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-4- 

PROPERTIES OF CERAMIC MATERIALS 
 

4.1 Introduction 
       The use of ceramic materials in different applications is based on the understanding of 

their properties. In this chapter are reviewed the main aspects of such properties as thermal, 

mechanical, electrical, magnetic and optical properties. This coverage is far from complete 

and the additional reading material mentioned at the end of the chapter offers more details. 

4.2 Thermal properties      

4.2.1 Thermal expansion 

       The linear thermal expansion coefficient of a material is defined as the rate of change 

of its length (L) with respect to temperature (T) per unit initial length (L0). 

α =  
1

𝐿0

𝑑𝐿

𝑑𝑇
    K-1              (4.1)                                                                 

The thermal expansion of a material is caused by the vibrations of the atoms (or ions) about 

their equilibrium positions which cause lengthening of bonds. The linear coefficients of 

expansion of some common ceramic mate-rials are listed in Table (4.1) 

 

Table 4.1: Linear coefficient of expansion of some ceramic materials 

Material Al2O3 BeO MgO TiO2 AlN SiC Glass Pyrex Porcelain 

α×106 K-1 8 - 9 8.5-9 13.5 8.5 5.6 4.5 9 3.2 4.3 

 

     It is clear from the previous table that the values of the thermal coefficients of 

expansion of ceramics are in the range ~ 10-6 K-1. These values are generally lower than those 

of metals. For example, the value of α for aluminum is 2.35×10-5 K-1. For zinc, it is 6.43×10-5 

K-1. These values are one order of magnitude greater than those of ceramics. 

      Another feature is that the thermal coefficient of expansion is higher for ionic than for 

covalent solids (for example, compare MgO and SiC). The reason is that covalent ceramics 

have more open structures than most ionic ceramics. In closed packed structures, all the 

vibrations caused by the input thermal energy contribute to expansion. On the other hand, in 

covalent materials, part only of the thermal vibrations contributes to lengthening of bonds, 

which is responsible for expansion. Another part causes a change in bonds angles, which is 

not associated with any expansion.  

     Also, the thermal coefficient of expansion increases with temperature. For example, its 

average value for silica glass is 5.7×10-6 K-1 over the temperature range 20 – 500oC, and 

6×10-5 K-1 over the range 500 - 1000oC. That is why, in case of large temperature variations, 

one has to specify the range of temperature under consideration. 

     Another point of interest has to do with the anisotropy of the expansion in case of 

some crystals. For example, ZnO crystals are of the closed packed hexagonal type. The value 
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of α = 8×10-6 K-1 in a direction parallel to the c-axis while it is  4×10-6 K-1 in a perpendicular 

direction. The measured value of α for the polycrystalline oxide will lie between these two 

values. 

     Finally, the volume expansion coefficient β is defined as: 

β =  
1

𝑉0

𝑑𝑉

𝑑𝑇
    K-1              (4.2) 

Where V0 is the initial volume and V the volume at temperature = T K. 

If the expansion is considered to take place uniformly in all three dimensions, it is called 

isotropic expansion. This way, one can assume that expansion is similar to that of a cube of 

edge = L, hence V = L3 and dV ≈ 3L2.dL 

Dividing by V0 = 𝐿0
3 , we get: 

𝑑𝑉

𝑉0
 = 

3𝐿2𝑑𝐿

𝐿0
3  

Dividing by dT, we get:  

β ≈ 3.α          (4.3) 

4.2.2 Thermal conductivity 

        The definition of thermal conductivity is obtained from the Fourier law of thermal 

conduction. If heat flows at a rate Q across a wall of thickness x, such that the drop in 

temperature is ΔT, then: 

Q = k.A. 
∆𝑇

∆𝑥
          (4.4) 

Here A is the cross sectional area and the units of Q are J.s-1 or W (Watt). The thermal 

conductivity k has therefore the units: W.m-1.oC-1 

Table (4.2) shows the thermal conductivity of some common ceramic materials 

together with the temperature at which it has been determined. This is because thermal 

conductivity is very sensitive to temperature (See for example Al2O3 in the table). 

 

Table 4.2: Thermal conductivities of some common ceramic materials 

Material C SiC MgO Al2O3 Al2O3 Glass Porcelain Concrete Gypsum 

k W.m-1.oC-1 5.1 60 37 30 6.3 0.6-2 1.5 0.8 0.4 

Temp oC 600 600 200 100 1000 100 200 25 25 

 

Thermal conductivity is also very sensitive to the presence of any secondary phase, 

particularly porosity. For example, while the value of k for pure MgO at 200oC is 37, it is 

about 0.5 for powdered magnesia. Also, the thermal conductivities of insulating materials is 

one to two orders of magnitude lower than low porosity materials. In Table (4.3) are shown 

the values of k for some ceramic insulating materials.  
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Table 4.3: Thermal conductivities of some ceramic insulating materials 

Material Asbestos Ins. fire brick Diatomite Cellular concrete 

k W.m-1.oC-1 0.15 0.2 0.09 0.19 0.07 0.12 0.08 0.095 

Temp oC 0 200 200 800 200 900 25 120 

 

The effect of porosity (ε) on the thermal conductivity of a rigid body can be predicted 

using more than one model. The pore size also plays a role since if pores are large enough, 

thermal radiation begins to play a role, besides conduction, in heat transfer across the body. 

For small uniformly distributed pores, the relation is linear taking the form: 

k = k0.(1 – ε)          (4.5) 

Where, k0 is the thermal conductivity at zero porosity. 

 

4.3 Mechanical properties 

4.3.1 General considerations 

       When a ceramic sample is tested for tension, its stress – strain diagram usually differs 

considerably from that of metals or polymers. Figure (4.1) shows a comparison between the 

shapes of the stress – strain curves of the three materials. Metals begin to yield after a 

reversible elastic period and ductile failure occurs at a relatively high strain. Polymers, on the 

other hand, usually display a very short elastic strain, yielding very rapidly at low stress over  

large strain range because of the chain nature of polymers. Finally, ceramic materials show a 

brittle fracture without any appreciable yield after a reversible elastic strain. Their tensile 

strength is much lower than metals, although usually higher than polymers. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.1) Stress – Strain diagrams for different engineering materials 
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The work per unit volume required to cause fracture is known as Toughness 

𝑊

𝑉0
 = 

1

𝑉0
 ∫𝐹. 𝑑𝑙         (4.6) 

Where, V0 is the original volume of sample. 

If σ is the applied stress, then:  F = 𝐴. 𝜎 

And if ϵ is the strain, then: dϵ = 
𝑑𝑙

𝑙0
 

Hence, from equation (4.6): 

𝑊

𝑉0
 = 

1

𝐴𝑙0
 ∫𝐴. 𝜎 . 𝑑𝑙  

𝑊

𝑉0
 = 

1

𝑙0
 ∫𝜎 . 𝑑𝑙          (4.7) 

        Hence, toughness is the area under the stress – strain curve. It can be seen therefore 

from Figure (4.1) that compared to metals and polymers, ceramic materials require the least 

energy for fracture. That is, they have the lowest toughness. 

        We should note that, since ceramic materials only display a linear stress – strain 

behaviour, then it is possible to obtain W/V0  by simply calculating the area of the triangle:  

Area = 
𝑊

𝑉0
 = 

1

2
 𝜖𝑚𝑎𝑥𝜎𝑚𝑎𝑥 

If the Young’s modulus of the material is Y, then: 

Y = 
𝜎𝑚𝑎𝑥

𝜖𝑚𝑎𝑥
  

So we get the following expression for toughness: 

𝑊

𝑉0
 = 

𝜎𝑚𝑎𝑥
2

2𝑌
            (4.8)   

      The values of tensile strengths of ceramic polycrystalline materials are generally much 

lower than those of metals. This is due to more than one reason: If the material has an open 

structure, then no much energy will be required to pull away atomic planes of low atomic 

density from their positions. Also, because of the mechanism of brittle failure, to be discussed 

in the next section, the cracks propagation is very rapid, causing fracture under relatively low 

loads.  

      It is also worth noticing that the presence of pores in ceramic bodies strongly affects 

the strength. It was possible to correlate the strength to porosity by the relation: 

σ = σ0.e-c.ε            (4.9) 

This expression is valid for all types of mechanical strengths. 

 



Properties of Ceramic Materials 

 

 47 

 

4.3.2 Mechanism of brittle fracture 

       Brittle fracture occurs suddenly, at stresses much below the theoretically calculated 

stress. The accompanying plastic deformation (yield) is almost inexistent. The mechanism of 

brittle fracture was first explained by Griffith and can be summarized in the following.  

      In brittle materials, there are small microcracks at the tip of which stress is concentrated.  

This tip stress is given by:   

𝜎𝑡𝑖𝑝 = 2𝜎√
𝑎
𝑟
          (4.10) 

Where, σ is the applied stress, a the length of crack and r its radius of curvature as shown in 

Figure (4.2).  

It can be proven that the minimum stress to be applied in order for a crack to propagate can 

be obtained from the following equation: 

 

𝜎𝑚𝑖𝑛=  √
𝑌𝐺𝑐

𝜋𝑎(1− 𝜈)2
         (4.11) 

Where,  

Y     is the Young’s modulus     Pa 

Gc    is the work per unit area required to cause fracture   J.m-2 

ν      is the Poisson ratio of the material 

 

                                                   

 

 

 

 

Fig (4.2) Model of a crack to which equation (4.10) applies 

We note from this equation that a longer crack (large value of a) means that a lower 

stress is necessary for its propagation. For metals, the value of Gc is usually high. For 

example it is 40 J.m-2 for steel, while being very low for ceramic materials. For alumina Gc = 

0.06 J.m-2 and for glass it is 0.003 J.m-2. 

Gc is representative for the material toughness. The fracture toughness of a brittle 

material is defined by: 

K1C = √𝑌𝐺𝑐  MPa.m1/2                       (4.12) 

It is an inherent property of a material. So, equation (4.11) can be rewritten in the form:  

𝜎𝑚𝑖𝑛 =  
𝐾1𝐶

√𝜋𝑎(1− 𝜈)2
         (4.13) 

a 

r 
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A more conservative value of σmin can be obtained by neglecting the (1 – ν)2 term. Equation 

(4.13) therefore simplifies to: 

𝜎𝑚𝑖𝑛 =  
𝐾1𝐶

√𝜋𝑎
          (4.14)  

                          

This is the Griffith criterion for brittle fracture.  

In Table (4.4) are listed some values of K1C, Y, and ν.  

        The presence of large grains due to exaggerated grain growth during firing has a 

negative effect on the strength. This is due to several reasons. One reason is that large grains 

tend to be anisotropic in their expansion. This will lead to the appearance of internal stresses 

that may exceed the value of the minimum stress required for crack propagation (Equations 

4.13 or 4.14). 

        Another reason has to do with the presence of surface flaws due to machining or 

accidental damage. These form cracks at the intersection of grain boundaries with the surface. 

They usually extend one grain length inside the material. If the grains are small in size, they 

will stop extending rapidly while in case of large grains, they may extend deeply in the bulk 

of the solid 

 

Table 4.4:  Fracture toughness, Young’s modulus and Poisson ratio of some ceramic 

materials (After Barsoum) 

 

Material Al2O3 MgO Quartz 
Fused  

SiO2 

ZrO2 

cubic 

Hot P 

SiC 

Glass 

ceramic 

Sodalime 

glass 

K1C   MPa.m1/2 2 – 6 2.5 ----- 0.8 3-3.6 3 – 6 2 0.82 

Y     GPa 390 300 94 72 200 440 100 69 

ν 0.25 0.18 0.17 0.16 0.3 0.193 0.3 0.25 

        

 

Example 4.1 

A MgO plate is subjected to a tensile stress of 12 MPa. A crack inside this sample has a 

length of 0.1 mm. Its radius of curvature at its tip is 0.02 mm. Calculate the actual stress 

developed at the tip of the crack. 

Solution: 

σ = 12 MPa 

a = 0.1 mm 

r = 0.02 mm           

From equation (4.10): 

𝜎𝑡𝑖𝑝= 2×12×√5 = 53.66 MPa 

This is an increase of about 450% of the applied stress. 
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Example 4.2 

A MgO plate is subjected to a tensile load of 5 kN. The surface under tension is 15×15 mm in 

dimensions. Under this load, what is the minimum size of crack that would propagate across 

the plate? 

Solution: 

σ = 5000/(15×15)  = 22.2 MPa 

From Table (4.4): 

K1C = 2.5 and ν = 0.18, hence from equation (4.13): 

2180114163

52
222

).(.

.
.




a
 

From which,   

a = 6 mm 

If we use the Griffith equation (4.14), we get: 

a = 4 mm, which is a more conservative figure. 

 

Example 4.3 

A plate of alumina contains a sharp notch of 0.1 mm in length. What is the maximum tensile 

load that can be applied without causing fracture?  

Solution: 

We apply the Griffith condition (equation 4.14): 

From Table (4.4), for Alumina,   K1C = 2 (minimum value), hence: 

𝜎𝑚𝑖𝑛 = 
2

√𝜋×0.0001
 = 112.8 MPa 

 

4.3.3 Compressive loading 

        As we have seen, the tensile brittle failure is due to crack propagation when the stress 

exceeds a certain critical value. In case of compressive loading, the cracks tend to form 

parallel to the direction of loading and their propagation is less harmful than in case of 

tension (Figure 4.3). The minimum stress required to cause failure can be calculated from:                       

𝜎𝑚𝑖𝑛 =  
15𝐾1𝐶

√𝜋𝑎𝑎𝑣
         (4.15) 

Where, aav is the average crack size, rather than an individual size in case of tension. 

       We can see from the above equation that the compressive stress required for failure in 

case of compressive loading is about 15 times higher than in case of tension. 

 

4.3.4 Toughening of ceramics 

          As previously explained, ceramic materials suffer from low toughness. In the last two 

decades, efforts were deployed to increase their toughness. 
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Fig (4.3) Crack propagation in tension and in compression 

 

One of the most common methods is to add zirconia (ZrO2). It has been discovered 

that the addition of zirconia has for effect to increase both the fracture stress and the fracture 

toughness of ceramics. This is due to the allotropic transition of zirconia on cooling at about 

1170oC, from the high temperature tetragonal to the low temperature monoclinic phase. This 

is accompanied by about 4% increase in volume and develops a large amount of strain in the 

solid. Now, consider a ceramic material to which is added this oxide. If it is heated above the 

transition temperature, the tetragonal phase will be formed. 

If now the solid is rapidly cooled, then the tetragonal phase will be preserved in a 

metastable state. The transition to the low temperature monoclinic phase can be triggered, 

however, by approaching cracks. These can supply enough energy to cause this transition. As 

soon as this transition takes place, the developed compressive strains are enough to stop crack 

propagation. A lot more energy is now required for this propagation to go on, hence, the 

increase in toughness. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig (4.4) Volume change of zirconia on allotropic transition 
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4.3.5 Thermal stresses  

(a) Thermal stresses in isotropic solids 

       Polycrystalline materials made of one single phase expand on heating equally in all 

directions. In order that thermal stresses develop, they have to be restricted from movement. 

A classical example is the refractory bricks used to line the interior of firing kilns. As 

temperature is raised, expansion takes place and compressive stresses develop within the 

bricks. If their magnitude exceeds the allowable limit, then cracks will develop to relieve 

these stresses and failure will follow. 

         The calculation of such stresses is based on the definition of the linear coefficient of 

expansion α. The linear expansion usually varies linearly with temperature, so that equation 

(4.1) can be written in the form:                     

α =  
1

𝐿0

∆𝐿

∆𝑇
  = 

𝜖

∆𝑇
 

Where, ϵ is the strain. 

Since σ = Y.ϵ, then we get the following expression for the thermal stress σth: 

σth = Y.α.ΔT          (4.16) 

Example 4.4 
An alumina brick is horizontally confined between two vertical surfaces. What is the 

maximum temperature to which it can be heated before failure occurs if the maximum 

allowable stress is 120 MPa? (Y = 30 GPa) 

Solution: 

The value of α for alumina is 8×10-6 oC-1 (Table 4.1) and Y = 30×109 Pa. Hence, from 

equation (4.16): 

120×106 = 8×10-6×30×109 ΔT, from which: ΔT = 500oC 

        We note that the value of Y given in this example is much lower than that given for 

alumina in Table (4.4). This is since this latter figure is for pure alumina while an alumina 

brick contains some porosity which strongly affects the value of Y. 

        We also notice that the value of ΔT is relatively low since alumina bricks are usually 

used when temperatures exceed 1400oC. That is why dilatation should be taken into 

consideration in designing the walls of a furnace by installing expansion joints or having 

empty spaces between the adjoining surfaces that will eventually close during the firing run. 

(b) Thermal stresses in anisotropic solids 

       In case of bodies containing more than one phase, the problem is complicated by the 

fact that each phase has its own coefficient of expansion. Therefore, stresses arise because of 

the difference in expansion or contraction of the different phases upon changes in 

temperature. 

       If α1 and α2 represent the linear expansion coefficients of the two phases in a two phase 

body, with α1 > α2, then the thermal stress developed can be calculated by the equation: 
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α = 
(𝛼1 − 𝛼2)∆𝑇

1

𝑌1
 + 

1

𝑌2

                   (4.17) 

 

Here, Y1 and Y2 are the Young’s moduli of the two phases. 

      The stresses arising from heating are compressive. If the difference term α1 – α2 is small, 

then no stresses will arise since the two phases will be expanding practically at the same rate. 

 (c) Thermal shock 

       Whenever a ceramic body is heated, then rapidly cooled down, the external surface 

will cool much more rapidly than the bulk of the solid. This temperature gradient may be 

severe enough to generate stresses exceeding the allowable limit. This situation is common in 

refractory bricks placed into batch kilns that are subjected to repeated cycles of heating and 

cooling. This causes surface cracks first to appear that are followed by rapid propagation. 

This phenomenon is known as thermal spalling.  

        The ability of a ceramic body to resist spalling is related to its mechanical 

characteristics. A solid having a good thermal shock resistance should have a low coefficient 

of expansion, a low Young’s modulus, a high tensile strength and a high thermal conductivity 

to reduce the thermal gradient set in. A criterion given by Kingery was later modified by 

Barsoum to define the thermal shock resistance as:                                               

Rths = 
𝑘𝜎(1−2𝜈)

𝛼𝑌
  W.m-1        (4.18)                

Where, k is the thermal conductivity W.m-1.oC-1  

Typical ceramic solids of high thermal shock resistance are SiC (Rths = 17300 W.m-1) 

and hot pressed Si3N4 (Rths = 16800 W.m-1), besides glass ceramics which have a very low 

expansion coefficient. For comparison, for hot pressed alumina, Rths = 640 W.m-1. 

 

4.3.6 Measurement of mechanical properties 

(a) Tensile strength 

       The tensile strength of ceramic materials is determined experimentally by preparing 

elongated specimens having a central neck. The specimen is then loaded at a strain rate ~ 10-6 

mm/mm. The tensile strength is then calculated by dividing the fracture load by the cross 

sectional area of the neck at which fracture occurs. 

(b) Compressive strength 

       In that case, the specimen is usually cylindrical with a length to diameter ratio of 1:1 – 

2:1 although sometimes cubic samples are used. The compressive strength is also calculated 

by dividing the fracture load by the loaded area.  

(c) Bending strength (Modulus of Rupture) 

      This property is of importance in case of thin products such as tiles. The most common 

practice is to use the three point bending test. In this test, the specimen is placed on two 

supports and a central load is applied using a sharp blade having the same breadth as the 
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specimen. If the fracture load is W, the distance between the supports L, the breadth of 

sample b and its thickness d, then the modulus of rupture is calculated using the formula: 

 

MOR = 
3𝑊𝐿

2𝑏𝑑2          (4.19)  

       

 

   

 

 

 

 

 

 

Fig (4.5) Three point bending test for the measurement of the MOR 

       

In this test, the lower surface of the tested specimen is under tension while the upper 

part is under compression. (Figure 4.5) 

(d) Hardness 

      This is the property that measures the ability of a material to resist scratching. It can be 

measured in several ways. An empirical method consists of comparing the scratching 

behaviour of the material to a set of 10 standard materials, starting from 0 for talc to 10 for 

diamond, a scale known as the Moh’s scale of hardness. (Figure 4.6) 

       

 
 

Fig (4.6) Moh’s scale of hardness 

 

A more reliable method is to determine the Vickers hardness number (VHN). In this 

method a diamond having the shape of an inverted pyramid is applied under a definite 

pressure onto the surface of the material. The identation produced has usually the form of a 

crater (Figure 4.7). Modern equipment is calibrated to directly measure the hardness out of 

L 

d 

W 
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the dimensions of the crater produced. This figure represents a stress term and is usually 

expressed in GPa. Table (4.5) shows some typical values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.7) Vickers hardness testing 

 

 

Table 4.5: Typical VHN values for some ceramic materials 

Material Al2O3 MgO SiO2 TiO2 SiC ZrO2 Glass 

VHN GPa 20 8 12 10 30 14 5.5 

 

 

(e) Impact strength 

This test is sometimes required in case of large brittle 

products, such as gypsum panels. It may be performed in 

several ways. One way is to apply an 

impact on the surface of the panel by using a pendular rod of 

standard weight. This impact is repeated until cracks appear 

on the surface of the panel. The total energy required to 

produce these cracks is a measure of the impact strength in 

KJ. (Figure 4.8)       

                           Fig (4.8) Impact test 

 

In a simpler method, a steel ball of definite size and mass m is allowed to drop over 

the surface of the panel from a height h. If after n falls, cracks appear on the surface then the 

total work is:   

W = n.m.g.h  J.      (4.20) 

 It is to be noted however, that this method is not standardized and has to be used only 

for approximate or comparative determination. 
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4.4 Electrical properties 

4.4.1 Electric conductivity in solids 

 Consider a single atom: the electrons in in outermost energy level are those which 

contribute to chemical reactions and are known as valence electrons. On a macromolecular 

level, a solid is constituted of a set of atomic planes where atoms are in adjacent positions. 

Consider one such plane: The combination of valence electrons with close energy levels 

forms an energy band known as the valence band (Fig. 4.9) 

 

 

 

 

 

Fig (4.9) The valence band 

 If enough energy is transferred to the material, then some valence electrons can 

undergo leaps from their energy state to higher energy levels in which they are no more 

bounded by nuclear attraction. These are then called free electrons and their energy levels lie 

in the conduction band. There is a forbidden energy gap between the valence and the 

conduction bands. The width of that gap leads to classifying solid materials into three 

categories (Fig. 4.10): 

 If the band gap width is large (Few eV) then the valence electrons cannot easily reach the 

conduction gap when the material is energized. This class of solids is known as 

insulators. Most ceramic materials are of that type (like alumina, calcium oxide, etc.)  

 If the band gap width ranges about 1 eV then, although most of the electrons still lie in the 

valence gap, a minor fraction can “jump” to the conduction band. Such materials are 

termed semiconductors like silicon, germanium and some ceramic materials like BaTiO3. 

 If the energy levels of the two gaps are comparable, then the gap vanishes and all valence 

electrons are available for conduction, behaving as free electrons. This is the case of 

conductors like silver, copper, etc.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.10) Energy bands 

Valence band 
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4.4.2 Dielectric ceramics 

       In order to understand the use of some ceramic materials as dielectrics, it should be 

remembered that most ceramic crystals display to different extents charge polarization upon 

the application of an external electric field.  

      Consider two parallel plates separated by a distance d in vacuum. If these plates are 

connected to an external DC source, then there will pass a current in the circuit that will 

decay very rapidly to a zero value. The amount of stored charge is hence very low and can be 

measured by the vacuum capacitance defined by: 

C = 
𝜀0.𝐴

𝑑
          (4.21) 

Where, ε0 is a constant known as the space permittivity = 8.85x10-12 C2.J-1.m-1 

            A is the area of each plate and C, the vacuum capacitance in Farad (C.V-1) 

If now, a dielectric material is introduced between the two plates, then, due to the 

polarization of charges, the current produced will remain a longer time before decaying (Fig. 

4.11). Since the area under the I – t curve represents the total charged stored, then this will 

mean that the introduction of the dielectric material has had for effect to increase the storage 

capacity. The capacitance can then be calculated from an equation similar to (4.21): 

C = 
𝜀.𝐴

𝑑
          (4.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.11) Effect of introducing a dielectric material on the amount of charge stored 
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ε is known as the dielectric constant of the material. 

 The ratio between the dielectric constant and the space permittivity is known as the 

relative dielectric constant K'. 

K’ = 
𝜀

𝜀0
          (4.23) 

      Ceramic materials fall generally into two categories: Most of these materials have 

values of K' in the range 5 – 15, while some materials having the perovskite structure (like 

BaTiO3) may have extremely high values in the range 102 ~ 103.   

      An ideal dielectric material would store all the incoming charge and deliver it, upon 

discharge without any loss. Actually, however, there is some energy dissipation that is 

proportional to the applied frequency, the applied field and a material characteristic known as 

the dielectric loss K". A highly conducting material will dissipate all the incoming charge 

and hence has a high dielectric loss. So, since ceramics are good electrical insulators, they are 

commonly used as capacitors. 

 

4.4.2 Electrical conductivity in ionic ceramics 

       Although ceramics are bad electrical conductors, ionic species can show some solid 

state current conductance at temperatures near their melting points. This is the case of NaCl 

for example. The conductivity is the reciprocal of the electrical resistivity ρ. It is defined by 

Λ = 
𝑅.𝐿

𝐴
          (4.24) 

Where, Λ is expressed in Ω-1.m-1 

R is the resistance in Ω (Ohm),  

A is the cross sectional area of the conductor (m2) and L its length (m). 

       If an ionic solid is placed in an electric field, the electric conductivity is not due, as in 

metals, to the motion of free electrons (since there aren’t any) but, rather, to the motion of 

ionic charges. Since the ionic radius of cations is much smaller than that of anions, the 

diffusion of the former will be mainly responsible for the charge transfer, and hence the flow 

of current. This diffusion is a thermally activated process and therefore takes place when the 

solid is being heated. This diffusion, as measured by the conductivity, follows an Arrhenius 

type equation in the form: 

Λ = Λ0.𝑒
−

𝐸

𝑅𝑇          (4.25) 

Where: Λ0 is a constant and E is an activation energy term (J.mol-1) 

The value of E is the sum of two terms: The first is half the energy required to release 

a Schottky cation – anion pair (ΔHS/2), and the second, the energy required to cause the 

migration of the cation through the lattice (ΔH+). The above equation can be linearized into 

the form:  
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ln Λ = ln Λ0 – 
𝐸

𝑅𝑇
          (4.26) 

And the slope should be equal to 
−

∆𝐻𝑠
2

−∆𝐻+

𝑅
    

Actually, a plot of ln Λ vs 1/T produces two straight lines instead of one line. (Figure 

4.12). The reason for that behavior is that, at high temperatures both mechanisms take place 

and charge is transferred due to cation motion across the lattice. The slope of this line is then 

as indicated above.  

At low temperatures, there is no enough energy for a Schottky pair to form and 

conductivity is only due to the motion of impurity ions. That is why the high                                                                                                                                                                               

temperature line corresponds to intrinsic diffusion while the low temperature portion 

corresponds to extrinsic diffusion. The slope of this portion reduces to  
−∆𝐻+

𝑅
  

 .                                      

 

 

                                                                                                                   

                                                                              

 

 

 

 

 

 

 

 

 

 

Fig (4.10) Ionic conductivity 
 

 

4.5 Magnetic properties 
4.5.1 Origin of magnetism 

      When electric charges are in motion in vacuum, a magnetic field is generated. If the 

intensity of this field is H, then the magnetic flux density B is defined as: 

B = μ0.H      (4.27)                                                                                                                  

Where, H is expressed in A.m-1 

             B is expressed in Wb.m-2 (Tesla) 

   μ0 is called the vacuum permeability =  4π.10-7 Wb.A-1.m-1 

       If the motion of charges is not in vacuum, but within a solid, then equation (4.27) can 

be rewritten as: 

B = μ0.(H  + M)          (4.28) 

ln Λ 

𝟏

𝑻
 𝑲−𝟏 

Slope = 
−∆𝐻+

𝑅
 

Slope = 
−

∆𝐻𝑠
2

−∆𝐻+

𝑅
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Where, M is known as the magnetization. 

The product of the magnetization by the volume is called the magnetic moment:   

μ = M.V   A.m2         (4.29)  

Now, in an atom, an electron moving around the nucleus will generate a magnetic flux 

consisting of two components: 

First: A magnetic component due to this very motion of a charged particle. It is measured by 

the orbital magnetic moment vector μorb calculated from: 

�⃗⃗� orb = 9.27×10-27√𝑙(𝑙 + 1) �⃗⃗�        (4.30) 

Where, l is the orbital quantum number and �⃗⃗�  a unit vector normal to the plane of the sub 

orbit.  

Second: A magnetic component due to the electron spin calculated from the spin magnetic 

moment vector μspin  calculated from: 

�⃗⃗� spin = 1.85×10-26√𝑠(𝑠 + 1) �⃗⃗�        (4.31) 

This effect appears only if the atom possesses unpaired electrons. 

Since an atom possesses, in general, many electrons, then the total orbital moment 

vector is obtained by the vector sum of all  �⃗⃗� orb’s obtained from equation (4.30) and the total 

spin magnetic vector is obtained by summing up all �⃗⃗� spin’s obtained from equation (4.31).  

The net resultant of all magnetic vectors is the vector 

�⃗⃗� tot. = ∑ �⃗⃗� orb +  �⃗⃗� spin                                                                            (4.32) 

 When no external field is applied, magnetic moment vectors take random directions. It 

is only when an external field is applied that they start arranging in the direction of the field 

or in an opposite direction.  

4.5.2 Magnetic behavior of ceramic materials  

       In absence of any external field, the magnetic moment vectors of electrons are 

randomly oriented. When an external magnetic field of intensity H is applied, the magnetic 

vectors begin to align themselves in the direction of the field (Figure 4.13). According to 

their behavior in presence of a field, ceramic materials are divided into the following groups:  

(a) Paramagnetic ceramics 

       These materials are attracted by the applied field and the magnetization is 

proportional to the intensity of the applied field. Once the field is removed the magnetic 

moment vectors regain their random orientations and the magnetization drops to zero. In 

general, ceramic materials are not paramagnetic at room temperatures. 

(b) Diamagnetic ceramics 

      In this case, the materials also lose their magnetization as soon as the field is removed. 

They differ from paramagnetic materials, however, by the fact that they are repelled rather 

than attracted by the field. These materials display negative magnetization. Most ceramic 

materials fall in this category. 
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Fig (4.13) Paramagnetic and diamagnetic ceramic materials 

 

 

Some ceramic materials exhibit exaggerated 

diamagnetism if cooled down a certain 

temperature. In that case, they can repel metallic 

materials (Meissner effect). Under these 

conditions, they also exhibit superconductivity, 

their electrical resistance approaching zero. One 

of the most powerful such materials is 

YBa2Cu3O7-x (Known as 1.2.3 Y oxide). It 

displays an enormous magnetization that can 

reach 40 Tesla. 

Figure (4.14) reveals the drop in resistivity (ρ) 

as the temperature is decreased below some 

critical value (Tc). 

                                                                               Fig (4.14) Superconductive phenomenon 

 

On the other hand, Figure (4.15) shows the levitation of a metallic alloy over a 

superconductive 1.2.3Y sintered pellet. 
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Fig (4.15) Levitation of a metallic alloy over 1.2.3Y oxide  

 

 (c) Ferrimagnetic ceramics 

   When such materials are subjected to an external magnetic field H, the magnetic 

moment vectors of neighboring atoms align in opposite directions. In theory, this should have 

resulted in having them cancelling each other. However, there are slight differences in their 

values that result in a net magnetic moment. The magnitude of that moment increases as the 

intensity of magnetic field is raised. This results in a saturating value of B known as 

Saturation magnetization (Bs). As the field strength is decreased, the B – H curve does not 

reverse itself but rather, we are left with a Remnant magnetization (Br) (or residual 

magnetization) at zero field intensity (Figure 4.16a).  

In order to demagnetize the material, a certain value of negative field strength is 

required known as the Coercive force. A further increase of the magnetic field strength in the 

negative direction produces a saturation behavior similar to that initially observed. An 

increase in the value of H in the positive direction will close the hysteresis loop. This 

behavior is typical of hard ferrites discussed in Chapter 1.  

 

 

 
 

 

 

 

 

 

 

 

 

 

(a)                                                                 (b)                   

 

Fig (4.16) Hysteresis loop of ferrimagnetic ferrites 

(a) Common loop      (b) Hexaferrite 
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Hard ferrimagnetic hexaferrites have saturation magnetization values very close to 

those of remnant magnetization. This way, their hysteresis loops are often of square shape. 

(Figure 4.16b). These are usually used as permanent magnets. 

As for soft ferrites, they are often characterized by a narrow hysteresis loop. They can 

be easily demagnetized as evidenced by the low coercive force required to get zero 

susceptibility (Fig.4.17). They are used to store data in computer circuits as they can easily 

release them as they get demagnetized. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

                                Fig (4.17) Hysteresis loop of a soft ferrite 

 

The magnetic susceptibility of ferroimagnetic ceramics is strongly influenced by 

temperature since a rise in temperature will cause the disorientation of the magnetic moment 

vectors. The relation between B (Tesla) and T (K) follows the Curie law: 

B = 
𝐶

𝑇− 𝑇𝐶
          (4.32)  

Where, TC is known as the Curie temperature. 

Above TC the material behaves paramagnetically, its magnetization decreasing with 

increasing temperature. Below TC, spontaneous magnetization sets in, and the material 

behaves as a magnet in absence of an external field. Most ceramic materials have Curie 

temperature in the range 600 – 900K. 

(d) Ferromagnetic materials 

 In ferromagnetic materials, magnetic moment vectors of the electrons tend to align 

themselves gradually in the direction of the applied field and the material acquires rapidly the 

state of saturation since as the value of H is increased, the alignment becomes more 

pronounced and ultimately all magnetic moment vectors are aligned. Metals like iron and 

cobalt fall into that category and are characterized by Curie temperatures in the range 600– 

1400K. Some complex ceramic composites based on PbO.ZrO2.TiO2 (PZT) belong to that 

category.     

B
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(e) Antiferromagnetic materials 

 In ferrimagnetic materials each two neighboring magnetic moment vectors align in 

opposite directions. Since their magnitudes are not equal a net moment results. In 

antiferromagnetic materials, the neighboring opposite direction vectors are of equal 

magnitudes, therefore cancelling each other. This results in a material with no magnetic 

properties. Hematite (Fe2O3) and MnO are typical examples. Above a certain temperature 

(called the Neil temperature), they invert to paramagnetic behavior. 

 Figure (4.18) depicts the differences in behavior between the different magnetic 

materials. 

 

 

 

 

 

Fig (4.18)       Ferromagnetic                     Ferrimagnetic               Antiferromagnetic 
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