𝐺̅3𝑋3 + ⋯      (3.16) 

Also, (3.10) to (3.12) may be expressed in the same way: 

∑ 𝑋𝑖
𝑁
𝑖=1 𝑑𝑉̅𝑖 = 𝑋1𝑑𝑉̅1 + 𝑋2𝑑𝑉̅2 + 𝑋3𝑑𝑉̅3 + ⋯ = 0    (3.17) 

∑ 𝑋𝑖
𝑁
𝑖=1 𝑑𝐻𝑖 = 𝑋1𝑑𝐻1 + 𝑋2𝑑𝐻̅2 + 𝑋3𝑑𝐻3 + ⋯ = 0     (3.18) 

∑ 𝑋𝑖
𝑁
𝑖=1 𝑑𝐺̅𝑖 = 𝑋1𝑑𝐺̅1 + 𝑋2𝑑𝐺̅2 + 𝑋3𝑑𝐺̅3+. . = 0     (3.19) 

3.1.2 Determination of partial molal quantities 

Consider a binary solution consisting of two components A and B. Figure (3.1) illustrates 

the relation between the volume of solution 𝑉 and the mole fraction of B. 

 

 

 

 

 

 

 

 

 

Fig (3.1): Effect of mole fraction B on the volume of solution 

 

𝑽 

𝐀 𝐁 →𝑿𝐵 𝑿𝑩
∗  

𝑽̅𝑨 
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From equation (3.14):  

𝑑𝑉 = 𝑉̅𝐴𝑑𝑋𝐴 + 𝑉̅𝐵𝑑𝑋𝐵 

Since 𝑋𝐴 + 𝑋𝐵 = 1, then one gets: 𝑑𝑋𝐴 = −𝑑𝑋𝐵 

Therefore: 

𝑑𝑉 = (𝑉̅𝐵 − 𝑉̅𝐴)𝑑𝑋𝐵 

Dividing by 𝑑𝑋𝐵 yields: 

𝑑𝑉

𝑑𝑋𝐵
= (𝑉̅𝐵 − 𝑉̅𝐴) → 𝑉̅𝐴 = 𝑉̅𝐵 −

𝑑𝑉

𝑑𝑋𝐵
      (3.20) 

On the other hand, from equation (3.14):  

𝑉 = 𝑉̅𝐴𝑋𝐴 + 𝑉̅𝐵𝑋𝐵 

So that: 

𝑉̅𝐴 = 
𝑉−𝑉̅𝐵𝑋𝐵

1−𝑥𝐵
          (3.21) 

Equating equations (3.20) and (3.21): 

𝑉̅𝐵 −
𝑑𝑉

𝑑𝑋𝐵
=

𝑉−𝑉̅𝐵𝑋𝐵

1−𝑥𝐵
  

This reduces to: 

𝑉̅𝐴 = 𝑉 − 𝑋𝐵
𝑑𝑉

𝑑𝑋𝐵
          (3.22) 

This is the equation of a straight line of slope 
𝑑𝑉

𝑑𝑋𝐵
 and intercept 𝑉 at 𝑋𝐵 = 0, which is the 

equation of the tangent to the curve at a chosen value of 𝑋𝐵 . We note that if 𝑋𝐵 = 0, then 

the intercept of the tangent with the volume axis = 𝑉̅𝐴. 

Therefore, to obtain the partial molal volume of A for a specific value 𝑋𝐴
∗ of its mole 

fraction in the solution, a tangent is drawn to the curve at 𝑋𝐵
∗ = 1 − 𝑋𝐴

∗ and the intercept. 

(Figure 3.1). The value of 𝑉̅𝐵 is obtained from the intercept at 𝑋𝐴 = 0. 

Example 3.1 

An equation for the variation of the free energy of a solution was established as function 

of the mole fraction of copper in a binary solid solution with gold in the form: 

∆𝐺 = 21540𝑋Cu
2 − 22651𝑋Cu + 807.6 J.mol-1 

Estimate the partial molal values of free energy for both metals at 𝑋Cu = 0.3 

Solution: 

For 𝑋Cu = 0.3, ∆𝐺 = −4050 (By substitution in the equation). 

So, it is required to obtain the equation of the tangent to the curve at the point (0.3; −4050) 

To that aim, the equation of the curve is differentiated: 
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𝑑∆𝐺

𝑑𝑋𝐵

= 43080𝑋Cu − 22651 → 𝑋Cu = 0.3 → slope = −9727 

The equation of the tangent then takes the form: 

∆𝐺 = −9727𝑋Cu + 𝐶 

To get the value of 𝐶, we substitute with the coordinates of the point to get: 𝐶 = −1132 

Therefore, the equation of the tangent is:  

∆𝐺 = −9727𝑋Cu − 1132 

At 𝑋Cu = 0, ∆𝑮̅𝐀𝐮 = −𝟏𝟏𝟑𝟐 J.mol-1 

At 𝑋Cu = 1, ∆𝑮̅𝐂𝐮 = −𝟏𝟎𝟖𝟓𝟗 J.mol-1 

3.1.3 Free energy of mixing 

Consider a component (𝑖) present in solution. At constant pressure and temperature, one 

may write: 

𝑑𝐺𝐼 = 𝑑𝐻𝑖 − 𝑇𝑑𝑆𝑖 

Dividing by 𝑑𝑛𝑖, while keeping all other mole fractions constant: 

(
𝜕𝐺

𝜕𝑛𝑖

) = (
𝜕𝐻

𝜕𝑛𝑖

) − 𝑇 (
𝜕𝑆

𝜕𝑛𝑖

) 

That is: 

𝐺̅𝐼 = 𝐻𝑖 − 𝑇𝑆𝑖̅ 

This means that the definition of free energy applies to the partial molal function as well. 

This way, equation (2.8) will also yield: 

𝑑𝐺̅𝑖 = 𝑅𝑇𝑑 ln 𝑎𝑖         (3.24) 

This equation can be integrated to give: 

𝐺̅𝑖 = 𝑅𝑇 ln 𝑎𝑖 + 𝐶 

To obtain the value of the constant of integration 𝐶, we recall that for the pure component 

(𝑖), 𝑎𝑖 = 1. If 𝐺𝑖
. Represents the free energy of the pure component, then one gets: 

𝐺̅𝑖 − 𝐺𝑖
. = 𝑅𝑇 ln 𝑎𝑖            (3.25) 

Consider now two solids A and B forming a solid solution as follows: 

𝑋𝐴𝐴(𝑠) + 𝑋𝐵𝐵(𝑠) = 𝑆. 𝑆. 

The free energy of mixing ∆𝑮𝒎 is defined as the net free energy arising from mixing the 

two solids A and B in the molar ratios 𝑋𝐴 and 𝑋𝐵 respectively: 

∆𝐺𝑚 = 𝐺𝑠𝑠 − (𝑋𝐴𝐺𝐴
. + 𝑋𝐵𝐺𝐵

. )       (3.26) 

From equation (3.16): 

𝐺𝑠𝑠 = 𝐺̅𝐴𝑋𝐴 + 𝐺̅𝐵𝑋𝐵 

Substituting in (3.25): 
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∆𝐺𝑚 = (𝐺̅𝐴 − 𝐺𝐴
. )𝑋𝐴 + (𝐺̅𝐵 − 𝐺𝐵

. )𝑋𝐵 

From equation (3.24), one gets: 

∆𝐺𝑚 = 𝑅𝑇(𝑋𝐴 ln 𝑎𝐴 + 𝑋𝐵 ln 𝑎𝐵)       (3.27) 

3.1.4 Ideal solutions 

Ideal solid solutions represent a hypothetical case, seldom encountered in practice, such as 

Ni – Pt solid solution. These are defined by Raoult’s law which states that the partial 

pressure of a component is proportional to its mole fraction in the solution: 

𝑝𝑖 = 𝑝𝑖
0𝑋𝑖            (3.28) 

In section (2.2.1), the activity of a component was defined as: 

𝑎𝑖 =  
𝑝𝑖

𝑝0 

Therefore, one may conclude that in an ideal solution, the activity of any component is 

equal to its mole fraction: 𝒂𝒊 = 𝑿𝒊  

Consequently, equation (3.26) can be written as follows: 

∆𝐺𝑚 = 𝑅𝑇(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)       (3.29) 

∆𝐺𝑚 = 𝑅𝑇[(1 − 𝑋𝐵) ln(1 − 𝑋𝐵) + 𝑋𝐵 ln 𝑋𝐵)]  

Differentiating with respect to 𝑋𝐵 and equating to 0: 

𝑑∆𝐺𝑚

𝑑𝑋𝐵

= 𝑅𝑇 [− ln(1 − 𝑋𝐵) − (1 − 𝑋𝐵).
1

(1 − 𝑋𝐵)
+ ln 𝑋𝐵 + 𝑋𝐵 .

1

𝑋𝐵

] 

= 𝑅𝑇[− ln(1 − 𝑋𝐵) + ln 𝑋𝐵] = 0 → ln
𝑋𝐵

1−𝑋𝐵
= 0 →

𝑋𝐵

1−𝑋𝐵
= 1 → 𝑋𝐵 = 0.5 

Hence, a plot of the free energy of mixing of an ideal solution should result in a curve 

possessing an extremum value at 𝑋𝐴 = 𝑋𝐵 = 0.5. It can be proved that this is a minimum 

value. 

On the other hand, equation (3.29) can be written as:  

∆𝐺𝑚

𝑇
 = 𝑅(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)  

So that the LHS is no more a function of temperature and hence: 

(
𝜕(

∆𝐺𝑚
𝑇

)

𝜕(
1

𝑇
)

)
𝑝

= 0  

From equation (1.44). this means that:  

For ideal solutions: The enthalpy of mixing ∆𝑯𝒎 = 𝟎  

This result is sometimes used to define ideal solutions. 

On the other hand, since: 
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∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 

Then, in case of ideal solutions: ∆𝐺𝑚 = −𝑇∆𝑆𝑚 

 And, from equation (3.29), one gets the expression for the entropy of mixing for ideal 

solutions: 

∆𝑆𝑚 = −𝑅(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)       (3.30) 

This is the same result reached in chapter 1 (Equation 1.33), using a statistical approach. 

Figure (3.2) represents the variation of free energy and entropy of mixing with the molar 

fraction of zinc in the zinc – gallium solid solution at 700K, after Novakovic et al **. The 

experimental points were taken from three different references available at the reference 

list of this paper. 

It is clear from the figure that, while the free energy of mixing passes through a minimum 

value at 𝑋𝑍𝑛 ≈ 0.5, the entropy of mixing passes through a corresponding maximum value 

because of the (–) sign in equation (3.30). 

** R. Novakovic, D. Giuranno, E. Ricci, T. Lanata “Surface and transport properties of In–

Sn liquid alloys” Surface Science 602: 1957–1963 (2008). 

 

 

Fig (3.3): Free energy and entropy of mixing in the Ga – Zn system at 700K* 

3.1.5 Non-ideal dilute solutions 

Non-ideal dilute solutions are those where the solute is present in small amounts. For 

example, let A and B two components forming a solid solution where the molar fraction of  
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B is low (<  10%). In that case, it is common for the dilute solute to follow Henry’s law, 

according to which, the vapor pressure of the solute B is proportional to its molar fraction 

in solution: 

𝑝𝐵 = 𝐻. 𝑋𝐵           (3.31) 

From the definition of activity (Page 18): 

𝑎𝐵 = 
𝑝𝐵

𝑝𝐵
0   

𝑎𝐵 = 
𝐻.𝑋𝐵

𝑝𝐵
0   

The constant 𝐻/𝑝𝐵
0 is known as the activity coefficient 𝛾𝐵 so that: 

𝑎𝐵 = 𝛾𝐵𝑋𝐵           (3.32) 

For ideal solutions, 𝛾𝐵 = 1. Otherwise, it is a constant independent of concentration if the 

solute is present in small amounts. 

Now, referring to equation (3.20): 

𝑋𝐴𝑑𝐺̅𝐴 + 𝑋𝐵𝑑𝐺̅𝐵 = 0 

And from equation (3.24): 

𝑑𝐺̅𝑖 = 𝑅𝑇𝑑 ln 𝑎𝑖 

Hence: 

𝑋𝐴𝑑 ln 𝑎𝐴 + 𝑋𝐵𝑑 ln 𝑎𝐵 = 0        (3.33) 

From equation (3.32): 

ln 𝑎𝐵 = ln 𝛾𝐵 + ln 𝑋𝐵 

𝑑 ln 𝑎𝐵 = 𝑑 ln 𝑋𝐵 (Since 𝛾𝐵 is constant) 

From equation (3.33); 

𝑋𝐴𝑑 ln 𝑎𝐴 + 𝑋𝐵𝑑 ln 𝑋𝐵 = 0 

Which can be written in the form: 

𝑑 ln 𝑎𝐴 =   −
𝑋𝐵.𝑑 ln 𝑋𝐵

𝑋𝐴
 = −

𝑋𝐵.𝑑𝑋𝐵

𝑋𝐴𝑋𝐵
 = −

𝑑𝑋𝐵

𝑋𝐴
= −

𝑑𝑋𝐵

1−𝑋𝐵
 

Integration yields: 

ln 𝑎𝐴 = ln(1 − 𝑋𝐵) + 𝐶 

Now, if 𝑋𝐵 = 0, 𝑋𝐴 = 1 → 𝑎𝐴 = 1 → ln 𝑎𝐴 = 0 and hence 𝐶 = 0 

Hence,  
ln 𝑎𝐴 = ln(1 − 𝑋𝐵) = ln 𝑋𝐴 

And therefore: 

𝑎𝐴 = 𝑋𝐴 

Which means that the solute A behaves ideally, that is, obeys Raoult’s law.  
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Hence, for dilute solutions, the solute will obey Henry’s law while the solvent obeys 

Raoult’s law. 

Conversely, if A obeys Henry’ law, then B will obey Raoult’s law (Figure 3.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3.4): Application of Henry’s and Raoult’s laws  

 

Example 3.2 

In the CaO – MgO system, CaO can dissolve MgO in solid solution up to 16% MgO. A 

solution containing 5% molar MgO shows a total vapor pressure of 6.2 × 10−6 atm. at 

2000oC. The activity coefficient of MgO at that temperature = 0.88 and its vapor pressure 

= 1.12 × 10−4 atm.  Estimate the vapor pressure of pure CaO at that temperature, 

considering the solution of MgO in CaO to be dilute. 

Solution: 

𝑝MgO
0 = 1.12 × 10−4 and 𝛾MgO = 0.88 

Hence, from equation (3.33):  

𝑎MgO = 0.88 × 0.05 = 0.044 

And, since 𝑎𝐵 = 
𝑝𝐵

𝑝𝐵
0   

Therefore: 

𝑝MgO = 0.044 × 1.12 × 10−4 = 4.93 × 10−6 atm. 

Also, 𝑎CaO = 𝑋CaO = 0.95 

𝑝CaO = 𝑝CaO
0 𝑋CaO 

𝑝CaO = 6.2 × 10−6 − 4.93 × 10−6 = 1.27 × 10−6 atm 
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Hence: 

1.27 × 10−6 = 𝑝CaO
0 × 0.95 → 𝑝CaO

0 = 𝟏. 𝟑𝟑𝟔 × 𝟏𝟎−𝟔 atm. 

• An application: Depression in freezing point 

Consider a solute B added in small amounts to a solvent B so that 𝑋𝐵 ≈ 0. This way, the 

solvent will obey Raoult’s law: 

𝑝𝐴 = 𝑝𝐴
0𝑋𝐴 = 𝑝𝐴

0(1 − 𝑋𝐵)  

Applying equation (2.3): 

𝑑 ln 𝑝

𝑑𝑇
=

∆𝐻𝑓

𝑅𝑇2
 

Integrating between 𝑝𝐴
0 and 𝑝𝐴, and assuming the depression in freezing point to be ∆𝑇𝑓 

ln
𝑝𝐴

0(1 −  𝑋𝐵)

𝑝𝐴
0 =  

∆𝐻𝑓

𝑅
. (

1

𝑇𝑓
−  

1

𝑇𝑓 − ∆𝑇
) → ln(1 − 𝑋𝐵) = −

∆𝐻𝑓

𝑅

∆𝑇𝑓

𝑇𝑓
2 − ∆𝑇

𝑓
𝑇𝑓

≈ −
∆𝐻𝑓

𝑅

∆𝑇𝑓

𝑇𝑓
2

 

ln(1 − 𝑋𝐵) can be expanded in Taylor’s series: 

ln(1 − 𝑋𝐵) = −𝑋𝐵 +
𝑋𝐵

2

2
+ ⋯ ≈ −𝑋𝐵 

One finally gets: 

∆𝑇𝑓 ≈
𝑅𝑇𝑓

2

∆𝐻𝑓
𝑋𝐵          (3.34) 

3.1.6 Regular solutions 

These are solid solutions in which the entropy of mixing is still obtained from equation 

(3.30), while its enthalpy of mixing ≠ 0 and can be expressed as: 

∆𝐻𝑚 = 𝛺𝑋𝐴𝑋𝐵          (3.35) 

𝛺 is a constant directly proportional to temperature that considers the amount of interaction 

existing between the solute and the solvent atoms. Therefore, the expression for the free 

energy of mixing takes the form: 

∆𝐺𝑚 = 𝛺𝑋𝐴𝑋𝐵 − 𝑅𝑇(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵)      (3.36) 

It can be proved that this function still goes through a minimum value at 𝑋𝐴 = 𝑋𝐵 = 0.5. 

The merit of using this expression is that it can be considered as a first approximation for 

predicting the free energy of mixing of a non-ideal concentrated solution. The only 

practical difficulty consists of finding experimentally the value of the interacting parameter 

𝛺 at different compositions and temperatures. 

For concentrated non-regular solutions, it is no more possible to use any of the previously 

mentioned relations, and empirical expressions for the enthalpy and entropy of mixing are 

used in polynomial forms like: ∆𝐻𝑚 = 𝑎0 + 𝑎1𝑋𝐵 + 𝑎2𝑋𝐵
2 + 𝑎3𝑋𝐵

3 + ⋯  
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3.1.7 Excess thermodynamic properties 

The excess thermodynamic quantity represents the difference between the actual value of 

that quantity and the corresponding value for an ideal solution.  

For example,  

𝑑𝐺̅𝑖 = 𝑅𝑇𝑑 ln 𝑎𝑖          (3.24) 

From equation (3.32): 

𝑑𝐺̅𝑖 = 𝑅𝑇𝑑 ln 𝛾𝑖 𝑋𝑖 = 𝑅𝑇𝑑 ln 𝛾𝑖 + 𝑅𝑇𝑑 ln 𝑋𝑖 

Since, for ideal solutions, 𝛾𝑖 = 1, then: 

(𝑑𝐺̅𝑖)𝑖𝑑𝑒𝑎𝑙 = 𝑅𝑇𝑑 ln 𝑋𝑖 

Therefore: 

𝑑𝐺̅𝑖 − (𝑑𝐺̅𝑖)𝑖𝑑𝑒𝑎𝑙 = 𝑑𝐺̅𝑒𝑥 = 𝑅𝑇𝑑 ln 𝛾𝑖 

This can be integrated to read: 

∆𝐺̅𝑒𝑥 = 𝑅𝑇 ln 𝛾𝑖          (3.37) 

Similarly, the excess free energy of mixing is: 

∆𝐺𝑚
𝑒𝑥 = 𝑅𝑇 (𝑋𝐴ln 𝛾𝐴 + 𝑋𝐵 ln 𝛾𝐵)       (3.38) 

As for the enthalpy of mixing: since the ideal enthalpy of mixing = 0, then the excess 

enthalpy of mixing will simply equal the heat of mixing of the concentrated solution. 

∆𝐻𝑚
𝑒𝑥 = ∆𝐻𝑚          (3.39) 

In ideal solutions, there is no interaction between the atoms of the two components. The 

excess quantities express the nature and the intensity of these interactions.  

From equation (3.36), if 𝛾𝑖 > 1, then ∆𝐺̅𝑒𝑥 > 0, while it will be negative if 𝛾𝑖 < 1. 

The first case represents a positive deviation from Raoult’s law where the actual activity is 

higher than that predicted by this law. On the other hand, the case 𝛾𝑖 < 1 represents a 

negative deviation from the law.  

Example 3.3 

The Au – Cu system is known to behave as a regular solution. At 775K, the enthalpy of 

mixing is related to the molar fraction of Cu by the following expression: 

∆𝐻𝑚 = 21540𝑋𝐶𝑢
2 − 22651𝑋𝐶𝑢 + 808 J.mol-1. 

Evaluate the following at that temperature for 𝑋𝐶𝑢 = 0.3: ∆𝐻𝐶𝑢, ∆𝐻̅𝐴𝑢, ∆𝐺̅𝐶𝑢 and ∆𝐺̅𝐴𝑢. 

Solution: 

From equation (3.15): 

∆𝐻𝑚 = ∆𝐻̅𝐶𝑢. 𝑋𝐶𝑢 + ∆𝐻𝐴𝑢. 𝑋𝐴𝑢 

∆𝐻𝑚 = 0.3∆𝐻̅𝐶𝑢 + 0.7∆𝐻𝐴𝑢 
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From section 3.1.2, one first gets the equation of the tangent line to the curve at 𝑋𝐶𝑢 = 0.3: 

𝑑∆𝐻𝑚

𝑑𝑋𝐶𝑢
 = 43080𝑋𝐶𝑢 − 22651 → 𝑋𝐶𝑢 = 0.3 → slope =  −9727  

Therefore, the equation of tangent is: 

∆𝐻 = −9727 × 0.3 + 𝐶 = −2918 + 𝐶 

At 𝑋𝐶𝑢 = 0.3, ∆𝐻𝑚 = 21540 × 0.32 − 22651 × 0.3 + 808 = −4049   

Hence: −2918 + 𝐶 = −4049 → 𝐶 = −1131 

The equation of the tangent at 𝑋𝐶𝑢 = 0.3 is: 

∆𝐻 = −9727𝑋𝐶𝑢 − 1131 

Therefore, for 𝑋𝐶𝑢 = 1: ∆𝑯̅𝑪𝒖 = −𝟏𝟎𝟖𝟓𝟖 J.mol-1 

And, for 𝑋𝐴𝑢 = 1 → 𝑋𝐶𝑢 = 0: ∆𝑯̅𝑨𝒖 = −𝟏𝟏𝟑𝟏 J.mol-1    

The same procedure adopted for the partial molar enthalpies can also be applied to obtain 

the partial molar free energies. However, it is necessary first to obtain the entropy of mixing 

as function of 𝑋𝐶𝑢. For example, for 𝑋𝐶𝑢 = 0.3: 

∆𝑆𝑚 = −𝑅(𝑋𝐴 ln 𝑋𝐴 + 𝑋𝐵 ln 𝑋𝐵) = −8.314 × (0.3 ln 0.3 + 0.7 ln 0.7) 

= 5.079 J.mol-1.K-1 

The following table illustrates the values obtained by applying each time equation (3.30). 

The last row has been calculated from: ∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 at 𝑇 = 775K 

 

𝑿𝑪𝒖 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

∆𝑯𝒎 -1242 -2861 -4049 -4806 -5133 -5028 -4493 -3527 -2131 

∆𝑺𝒎 2.703 4.160 5.079 5.595 5.763 5.595 5.079 4.160 2.703 

∆𝑮𝒎 -3337 -6085 -7985 -9142 -9599 -9364 -8429 -6751 -4225 
 

Next, an expression for ∆𝐺𝑚 as function of 𝑋𝐶𝑢 is deduced from the previous table: 

∆𝐺𝑚 = 36398𝑋𝐶𝑢
2 − 37509𝑋𝐶𝑢 + 15.45 

At 𝑋𝐶𝑢 = 0.3, ∆𝐺𝑚 = −7985 

𝑑∆𝐺𝑚

𝑑𝑋𝐶𝑢
 = 72796𝑋𝐶𝑢 − 37509 

𝑋𝐶𝑢 = 0.3 → slope =  −15670 

Therefore, the equation of tangent is: 

∆𝐺 = −15670𝑋𝐶𝑢 + 𝐶 

−7985 = −15670 × 0.3 + 𝐶 

Hence: 𝐶 = −3284 

The equation of the tangent at 𝑋𝐶𝑢 = 0.3 is: 
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∆𝐺 = −15670𝑋𝐶𝑢 − 3284 

Therefore, for 𝑋𝐶𝑢 = 1: ∆𝑮̅𝑪𝒖 ≈ −𝟏𝟖𝟗𝟓𝟒 J.mol-1 

And, for 𝑋𝐴𝑢 = 1 → 𝑋𝐶𝑢 = 0: ∆𝑮̅𝑨𝒖 = −𝟑𝟐𝟖𝟒 J.mol-1    

The results are illustrated for the free energy values in Figure (3.5) 

 

 

 

 

 

 

 

 

Fig (3.5): Free energy curve of solution in the Cu–Au system at 775K  

3.1.8 An application to phase diagrams 

(a) Free energy of binary systems  

The principles explained in the past sections will be used to predict the equation of the 

shapes of the liquidus curve in a simple eutectic diagram like the one shown in Figure (3.6). 

This figure depicts a binary system A – B where a simple eutectic is formed, and no solid 

solubility exists between any of the solid phases. 

 

 

 

 

 

 

 

 

 

 

 

Fig (3.6): Phase diagram A – B 
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At any temperature 𝑇, for compositions with B content lower and higher temperature than 

the composition of the eutectic, solid A will be in equilibrium with a liquid of molar fraction 

of B = 𝑋𝐿. The free energy of melting, according to the scheme: 

A(s) ↔ Liquid (of composition 𝑋𝐿)  is, from equation (2.8): 

∆𝐺𝑀 = 𝑅𝑇 ln 𝑎𝐴𝐿 − 𝑅𝑇 ln 𝑎𝐴𝑆 

Since A is a pure compound, its activity will be equal to 1 in the solid state, while 

𝑎𝐿 = 𝛾𝐿 𝑋𝐿 

Therefore: 

∆𝐺𝑀 = 𝑅𝑇 ln 𝛾𝐿𝑋𝐿 

From equation (1.43): 

(
𝜕 (

∆𝐺𝑀

𝑇 )

𝜕 (
1
𝑇)

)

𝑝

=
𝜕(𝑅 ln 𝛾𝐿𝑋𝐿)

𝜕 (
1
𝑇)

 

Assuming the activity coefficient to be constant, then 𝑑(𝑅 ln 𝛾𝐿𝑋𝐿) = 𝑅. (0 + 𝑑 ln 𝑋𝐿) 

𝜕(𝑅 ln 𝛾𝐿𝑋𝐿)

𝜕 (
1
𝑇)

= −𝑅
𝑑(ln 𝑋𝐿)

𝑑𝑇
× 𝑇2 = ∆𝐻𝑀 

𝑑(ln 𝑋𝐿)

𝑑𝑇
= −

∆𝐻𝑀

𝑅𝑇2           (3.40) 

Here, ∆𝐻𝑀 represents the enthalpy of melting.  

Integration results in an equation in the form: 

ln 𝑋𝐿 = 
∆𝐻𝑀

𝑅𝑇
 + 𝐶          (3.41) 

The value of 𝐶 can be obtained by substituting with the coordinates any point on the 

liquidus line. 

This represents an approximate expression for the equation of the liquidus curve on the A 

– side of the diagram. 

Example 3.4 

A and B form a simple eutectic system with no solid solubility. The following data are 

available for the two salts: 

Property  A B 

Melting point K 1313 1123 

Enthalpy of melting J.mol-1 19652 15963 

 

Deduce the eutectic temperature and composition in mol% PbF2. 
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Solution: 

On the A side: 

∆𝐻𝑓 = 19652 J.mol-1  

From Equation (3.41): ln 𝑋𝐵𝐿 = 
∆𝐻𝑀

𝑅𝑇
 + 𝐶 =

2363

𝑇
+ 𝑐 

To obtain the value of the constant 𝐶, a freezing temperature must be assigned to some 

liquid composition, expressed as mole fraction B. 

To that aim, equation (3.34) is used for a small value of 𝑋𝐵𝐿 = 0.03, for example. 

∆𝑇𝑓 ≈
𝑅𝑇𝑓

2

∆𝐻𝑓

𝑋𝐵 → ∆𝑇𝑓 ≈
8.314 × 13132

19652
× 0.03 = 21.88K 

Therefore, on the A side: 

ln 0.03 = 
2363

1313−21.88
 + 𝐶 → 𝐶 = −5.34 

The liquidus equation on the A – side is therefore: 

ln 𝑋𝐵𝐿 =
2363

𝑇
 −5.34     (i) 

Similar calculations are carried out on the B side to obtain: 

ln(1 − 𝑋𝐵𝐿) =
1920

𝑇
  −5.24  (ii) 

The eutectic point represents the intersection of the two liquidus curves of equations (i) 

and (ii). Solving by trial, one gets:  

𝑻𝑬 = 𝟒𝟕𝟒 𝐊 and 𝑿𝑩𝑬 ≈ 𝟎. 𝟕𝟎 

(b) Free energy – composition diagrams 

In section (3.1.4), it was explained that for ideal systems, the free energy – composition 

curve passes through a minimum value at 50 mol% of either component. In case the two 

components do not form an ideal solution, the situation gets more complicated. If the two 

components form a simple eutectic with solid solubility, then at a temperature above the 

liquidus temperature (𝑇1), the free energy of mixing will show a minimum value, not 

necessarily at 50% composition. (Figure 3.7) At temperatures below the solidus, in the two-

phase region, like 𝑇3,there is no mixing and the free energy of mixing = 0.  

Consider now a temperature 𝑇2, above the solidus but below the liquidus curve. The free 

energy of mixing curves of both B in A and A in B take a parabolic shape with minimum 

values. Figure (3.7) show that the free energy of mixing of the two components in the liquid  

state shows as a parabolic curve with a minimum value lower than those of the two free 

energy curves for solid solubility. When common tangents are drawn to the solid solubility 

curves and the liquid curve, they show that the free energy of the coexistence of A and 

liquid, as denoted by the left tangent line, as well as that of coexistence of B and liquid 

(Right tangent line) are lower than that of mixing in the liquid state.  
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One can deduce that, at 𝑇2, if 𝑎 < 𝑋𝐵 < 𝑐, the phases A + liquid will be present, whereas if 

𝑑 < 𝑋𝐵 < 𝑏, the phases liquid + B will coexist. If 𝑐 < 𝑋𝐵 < 𝑑, the free energy curve of 

mixing in the liquid state will be lower than the two tangents, and the only phase present 

is liquid 

 

 

 

 

 

 

 

 

 

Fig (3.7):  Free energy – composition diagram for simple eutectic system at 𝑻2 

 

 

PROBLEMS 

1. 40 g nickel is mixed with 100 g copper and the mixture heated to complete melting. 

When the melt solidifies, an ideal solution is formed. Estimate the following at 300K: 

(a) The entropy of mixing. 

(b) The enthalpy of mixing. 

(c) The free energy of mixing. 

2   The following data give the free energy of a solution of zinc and gallium. Derive an 

equation for the variation of the free energy as function of the mole fraction of zinc in 

the binary solid solution in the form of a second-degree polynomial. 

𝑋Zn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

∆𝐺 kJ.mol-1 0 -0.28 -0.43 -0.5 -0.54 -0.58 -0.55 -0.5 -0.4 -0.29 0 
 

 Estimate the partial molal values of free energy for both metals at 𝑋Zn = 0.4 

A 

Liquid 

A + Liq 

B 

𝑻𝟏 

𝑻𝟑 

𝑻𝟐 

a 

b 

d c 



  CHE701 Thermodynamics of solids 
 

43 

 

3. TiO2 can dissolve BeO in solid solution for up to 8% molar BeO. In a solution containing 

2% molar BeO, At 1800oC, the vapor pressure of BeO = 4.6 × 10−3Pa, and the activity 

coefficient = 0.91. At that temperature, the vapor pressure of TiO2 = 7.8 × 10−5 Pa. 

Estimate the total pressure of that solution at 1800oC. 

4. MgO and NiO form a regular solution for all compositions. The enthalpy of mixing at 

700K is given by the following expression: 

 ∆𝐻𝑚 = 4510𝑋NiO
2 − 4511𝑋NiO + 475 J.mol-1 

 Estimate the following: 

(a) The entropy of mixing at 𝑋NiO = 0.4 

(b) The free energy of mixing at that composition. 

(c) The partial molal enthalpy of MgO and NiO at 𝑋NiO = 0.4. 

5. SiO2 and TiO2 from a simple eutectic system. The following data is available: 

Property  SiO2 TiO2 

Molecular weight 60.08 79.87 

Melting point K 1986 2116 

Enthalpy of melting kJ.kg-1 1600 1020 

 

 Find the eutectic temperature and composition (percent molar SiO2). 

6. For the given phase diagram, draw the free energy of mixing – composition diagram at 

the temperature corresponding to the dashed line. 
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CHAPTER 4 

Non – Condensed Phase Equilibrium Diagrams 

4.1 Basic concepts 

Consider the diagram RO2 – RO where R is a metal that can have oxidation states 2 and 4. 

As the higher oxide decomposes to the lower form, the following reaction takes place: 

2 RO2 (s) = 2 RO (s) + O2 (g) 

The presence of three phases means that, at constant oxygen partial pressure: 𝐹 = 2 − 3 +
1 = 0, that is, at constant partial pressure of oxygen, this reaction will take isothermally at 

a temperature that can be determined from Equation (2.6): 

∆𝐻0 − 𝑇∆𝑆0 = −𝑅𝑇 ln 𝑝𝑂2
 

If these two oxides form a simple eutectic, the situation will appear as in Figure (4.1). If 

RO2 is heated at low oxygen partial pressure (𝑝1), then it will decompose to RO at a fixed 

temperature 𝑇1 obtained from the above equation. As RO is formed, this will represent a 

single phase and one single component. At constant pressure, so that 𝐹 = 1 − 1 + 1 =
1. This means that the temperature will not remain constant but rather increase until a 

certain value 𝑇1
∗where a liquid is formed. In that case, the value of 𝐹 = 0 and the temperature 

will remain constant while an uptake of oxygen will take place until the isobar at 

𝑝1 intercepts the liquidus line. As one liquid phase remains, the value of 𝐹 = 1 and 

temperature will go on increasing with oxygen loss. 

As the partial pressure of oxygen is raised to 𝑝2, the decomposition temperature will follow 

suit and will increase to 𝑇2. The melting temperature (𝑇2
∗) will be lower than 𝑇1

∗ since 

melting is accompanied with a gain of oxygen. Here also, as the isobar intercepts the 

liquidus line, temperature will increase with loss of oxygen.  

As the partial pressure is further increased to 𝑝3, the decomposition temperature 𝑇3 may 

exceed the eutectic temperature 𝑇𝐸 and the drawn isotherm at 𝑇3 will intersect the liquidus 

line with loss of oxygen with the high oxygen partial pressure suppressing reduction to RO. 

As the partial pressure is increased to 𝑝4, the melting temperature will increase to 𝑇4.  

The temperature at which any of the above transformations takes place is related to the 

oxygen partial pressure by equation (2.6). This can be rearranged to read: 

∆𝐻0

𝑇
− ∆𝑆0 = −𝑅 ln 𝑝𝑂2

 which can be put in the form: 

ln 𝑝𝑂2
= 𝐴 −

𝐵

𝑇
          (4.1) 

In this equation, the slope 𝐵 = −∆𝐻0/𝑅 and the intercept 𝐴 = ∆𝑆0/𝑅 

The standard values of enthalpy and entropy of reaction should be determined at the 

temperature of reaction. However, since the heat capacities of the solids involved are 

usually close enough to use the standard values at 25oC. 
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Figure (4.2) represents the relation between 𝑝𝑂2
 and 𝑇 for the phase transformations 

appearing in Fig (4.1). The discussion above can be easily seen to apply to that figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1: RO2 – RO phase diagram with simple eutectic formation 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: Oxygen partial pressure – Temperature diagram for the RO2 – RO system 

 

4.2 The case of complete solid solubility 

If the two end members of a non – condensed oxide system are totally soluble in each other, 

then the corresponding phase diagram will appear as shown in Figure (4.3). We assume 

that when RO2 is heated at low oxygen partial pressure 𝑝1, it will gradually loose oxygen 

until the metal R is reached, following the reaction: 
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RO2 (s) = R (s) + O2 (g)  

However, since the two solids are totally soluble in sold state, then the number of degrees 

of freedom at constant 𝑝𝑂2
 will not be zero: 𝐹 = 2 − 2 + 1 = 1. This means that this 

decomposition will not take place at constant temperature and the corresponding isobar 

will be a curve. 

As the partial pressure of oxygen is raised to 𝑝2, the corresponding rise in temperature will 

get the isobar to intercept with the solidus curve, at a temperature 𝑇2. In the presence of 

three phases (Liquid + solid + oxygen), the number of degrees of freedom will drop to zero 

and melting will occur isothermally. Once the solid has totally melted, there will remain 

two phases only and the isobar will move along a curve, losing oxygen towards the R end. 

At very high oxygen partial pressure 𝑝3, RO2 will melt first, then the liquid formed will 

lose oxygen along a curved isobar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: RO2 – R phase diagram with total solubility in the solid state 

 

However, the relation between 𝑝𝑂2
 and 𝑇 is not as simple as that predicted by Equation 

(4.1), since the activity of the oxide in solid solution ≠ 1, and the term 𝑝𝑂2
 in that equation 

should be replaced by 
𝑝𝑂2×𝑎R

𝑎RO2

. If the activity coefficients of the two solids = 1, then 

Equation (4.1) takes the form: 

ln
𝑝𝑂2 .𝑋R

1−𝑋R
= 𝐴 −

𝐵

𝑇
          (4.2) 

At constant oxygen partial pressure, assuming the pressure is too low for any melting to 

take place, the relation between temperature and composition takes the form: 
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𝑇 = 
𝐵

𝐴−ln
𝑝𝑂2

.𝑋R

1−𝑋R

   (0 < 𝑋R < 1)      (4.3) 

This represents the equation of the dotted isobar at pressure 𝑝1 in Figure (4.2).  

It is to be noted that in that case, it is not possible to draw a diagram like that in Figure 

(4.2) representing the relation between oxygen partial pressure and temperature since, as 

can be seen from equation (4.3), this will require a three – dimensional representation since 

temperature will be a function of both oxygen partial pressure and molar composition. 

4.3 Formation of an intermediate compound 

Consider now the case where the low valence oxide RO can be reduced to a lower oxide 

like R2O or to the metal R. In that case, RO will be an intermediate compound between 

RO2 and R2O (or R). Figure (4.4) shows the case where RO2 and RO are the only two 

oxides of the metal R. It will be assumed that no solid solubility will be exhibited by any 

of the oxides and that the oxide RO is congruently melting at temperature 𝑇𝑀. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.4: Formation of a congruently melting intermediate compound 

 

At a low oxygen pressure 𝑝1, RO2 decomposes to RO at a temperature 𝑇1. On raising 

temperature, RO will be reduced to the metallic form R at a temperature 𝑇1
∗. On further 

temperature rise, the metal will melt at fixed temperature 𝑇1
∗∗ with partial gain of oxygen. 

Once full melting has taken place, a rise in temperature will cause the liquid melt to lose 

oxygen. 
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At a higher oxygen pressure 𝑝2, RO2 will decompose to RO at a higher temperature 𝑇2. 

However, this oxide will not be reduced to the metal because of the higher oxygen level 

present. Rather, it will melt with oxygen loss at 𝑇2
∗.  

Further increase in the oxygen pressure to 𝑝3 will cause the oxide RO to form at a higher 

temperature 𝑇3. However, this oxide will start melting isothermally at 𝑇3
∗ with oxygen gain 

until total melting, after which raising the temperature will cause the melt to lose oxygen.  

Finally, application of a high pressure 𝑝4 will suppress the reduction of RO2 and this oxide 

will melt with oxygen loss at temperature 𝑇4. 

The corresponding 𝑝𝑂2
− 𝑇 diagram is shown in Figure (4.5).  

 

 

 

 

 

 

 

 

 

 

 

Fig 4.5: Oxygen partial pressure – Temperature diagram for the RO2 – R system 

 

In that figure, the boundary between RO and liquid possesses a turning point at M, 

corresponding to the congruently melting point of RO.  

Such systems are very common when dealing with the thermal behavior of multivalent 

oxides. They may involve a series of oxides as is the case with the Mn – O system where 

the following degradation takes place: 

MnO2 → Mn2O3 →Mn3O4 → MnO → Mn 

The corresponding diagram is extremely useful in predicting the temperatures at which any 

of these transitions will take place and is of importance in the refining of manganese ores. 

 

4.4 Application: The Fe – O system 

The Fe – O diagram is a typical case of non – condensed systems of utmost importance in 

iron and steel manufacture. Its features are presented in Figure (4.6) which displays the 

partial system FeO – Fe2O3.  

The higher oxide (Hematite Fe2O3) melts at about 1620oC at a partial oxygen pressure of 

about 104 atm. Under atmospheric pressure 𝑝O2
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solution Fe3O4 (Magnetite) at about 1500oC. However, this temperature can be drastically 

reduced if the oxygen partial pressure is decreased. For example, at an oxygen partial 

pressure of 10-10 atm. This reduction will take place at 760oC.  

The Fe3O4 spinel melts congruently at about 1600oC at an oxygen partial pressure of about 

10-1 atm. It forms a eutectic with hematite at about 1550oC and 10 atm oxygen pressure. 

Fe3O4 is reduced to wüstite solid solution (FeO) at temperatures increasing with increased 

oxygen partial pressures ranging from 610oC at 𝑝O2
= 10−24atm to 1340oC at 𝑝O2

=

10−6atm. Any further rise in oxygen pressure will cause the spinel (Fe3O4) to melt directly 

with loss of oxygen. As shown in Figure, at 𝑝O2
= 10−2atm,  melting takes place at about 

1515oC with loss of O2.  

Wüstite, on the other hand, covers a wide range of solid solutions having the iron deficit 

structure Fe1−𝑥O with values of 𝑥 ranging from 0.04 to 0.12. It melts incongruently at about 

1415oC at an oxygen partial pressure of about 10-4 atm. The composition of the formed 

liquid, under these conditions, is 37% Fe2O3 (by weight). Wüstite forms a eutectic with 

metallic iron at about 1380oC and 𝑝O2
= 10−10atm. At lower oxygen partial pressures, 

wüstite will directly convert to metallic iron. 

Finally, it is worth mentioning that a miscibility gap is present on the high iron side 

associated with a monotectic point formation, although this is not shown on the figure.  

 

Fig 4.6: The Fe – O system 
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Example 4.1 

The following figure refers to the Ni – NiO system under various oxygen partial pressures 

ranging from 1 to 104 Pa. Enumerate the invariant situations together with the 

corresponding temperature and composition.  

Perform a plot between ln 𝑝𝑂2
and 1/𝑇 for the oxidation reaction and deduce the 

temperature at which the metal will oxidize under atmospheric condition. Predict the 

decomposition temperature of NiO at an oxygen partial pressure = 0.1 Pa. 

Also deduce the enthalpy and entropy changes of the reduction of NiO to metallic Ni 

through the reaction: 2 NiO = 2 Ni + O2. Compare with the published values: ∆𝐻𝑜 =  239.2 

kJmol-1 Ni and ∆𝑆𝑜 = 171 J.mol-1 Ni. Give the reason for any discrepancies. 

 

 

Fig 4.7: The NiO – Ni system 

 

Solution: 

The following table indicates the different invariant points, the corresponding temperature, 

reaction and composition of each. 

Type of invariant point O:NiO Reaction on cooling ToC 

Monotectic 0.492 Liquid = 2 Liquids 1939 

Eutectic 0.0107 Liquid = Ni + NiO 1441 
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The following table relates to the oxygen pressure – temperature plot.  

 

ToC 𝒑𝑶𝟐
 Pa 𝒑𝑶𝟐

 atm 𝟏/𝑻 K-1 𝐥𝐧 𝒑𝑶𝟐
 

1441 1 0.00000987 0.000583 0 

1622 10 0.0000987 0.000528 2.3026 

1755 102 0.000987 0.000493 4.6250 

1888 103 0.00987 0.000463 4.6347 

2064 104 0.0987 0.000428 4.6444 

 

The requested ln 𝑝𝑂2
vs 1/𝑇 diagram is shown in Figure (4.8). Its equation takes the form: 

ln 𝑝𝑂2
= −

60509

𝑇
+ 23.27 

𝑝𝑂2
= 0.21 atm, 𝑇 = 2787.2K ≡ 𝟐𝟓𝟏𝟒. 𝟐𝐂 

When 𝑝𝑂2
= 0.1 Pa ≡ 9.87 × 10−6 atm, 𝑇 = 1738.9K ≡ 𝟏𝟒𝟔𝟓. 𝟗𝐂 

 

Fig 4.8: 𝐥𝐧 𝒑𝑶𝟐
–𝟏/𝑻 diagram 

 

The slope of the curve = −
∆𝐻0

𝑅
 = −60509, from which: ∆𝐻0 = 503071 J.mol-1, 

equivalent to 503.07 kJ.mol-1. 

This represents the enthalpy of the reaction 2NiO = 2Ni + O2. Hence the enthalpy of the 

reaction per g atom Ni = 0.5 × 503.07 = 𝟐𝟓𝟏. 𝟓𝟒 kJ.mol-1  
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Similarly, the intercept 
∆𝑆0

𝑅
 = 23.27 J.mol-1K-1 and hence ∆𝑆0 = 193.5 J.mol-1K-1. Per g 

atom nickel, this figure is divided by 2 to give: ∆𝑺𝟎 = 𝟗𝟔. 𝟕𝟓 J.mol-1K-1. 

The result for enthalpy fairly compares with the experimental: ∆𝑯𝒐 =  𝟐𝟑𝟗. 𝟐 kJ.mol-1 

and ∆𝑺𝟎 = 𝟏𝟕𝟏 J.mol-1K-1, but the difference in entropy is appreciable. 

The difference in values is due to the following reason:  

The reduction of NiO to Ni does not exactly follow the stoichiometric equation cited 

previously. A more exact form would be: 

NiO (s) = NiO1-x (liq) + 
𝑥

2
 O2 

Only when 𝑥 = 1, would the two equations get alike. From Figure (4.7), this will only 

happen at extremely low pressures. 

Example 4.2 

Figure (4.9) represents the case of an oxide RO melting incongruently at temperature 𝑇𝑝 

according to the peritectic reaction: Liquid + R (s) = RO (s). Roughly plot the 

corresponding ln 𝑝𝑂2
– 1/𝑇 diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.9): RO is incongruently melting 

 

Solution: 

The diagram is redrawn adding the phases in each region and the main isobars (Figure 

4.10). the requested oxygen partial pressure – temperature diagram is shown in Figure 

(4.11). 

 

 

 

R RO2 RO 
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Fig 4.10: RO2 – R Diagram with added data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.11: Oxygen partial pressure – Temperature diagram   
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Example 4.3 

Figure (4.14) shows the U – O diagram with isobars drawn at oxygen partial pressures = 

10𝑘 atm. Draw the ln 𝑝O2
− 1/𝑇 diagram considering the formation of solid solutions and 

deduce from that diagram the enthalpy and entropy changes of the reaction: 

UO2 (s) = U (s) + O2 (g)   (Consider the activity coefficient = 1 in all cases) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.12: The U – O system 

Solution: 

Since activity coefficients are supposed to be equal to unity, then 𝑎𝑖 = 𝑋𝑖. The following 

table was set from the isobars in the diagram: 

The values of 𝑋U are obtained from 𝑋U = 1 − 0.5 × (
O

U
) and those of 𝑋UO2

 from 0.5 ×
O

U
. 

 

𝐥𝐨𝐠 𝒑𝐎𝟐
 𝑻OC 1/T K-1 𝒑𝐎𝟐

𝐏𝐚  𝒑𝐎𝟐
𝐚𝐭𝐦 𝑿𝐔(in 

liquid) 

𝑿𝐔𝐎𝟐
 

−15 1680 0.00051 10-15 9.872×10-21 0.975 0.9775 

−14 1760 0.00049 10-14 9.872×10-20 0.9625 0.965 

−13 1820 0.00048 10-13 9.872×10-19 0.954 0.9575 

−12 1910 0.00046 10-12 9.872×10-18 0.945 0.94 

−11 1990 0.00044 10-11 9.872×10-17 0.93 0.925 

−10 2090 0.00042 10-10 9.872×10-16 0.9135 0.905 

−9 2210 0.0004 10-9 9.872×10-15 0.9 0.88 

−8 2320 0.00039 10-8 9.872×10-14 0.8775 0.845 
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The reduction of the oxide to the metal being UO2 = U + O2, Equation (4.2) takes the form: 

ln
𝑝𝑂2

. 𝑋U

𝑋UO2

=
∆𝑆0

𝑅
−

∆𝐻0

𝑅𝑇
 

The following table represents the values of the LHS and 1/𝑇 and the corresponding plot 

is shown in Figure (4.13). 

𝟏/𝑻 0.000512 0.000492 0.000478 0.000458 0.000442 0.000423 0.000403 0.000386 

LHS -46.06 -43.76 -41.46 -39.16 -36.86 -34.56 -32.27 -29.98 

 

 

Fig 4.13: Plot of 𝐥𝐧
𝒑𝑶𝟐

.𝑿𝐔

𝑿𝐔𝐎𝟐

 against 𝟏/𝑻 

From the slope of the line, ∆𝑯𝟎 = 𝟏𝟎𝟔𝟏 kJ.mol-1 and, from the intercept: ∆𝑺𝟎 =

𝟏𝟔𝟎. 𝟓𝟓 J.mol-1K-1 

PROBLEMS 

1. The following table shows the heats of formation of two manganese oxides. 

  ΔH0 kJ.mol-1 ΔS0 J.mol-1.K-1 

Mn3O4 -1386.3 186 

MnO -384.6 81.5 

 

(a) Determine the enthalpy and entropy changes of the following decomposition reaction: 

2 Mn3O4 (s) = 6 MnO (s) + O2 (g) 

 Neglect the variation of enthalpies of formation due to variations in temperature. 

(b) Plot the ln 𝑝O2
 – 1/𝑇 diagram for the previous reaction using the data of Figure (4.14), 

assuming solid activities = 1. 
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From this diagram, deduce the enthalpy and entropy changes of the reaction, then 

compare with the values obtained in (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.14: The Mn – O system 

 

2. From the diagram in Figure (4.15), deduce the enthalpy and entropy for the reaction:  

2 CuO = Cu2O + O2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.15: The Cu – O system 
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3. The phase diagram W – O is shown in Figure (4.16). Draw the ln 𝑝O2
 – 1/𝑇 relation of the 

reaction:  

WO2 (s) = W (s) +O2 (g)  for 10−30 ≤ 𝑝O2
≤ 10−8 atm. 

Deduce the standard enthalpy and entropy of that reaction. Compare with the enthalpy of 

reaction calculated from an enthalpy of formation of WO2 = −564.3 kJ.mol-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.16: The W – O system 

4. The following curves relates the equilibrium transformation temperature of FeO to Fe 

at the different shown values of O/Fe in the wüstite formula Fe1−𝑥O , to the oxygen 

partial pressure. Deduce at different values of O/Fe , the enthalpy and entropy of the 

reaction: 

      2 Fe1−𝑥O = 2(1 − 𝑥)Fe + O2 
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Fig 4.17: 𝐥𝐨𝐠 𝒑𝑶𝟐
− (

𝐎

𝐅𝐞
)  diagram at different temperatures for Fe1-xO  
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