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CHAPTER 1 

INTRODUCTION 

 

1.1 Nature of fluids 

A fluid is a material that takes the shape of its container. These are divided into 

incompressible fluids (Liquids) and compressible fluids (Gases). The former types do not 

show appreciable change in volume upon application of an external pressure, while the 

latter show a decrease in volume under pressure. 

On the other hand, the main difference between solids and fluids is the ability of most solids 

to resist shear stresses. In this respect, liquids and gases deform under the application of 

shear stresses. 

1.2 Dimensions and Units 

1.2.1 Dimensions 

A dimension is the measure by which a physical variable is expressed quantitatively while 

a unit is a particular way of attaching a number to the quantitative dimension. The main 

dimensions to be dealt with are as follows: 

• Dimension of length: This is represented by [L] and is used to express lengths, 

distances, width, height, etc. 

• Dimension of time: This is represented by [T]. 

• Dimension of mass: this is represented by [M]. 

Out of these main dimensions, are derived other entities the dimensions of which can be 

expressed by the above three main dimensions. Their dimensions are simply obtained from 

their defining expressions. Table (1.1) shows the main variables with their corresponding 

dimensions. This table is not complete, as some other physical properties will be introduced 

in due course. 

Any equation must be dimensionally correct, that is, the dimensions of both sides should 

be the same. For example, during the course, we will face the following expression 

expressing the pressure of a fluid: 

𝑝 =
1

2
𝜌𝑣2 + 𝜌𝑔ℎ 

From table (1.1), the LHS has the dimension [M].[L]-1.[T]-2 

The term 
1

2
𝜌𝑣2 has the dimension: [M].[L]-3[L]2.[T]-2 = [M].[L]-1.[T]-2 

The term 𝜌𝑔ℎ has the dimension: [M].[L]-3[L].[T]-2.[L] = [M].[L]-1.[T]-2 

 



3 

 

Table 1.1: Dimensions of some entities 

Entity Defining expression Dimension 

Area 𝐴 = 𝑥2 [L]2 

Volume 𝑉 = 𝑥3 [L]3 

Velocity  𝑣 =
𝑑𝑥

𝑑𝑡
 [L].[T]-1 

Acceleration 𝑎 =
𝑑2𝑥

𝑑𝑡2
 [L].[T]-2 

Force 𝐹 = 𝑚𝑎 [M].[L].[T]-2 

Pressure or stress 𝑝 =
𝐹

𝐴
 [M].[L]-1.[T]-2 

Density 𝜌 =
𝑚

𝑉
 [M].[L]-3 

Work or energy 𝑊 = ∫ 𝐹. 𝑑𝑥 [M].[L]2.[T]-2 

Power P 𝑃 =
𝑑𝑊

𝑑𝑡
 [M].[L]2.[T]-3 

 

1.2.2 Units 

There are two main systems of units: The SI units (Systême International) and the British 

units. In the last two decades, the first system has taken the lead except in some cases where 

the British system still prevails. (Like the thickness of steel sheets or diameters of pipes). 

The SI unit expresses the [L] dimensions in meter (m) or (mm) and less commonly in 

kilometer (km), centimeter (cm) and micrometer (μm). Lately, the nanometer (nm) has also 

been widely used. The following shows the conversions from one length unit to the other: 

1 km = 103 m – 1 cm = 10-2 m – 1 mm = 10-3 m – 1 μm = 10-6 m – 1 nm = 10-9 m.  

The SI unit expresses the [T] dimension in second (s) with two derived units: 1 hour (h) = 

3600 s and 1 minute (min) = 60 s. 

In this system, the [M] dimension main unit is the kilogram (kg) with the following derived 

units: 1 ton = 103 kg – 1 gram (g) = 10-3 kg and 1 milligram (mg) = 10-6 kg. 

On the other hand, the less commonly used British system expresses the length in foot (ft) 

or inch (“), where 1 ft = 12”.  

To convert from ft to m: 1 ft = 0.305 m and 1” = 0.0254 m. 

The mass unit is the pound (lb) where 1 lb = 0.454 kg. 

Physical entities have corresponding units derived from their dimensions, although some 

of them bear special names after some eminent scientists. (Table 1.2). 



4 

 

Table 1.2: Units of some entities 

Entity SI Unit British unit 

Area m2 ft2 

Volume m3 ft3 

Velocity  m.s-1 ft.s-1 

Acceleration m.s-2 ft.s-2 

Force Newton N = kg.m.s-2 lb.ft.s-2 or lbf 

Pressure or stress Pascal Pa = N.m-2  lb.ft-2 or psi 

Density kg.m-3 lb.ft-3 

Work or energy Joule (J) = N.m lb.ft2.s-2 or lbf.ft 

Power P Watt (W) = N.m.s-1 lb.ft2.s-3 or lbf.ft.s-1 

 

In particular, the force unit in the SI system is sometimes expressed in kilogram force (kgf) 

which is equal to 9.81 N, while in the British system it is usually expressed in pound force 

(lbf) which equals 32.2 lb.ft.s-2. 

1.2.3 Units of volume 

The liter (L) is sometimes used as measuring unit of volume: 1 m3 = 103 L. The milliliter 

= 10-3 L = 10-6 m3. 

The British units sometimes use the Gallon (Gal) as measure of volume: 1 Gal = 3.785 L. 

1.2.3 The units of pressure 

The units of pressure are particularly important as this variable plays an essential role in 

fluid mechanics. 

As mentioned before, the SI unit is the Pascal (Pa). Other important derived units are:  

• The Megapascal (MPa) = 106 Pa  

• The atmosphere: 1 atm = 1.0132×105 Pa. 

• The bar: 1 bar = 105 Pa = 0.1 MPa 

• 1 mm Hg = 
1

760
 atm = 133.3 Pa 

• 1pound per square inch (psi) = 
1

14.7
 atm = 6892.5 Pa 

1.3  Viscosity 

1.3.1 Definition 

This is by far one of the most important physical properties of fluids. It is defined as 

follows: 
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Consider a fluid placed between two horizontal plates (Figure 1.1). 

 

 

 

 

Fig 1.1: Definition of viscosity 

The lower plate is stationary while the upper one is moved at a velocity 𝑣. The relative 

velocity between the two plates = ∆𝑣 = 𝑣 – 0 = 𝑣. 

The shear strain is defined as the ratio between the horizontal distance and the distance 

between the two plates = ∆𝑥/∆𝑦  

The shear rate (�̇�) ̇is defined is the shear strain per unit time = (∆𝑥/∆𝑡)/∆𝑦  

𝛾 ̇ = ∆𝑣/∆𝑦 s-1          (1.1) 

The shear stress (𝜏) is the force per unit area 𝜏 = 𝐹/𝐴 (Pa) (See Table 1.2). The shar stress 

is proportional to the shear rate so that: 

𝜏 = 𝜇. 𝛾 ̇            (1.2) 

1.3.2 Effect of temperature 

Viscosity is the constant of proportionality in the previous equation. It has the units Pa.s, 

although another important unit is sometimes used: The Centipoise (cP) which is equal to 

10-3 Pa.s. This unit has been chosen to fix a reference value for the viscosity by setting the 

viscosity of water as 1 cP.  

The viscosity of liquids decreases with increased temperature since the liquid tends to 

display a higher shear rate for a given stress. The following expression best relates viscosity 

of liquids to temperature (K): 

𝜇 = 𝐴𝑒
𝐸

𝑅𝑇           (1.3) 

In this expression, 𝐴 is a pre-exponential factor having the same dimensions as viscosity. 

𝑅 is the general gas constant (= 8.314 J.mol.K-1) 

𝐸 is called the activation energy for viscosity (J.mol-1) and denotes the sensitivity of 

viscosity to changes in temperature. 

The viscosity of gases, as opposed to liquids, increases with temperature, following the 

empirical rule: 

𝜇 = 𝐶. 𝑇𝑛           (1.4) 

Where 𝐶 is a constant depending on the nature of the gas and 𝑛 ranging from 0.5 to 1.1. 

 

Δy 

v 
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1.3.3 Kinematic viscosity 

Sometimes, liquids are rather characterized by their kinematic viscosity  

𝜈 = 𝜇/𝜌           (1.5) 

This is obtained by dividing the viscosity by the density. Its SI unit is m2.s-1 although the 

practical unit is the centistoke (cSt): 1 cSt = 1 mm2.s-1 = 10-6 m2.s-1. The use of kinematic 

viscosity to characterize liquids is widespread in the oil industry. 

1.4 Other fluid properties 

1.4.1 Density 

Density, as defined by mass per unit volume is practically temperature independent for 

liquids. For ideal gases, it is calculated from the following expression: 

𝜌 = 
𝑝𝑀

103𝑅𝑇
           (1.6) 

To apply this equation in proper units, the molecular weight of the gas 𝑀 must be expressed 

in kg per mol. Since its units are g per mol, it must be divided by 103. 

For example, air at 25oC and 1 atm pressure will have a density of: 

𝜌 = 
1.0132×105×29

103×8.314×(25+273)
 = 1.186 kg.m-3. 

On the other hand, density is often expressed in the form of specific gravity. This is the 

ratio of the density of the fluid and that of water. Since this latter = 1000 kg.m-3, the density 

of the fluid can be readily calculated by multiplying its specific gravity by 1000. 

1.4.2 Surface tension 

Consider a liquid wetting a solid surface. Due to the cohesive forces, a molecule located 

away from the surface is pulled equally in every direction by neighboring liquid molecules, 

resulting in a net force of zero. The molecules at the surface do not have the same molecules 

on all sides of them and therefore are pulled inward. This creates some internal pressure 

and forces liquid surfaces to contract. (Figure 1.2). 

Surface tension is responsible for the spherical shape of liquid droplets as the cohesive 

forces between the liquid molecules tend to reach an equilibrium state where the droplet is 

at a minimum energy level. This was proved to take place when the droplets assume a 

spherical shape. 

Surface tension is expressed as the force acting on the liquid surface per unit length. That 

is why its SI units are N.m-1. This is equivalent to N.m.m-2, that is J.m-2, which represents 

the surface energy per unit area of liquid. 
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Fig 1.2: Origin of surface tension 

1.4.3 Compressibility 

The compressibility coefficient for a material is defined by: 

𝛽 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
           (1.7) 

Liquids possess low compressibility: For example, water at 25oC possesses a 

compressibility coefficient of 0.00045 MPa-1.  

Gases, on the other hand, are highly compressible. For ideal gases: V = 
𝑛𝑅𝑇

𝑝
 so that: 

−
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
=

𝑛𝑅𝑇

𝑉
. 𝑝−2 = 𝑝. 𝑝−2 = 1/𝑝 

Hence, at pressure of 1 bar = 0.1 MPa, the compressibility of a gas = 10 MPa-1. 

1.4.4 Vapor pressure 

At any temperature higher than 0 K, some of the liquid molecules can overcome the 

cohesion forces, due to an increase in their kinetic energy, to move into the vapor phase. 

The pressure exerted by the vapor at any temperature is termed the vapor pressure of the 

liquid. It is obvious that this pressure will increase its temperature. As the temperature of 

the liquid reaches the ambient temperature, the liquid starts to boil. This occurs at the 

boiling temperature of the liquid. Figure (1.3) displays the increase in the vapor pressure 

of water with temperature. 
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Fig 1.3: Effect of temperature on the vapor pressure of water 

Example 1.1: 

The activation energy of a lubricating oil = 26000 J.mol-1. If its viscosity at 25oC is 0.45 

Pa.s. Evaluate its viscosity at a working temperature of 50oC. At what temperature will the 

viscosity of the oil is equal to 0.8 Pa.s? 

Solution: 

𝜇 = 𝐴𝑒
𝐸

𝑅𝑇  0.45 = 𝐴𝑒
26000

298×8.314 𝐴 = 1.246 × 10−5 

At 50oC (323K): 

𝜇 = 1.246 × 10−5𝑒
26000

323×8.314 = 𝟎. 𝟐 Pa.s 

0.8 = 1.246 × 10−5𝑒
26000

8.314𝑇   

𝑇 = 282.5K ≡ 𝟗. 𝟓𝐨𝐂 

Example 1.2: 

Under atmospheric pressure, the density of a liquid = 880 kg.m-3. Under a pressure of 300 

bar, its density increases to 889.6 kg.m-3. What is the compressibility coefficient of that 

liquid in Pa-1? 

Solution: 

𝛽 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
 

Since the mass of the liquid remains constant, and 𝑉 = 𝑚/𝜌, then the previous definition 

can be written in the form: 

𝛽 = −
𝜌

𝑚
(

𝜕𝑚
𝜌

𝜕𝑝
)

𝑇

=
𝜌

𝜌2 . (
𝜕𝜌

𝜕𝑝
)

𝑇
≈

1

𝜌
.

∆𝜌

∆𝑝
 

𝛽 =
1

880
.

9.6

300−0.987
 = 3.65 × 10−5bar−1 ≡ 𝟑. 𝟔𝟓 × 𝟏𝟎−𝟏𝟎𝐏𝐚−𝟏 
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1.5 An introduction to dimensional analysis 

Sometimes, a certain process parameter is known to depend on some independent 

variables. It is then possible to deduce the probable relation between the parameter and 

these variables using a tool known as dimensional analysis. The following example 

explains the use of that tool. 

Example 1.3 

It is known that the pressure drop per unit length of a fluid flowing through a pipe, under 

some conditions, depends on the pipe diameter 𝐷, the fluid viscosity 𝜇,  and the fluid 

velocity 𝑣. What would be the form of the dependence function?  

Solution: 

∆𝑝

𝐿
 = 𝑓(𝐷, 𝜇, 𝑉 ) 

We assume that this function takes the form: 
∆𝑝

𝐿
 = 𝑘. 𝐷𝑎 . 𝜇𝑏 . 𝑣𝑐  

The dimension of the LHS is: [F].[L]-2.[L]-1 → [M].[L].[T]-2. L]-2.[L]-1→ [M].[L]-2.[T]-2 

The constant 𝑘 being dimensionless, the dimensions of the RHS will show as: 

[L]a.([M].[L]-1[T]-1)b.([L].[T]-1)c → [M]b.[L]a-b+c.[T]-b-c 

Equating the exponents of the two sides, we get the following set of linear equations: 

𝑏 = 1     (i) 

𝑎 − 𝑏 + 𝑐 = −2    (ii) 

−𝑏 − 𝑐 = −2    (iii) 

Solving, we get: 𝑎 = −2, 𝑏 = 1, 𝑐 = 1 

Hence: 
∆𝑝

𝐿
 = 𝑘. 𝐷−2. 𝜇1. 𝑣1 

The dependence of 
∆𝑝

𝐿
 will therefore take the form: 

∆𝑝

𝐿
 = 𝑘.

𝜇.𝑣

𝐷2   

This expression will be proved in Chapter 4, where it will be shown that 𝑘 = 32. 
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CHAPTER 2 

STATICS OF FLUIDS 

 

2.1 Pressure exerted by a fluid 

If a liquid of density 𝜌 is placed in a vessel of cross-sectional area 𝐴, the pressure exerted 

at its bottom is due to the weight of the liquid + atmospheric pressure. This is called 

absolute pressure, and its SI unit is often written as Pa abs. The pressure of the liquid in 

excess of the atmospheric pressure is the effective pressure applied on the bottom since the 

other side of the bottom is also under atmospheric pressure. This is called gauge (or gage) 

pressure. The weight of the liquid = 𝜌𝑉𝑔 N, and the volume 𝑉 = 𝐴. ℎ, so that the gauge 

pressure obtained by dividing the weight by the area is: 

𝑝 = 𝜌𝑔ℎ            (2.1) 

In the case of a liquid, the pressure at any level will increase linearly with the depth and 

reaches its maximum value at the bottom. (Figure 2.1). This pressure is the same in all 

radial directions at any specific height. 

 

 

 

 

 

 

Fig 2.1: Pressure gradient along the depth of a liquid 

In case of gases filling an enclosed space, the pressure is the same on all the internal surface 

of the enclosure. 

Example 2.1 

65 L of oil of specific gravity 0.87 float over 120 L of water in a cylindrical container with 

a diameter of 0.6 m. Calculate the maximum pressure exerted on the walls of the container.   

Solution: 

Area of base = 
1

4
𝜋 × 0.62 = 0.2827 m2 

Weight of oil + water = (0.065 × 870 + 0.12 × 1000) × 9.81 = 1732 N  

Hence, the maximum applied pressure (on bottom) = 
1732

0.2827
 = 6126.5 Pa 
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2.2 The U – tube manometer 

This consists of two vertical tubes of open sides, joined at their bottom be a third tube. As 

the tube is filled with a liquid, the pressures exerted on each side being equal, the liquid in 

the two branches will be at the same level. If a pressure is applied on one of its branches, 

then the level of the liquid in that branch will drop with respect to the level in the other by 

an amount corresponding to the applied pressure, which can be calculated from Equation 

(2.1). (Figure 2.2) 

 

 

 

 

 

 

 

 

Fig 2.2: Measuring pressure by means of a U-tube manometer 

 

Example 2.2   

In the figure, water flows through a pipe, and a 

manometer is used to estimate its pressure. The 

manometer fluid is mercury (Specific gravity = 

13.6) over which rest 6 cm of oil of specific gravity 

= 0.689 subjected to a pressure of 87 kPa. Figure 

(2.3) displays the arrangement. Estimate the water 

pressure in Pa. 

Solution: 

At the mercury – water interface the pressures are 

equal: 

At the right side, the total pressure is: 

𝑝𝑤𝑎𝑡𝑒𝑟 + 1000 × 9.81 × 0.05 = 𝑝𝑤𝑎𝑡𝑒𝑟 + 490.5 

On the right side, the total pressure is: 

87000 + 689 × 9.81 × 0.06 + 13600 × 9.81 × (0.11 − 0.04) = 96744.66 Pa 

𝑝𝑤𝑎𝑡𝑒𝑟 + 490.5 = 96744.66 → 𝑝𝑤𝑎𝑡𝑒𝑟 = 96254.16 Pa ≈ 𝟗𝟔. 𝟐𝟒 𝐤𝐏𝐚 
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Example 2.3  

18.7 kg of natural gas of molecular weight = 19 is stored in a cylindrical reservoir of 2.2 

m diameter and 3.2 m height at 25oC. Calculate in bar, the pressure exerted on the walls 

of the reservoir. 

Solution: 

p = 
𝑛𝑅𝑇

𝑉
 

𝑛 = The number of mols of gas = 
18.7×1000

19
 = 984.2 mol. 

The radius of the spherical container = 1.6 m.  

𝑉 = 
𝜋𝐷2ℎ

4
=

𝜋×2.22×3.2

4
 = 12.164 m3 

p = 
984.2×8.314×(25+273)

12.164
 = 200462 Pa ≡ 𝟐 bar 

Example 2.4  

As shown, an air space above a long tube is pressurized to 50 kPa. Water (15°C) from a 

reservoir fills the tube to a height ℎ. If the pressure in the air space is changed to 75 kPa, 

will ℎ increase or decrease and by how much? Assume atmospheric pressure is 100 kPa.  

Solution: 

When the pressure is 50000 Pa, it differs from the pressure 

on the free liquid surface by 100000 – 50000 = 50000 Pa 

50000 = 1000 × 9.81ℎ → ℎ = 5.097 m 

When the pressure is 75000 Pa, the difference with the 

level at free surface = 100000 – 75000 = 25000 Pa 

25000 = 1000 × 9.81ℎ′ → ℎ′ = 2.548 m 

The level decreases by 5.097 − 2.548 = 𝟐. 𝟓𝟒𝟖 𝐦 
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CHAPTER 3 

BASIC EQUATIONS OF FLUID FLOW 

 

3.1 The continuity equation 

In Figure (3.1), a fluid flows through the given hollow volume. This volume is called the 

control volume of flow. The mass flow rate of the fluid �̇� kg.s-1 is obviously constant 

since the flow is continuous. Consider an infinitesimal thickness 𝑑𝑥 along the surface. If 

the cross-sectional area at that section = 𝐴, then the volume of this element = 𝐴. 𝑑𝑥 and the 

elemental mass contained in that volume = 𝜌. 𝐴. 𝑑𝑥 

The mass rate of flow �̇� = 
𝑑𝑚

𝑑𝑡
=

𝜌.𝐴.𝑑𝑥

𝑑𝑡
 = 𝜌. 𝐴. 𝑣 = Constant. 

Referring to the same figure, if the inlet velocity to the control volume = 𝑣1 and the exit 

velocity = 𝑣2, then: 

𝜌1. 𝐴1. 𝑣1 = 𝜌2. 𝐴2. 𝑣2         (3.1) 

this equation is known as the continuity equation of flow. 

 

 

 

 

 

 

 

 

Fig 3.1: continuity of flow in control volume 

In the case of liquids, the density is practically unaffected by changes in pressure or 

temperature, so that this equation can be simplified to: 

𝐴1. 𝑣1 = 𝐴2. 𝑣2          (3.2) 

The product 𝐴. 𝑣 is of major importance in fluid flow and is termed the volumetric flow 

rate or simply, the flow rate (m3.s-1), of symbol 𝑄. 

Example 3.1 

Figure (3.2) shows oil of specific gravity 0.87 flowing from a large pipe section of diameter 

4” to a narrower section of diameter 2”. If the velocity of the liquid through the first section 

= 0.3 m.s-1, calculate:   
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(a) The mass flow rate in kg.h-1 

(b) The volumetric flow rate in m3.h-1 

(c) The velocity of oil at the narrow section. 

Solution: 

A=
1

4
𝜋𝐷2 = 0.25𝜋 × (4 × 0.0254)2 = 0.0081 m2                               Fig 3.2 

𝑑𝑚

𝑑𝑡
 = 𝜌. 𝐴. 𝑣 = 870 × 0.0081 × .3 × 3600 = 𝟕𝟔𝟏𝟕. 𝟔𝟓 kg.h-1 

𝑄 = 𝐴1. 𝑣1 = 0.0081 × .3 × 3600 = 𝟖. 𝟕𝟓𝟓 m3.h-1 

A=
1

4
𝜋𝐷2 = 0.25𝜋 × (2 × 0.0254)2 = 0.00203 m2                                

𝐴1. 𝑣1 = 𝐴2. 𝑣2 → 0.0081 × 0.3 = 0.00203 𝑣2 → 𝒗𝟐 = 𝟏. 𝟐 m.s-1  

Example 3.2 

In Figure (3.3), the diameters of the pipes are in inches and the velocity of oil in the main 

pipe = 2.6 m.s-1. If the main pipe forks into two pipes, as shown, calculate the flow rate in 

each pipe and the velocity of oil in the 4” pipe, if the velocity in the 3” pipe is 4 m.s-1. 

 

 

 

 

 

 

 

Solution: 

Flow rate in main pipe = 𝑄 =
1

4
𝜋𝐷2𝑣 =

1

4
𝜋(6 × 0.0254)2 × 2.6 = 𝟎. 𝟎𝟒𝟕𝟒 m3.s-1 

The continuity of flow requires that the flow rate in the main pipe equals the sum of the 

flow rates in the two smaller pipes: 

𝐴. 𝑣 = 𝐴1. 𝑣1 + 𝐴2. 𝑣2  
1

4
𝜋𝐷2𝑣 =

1

4
𝜋𝐷1

2𝑣1 +
1

4
𝜋𝐷2

2𝑣2 

(0.0254 × 6)2 × 2.6 = (0.0254 × 4)2 × 𝑣1 + (0.0254 × 3)2 × 4 → 𝒗𝟏 = 𝟑. 𝟔 m.s-1 

𝑄1 =
1

4
𝜋 × (4 × 0.0254)2 × 3.6 = 𝟎. 𝟎𝟐𝟗𝟐 m3.s-1 

𝑄2 =
1

4
𝜋 × (3 × 0.0254)2 × 4 = 𝟎. 𝟎𝟏𝟖𝟐 m3.s-1 

Check: 0.0292 + 0.0182 = 0.0474. 

 

 

 

D 6” 

D 4” 

D 3” 
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Example 3.3 

Compressed warm air at 1.2 bar flows in a 100 mm pipe at 36 m.s-1 and 50oC. Due to heat 

losses, its temperature reaches 30oC as it is discharged to ambient atmosphere. Calculate 

the velocity at the discharge end. 

Solution: 

At entrance: 𝜌 = 
𝑝𝑀

103𝑅𝑇
= 

1.2×105×29

103×8.314×323
 = 1.296 kg.m-3. 

At outlet: 𝜌 = 
1.0132×105×29

103×8.314×303
 = 1.166 kg.m-3. 

Since the pipe is the same, then 𝐴1 = 𝐴2 in equation (3.1): 

𝜌1. 𝑣1 = 𝜌2. 𝑣2 → 1.296 × 36 = 1.166𝑣2 → 𝒗𝟐 = 𝟒𝟎 m.s-1 

3.2 Bernoulli equation 

When a solid body moves in a plane, the sum of its kinetic and potential energies remains 

constant, as long as there are no friction losses. For liquids, the situation is similar except 

that extra energy arises due to the pressure exerted by the liquid on the duct walls. 

Consider a small portion of the duct of length 𝑑𝑥 and cross-sectional area 𝐴. the mass of 

the portion is 𝑑𝑚 = 𝜌. 𝐴. 𝑑𝑥.  

The kinetic energy of the fluid in that portion = 
1

2
𝑑𝑚. 𝑣2 = 

1

2
𝜌. 𝐴. 𝑣2. 𝑑𝑥 and the potential 

energy = 𝜌. 𝐴. 𝑔. ℎ. 𝑑𝑥.  

 

 

 

 

 

 

Fig 3.3: Flow through an elemental volume 

The pressure developed = 𝑝 and the net force = 𝑝. 𝐴 The work necessary to produce that 

pressure difference = 𝑝. 𝐴. 𝑑𝑥. 

Following the principle of conservation of energy, the total energy throughout the control 

volume is constant: 

1

2
𝜌. 𝐴. 𝑣2. 𝑑𝑥 + 𝑝. 𝐴. 𝑑𝑥 + 𝜌. 𝐴. 𝑔. ℎ. 𝑑𝑥 = Const. 

The LHS is then divided by 𝜌. 𝐴. 𝑔. 𝑑𝑥 to obtain: 

dx 
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𝑣2

2𝑔
+

𝑝

𝜌𝑔
+ ℎ = Const 

The three terms of the LHS have dimensions of length [L]. They are called heads. 

𝑣2

2𝑔
 is the velocity head. 

𝑝

𝜌𝑔
 is the pressure head. 

ℎ is the elevation (or potential) head. 

This means that between any two positions on the flow path, one may write: 

𝑣1
2

2𝑔
+ 𝑝1

𝜌1𝑔
+ ℎ1 = 𝑣2

2

2𝑔
+ 𝑝2

𝜌2𝑔
+ ℎ2       (3.3) 

This equation, known as the Bernoulli equation, states that the total head of any fluid is 

constant. This equation was first suggested by Daniel Bernoulli in 1738 and written in the 

previous form by Euler in 1752.  

The following form, in terms of total pressures can also be used: 

1

2
𝜌𝑣1

2 + 𝑝1 + 𝜌1𝑔ℎ1 =
1

2
𝜌𝑣2

2 + 𝑝2 + 𝜌2𝑔ℎ2      (3.4) 

The term 
1

2
𝜌𝑣2 is termed the dynamic pressure of the fluid. This is the kinetic energy of 

the fluid per unit volume. 

Example 3.4 

Oil of specific gravity 0.85 flows through a circular pipe of diameter 100 mm at a velocity 

= 5.3 m.s-1 and at ground level. A gauge records its pressure as 2.3 bar. Calculate its velocity 

as it enters a larger duct of diameter 150 mm, situated 3 m over ground level, assuming no 

energy losses, what would be the oil pressure at that larger section? 

Solution: 

𝐴1. 𝑣1 = 𝐴2. 𝑣2 → 𝐷1
2𝑣1 = 𝐷2

2𝑣2 → 0.12 × 5.3 = 0.152 × 𝑣2 → 𝒗𝟐 = 𝟐. 𝟑𝟔 m.s-1.  

𝑣1
2

2𝑔
+ 𝑝1

𝜌1𝑔
+ ℎ1 = 𝑣2

2

2𝑔
+ 𝑝2

𝜌2𝑔
+ ℎ2 →

5.32

2×9.81
+ 2.3×105

850×9.81
= 2.362

2×9.81
+ 𝑝2

850×981
+ 3  

This yields: 𝒑𝟐 = 𝟐𝟏𝟓𝟓𝟓𝟓. 𝟕 𝐏𝐚 ≡ 𝟐. 𝟏𝟒𝟔 𝐛𝐚𝐫. 

Example 3.5 

Water flows upwards in a vertical pipe of 5 cm diameter open upwards at the rate of 50 

m3.h-1 and a pressure of 50 kPa.  As it leaves the pipe, what is the highest level it can reach 

above the pipe outlet?  
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Solution: 

𝑣1
2

2𝑔
+ 𝑝1

𝜌1𝑔
+ ℎ1 = 𝑣2

2

2𝑔
+ 𝑝2

𝜌2𝑔
+ ℎ2 

𝐴1 = 0.25𝜋 × 0.052 = 0.001964 m2, 𝑣1 =
50

3600×0.001964
 = 7.07 m.s-1. 

7.072

2×9.81
+ 50000

1000×9.81
+ 0 = 0 + 0 + ℎ     → 𝒉 = 𝟕. 𝟔𝟒 𝐦  

3.3 Applications 

3.3.1 Liquid flowing out of an orifice  

Consider Figure (3.4) showing a tank filled with a liquid with an orifice at the side bottom. 

 

 

 

 

 

 

 

Fig 3.4: Tank with side orifice 

 

Let the original height of liquid in the tank = 𝐻, the tank diameter 𝐷 and the orifice diameter 

𝑑. It is required to determine ℎ, the height of the liquid in the tank at any time 𝑡, as function 

of that time. On applying Bernoulli equation between the free surface of the liquid in the 

tank and the outlet orifice, we note that both points are at atmospheric pressure. 

𝑣1
2

2𝑔
+ ℎ = 𝑣2

2

2𝑔
+ 0         (3.5) 

And, from continuity: 𝐷2𝑣1 = 𝑑2𝑣2 → 𝑣2 = 𝑣1. (
𝐷

𝑑
)

2

 

Substituting in Bernoulli equation: 

𝑣1
2

2𝑔
+ ℎ =

𝑣1
2

2𝑔
(

𝐷

𝑑
)

4

         (3.6) 

𝑣1 = √ℎ
√

2𝑔

(
𝐷
𝑑

)
4

− 1

 

1 

2 
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The velocity of the liquid in the tank is the rate at which the level varies 
𝑑ℎ

𝑑𝑡
. Hence, the 

previous equation can be written as: 

ℎ−1/2
𝑑ℎ

𝑑𝑡
=

√

2𝑔

(
𝐷
𝑑

)
4

− 1

 

Integrating between the original height of the liquid in the tank  𝐻 and any height ℎ: 

∫ ℎ−1/2. 𝑑ℎ =
√

2𝑔

(
𝐷
𝑑

)
4

− 1

∫ 𝑑𝑡

𝑡

0

ℎ

𝐻

 

Hence: 

√𝐻 − √ℎ =
1

2 √
2𝑔

(
𝐷

𝑑
)

4
−1

.t          

The denominator under the root can be approximated since 𝑑 ≪ 𝐷, as follows: 

(
𝐷

𝑑
)

4

− 1 =
𝐷4 − 𝑑4

𝑑4
≈

𝐷4

𝑑4
= (

𝐷

𝑑
)

4

 

The above equation then becomes: 

√𝐻 − √ℎ =
1

2
(

𝑑

𝐷
)

2

√2𝑔. 𝑡 

This equation assumes no friction losses at the orifice, which is not practical, because of 

its narrow opening. That is why, a factor is introduced in that equation to account for that 

loss: The discharge coefficient 𝐶𝑑 . This factor usually ranges from 0.65 to 0.9. This way, 

the previous equation becomes: 

√𝐻 − √ℎ =
𝐶𝑑

2
(

𝑑

𝐷
)

2

√2𝑔. 𝑡        (3.7) 

An interesting result can be obtained by setting ℎ = 0 in equation (3.6), which would give 

the time required to empty the tank, if the orifice is at its lowest level. 

On the other hand, in Equation (3.5), if the rate at which the liquid level in the tank is 

neglected with respect to the velocity of discharge from the orifice, we get: 

ℎ ≈ 𝑣2
2

2𝑔
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From this equation, one can determine the rate of discharge from the orifice. The discharge 

coefficient is included in the following equation, where 𝑎 represents the area of the orifice. 

𝑄 = 𝑎. 𝐶𝑑 . √2𝑔ℎ          (3.8) 

Example 3.6 

A cylindrical tank 1.6 m in diameter contains 4 m3 of water. An orifice of diameter 20 mm 

is opened at the bottom side of the tank. Calculate the rate of discharge from the orifice 

when the liquid reaches half its original level. Find the time required to empty the tank. 

(Take 𝐶𝑑 = 0.7) 

Solution: 

4 =
𝜋

4
× 1.62𝐻 → 𝐻 = 1.99 m ≈ 2 m    At one-half level: ℎ = 1 m 

𝑎 =
𝜋

4
× 0.022 = 0.000314 m2 

𝑄 = 𝑎. 𝐶𝑑 . √2𝑔ℎ → 𝑄 = 0.000314 × 0.7 × √2 × 9.81 × 1 = 𝟗. 𝟕𝟑𝟔 × 𝟏𝟎−𝟒 m3.s-1 

√𝐻 − √ℎ =
𝐶𝑑

2
(

𝑑

𝐷
)

2

√2𝑔. 𝑡 → √2 =
0.7

2
(

0.02

1.6
)

2

√2 × 9.81𝑡 → 𝒕 = 𝟓𝟖𝟑𝟖 𝐬 

Example 3.7 

In the figure, the discharge coefficient = 0.8. Calculate the rate of discharge from the side 

opening.  

Solution: 

First, the linear dimensions are converted to m. 

4 ft ≡ 4 × 0.305 = 1.22 m 

3 ft ≡ 3 × 0.305 = 0.915 m 

4" ≡ 4 × 0.0254 = 0.1016 m 

Applying Bernoulli equation in the form (3.8) between free 

liquid surface and opening (neglect the velocity of liquids in the tank): 

0 + 750 × 9.81 × 1.22 + 1000 × 9.81 × 0.915 =
1

2
× 1000𝑣2

2 + 0 + 0 

Hence: 𝑣2 ≈ 6 m.s-1 

𝑄 = 𝑎. 𝑣2 =
𝜋

4
× 0.10162 × 6 = 𝟎. 𝟎𝟒𝟖𝟔 m3.s-1 

3.3.2 The venturi-meter 

The Bernoulli equation can be used to measure the flow rate of a liquid in a duct by 

installing a constriction in its path. This can be a simple circular orifice, or more frequently 

a type of throat known as venturi-meter. Its principle relies on relating the flow rate to the 
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pressure drop occurring when a fluid is forced to pass through a restriction in its path. It 

was named after the Italian physicist Giovanni venturi who discovered this effect in 1797. 
This device is shown in Figure (3.5). It consists of two conical pipes joined by a throat. It 

is installed in the path of the liquid duct as shown in Figure (3.5). A U-tube manometer 

containing a liquid of density 𝜌𝑙 . Let the diameter of the pipe = 𝐷 and that of the venturi 

throat 𝑑. Let the difference between the liquid in manometer = ℎ. 

 

Fig 3.5: The venturi meter 

Applying Bernoulli equation between a point on the pipe and the throat: 

𝑣1
2

2𝑔
+ 𝑝1

𝜌1𝑔
+ 0 = 𝑣2

2

2𝑔
+ 𝑝2

𝜌2𝑔
+ 0  And since 𝜌1 = 𝜌2 = 𝜌 

This equation can be written in the form: 

𝑣1
2 = 𝑣2

2 −
2∆𝑝

𝜌
          (3.9)  

To obtain the value of pressure drop, consider the lower horizontal level of the liquid in 

manometer (to the left): 

∆𝑝 is the pressure drop between the two sides = 𝜌𝑔ℎ − 𝜌𝑙𝑔ℎ = 𝑔ℎ(𝜌 − 𝜌𝑙).      

The positive numerical value is ∆𝑝 = 𝑔ℎ(𝜌𝑙 − 𝜌) 

Substituting in (3.9): 

Hence: 𝑣1
2 = 𝑣2

2 −  
2𝑔ℎ(𝜌𝑙−𝜌)

𝜌
 

𝐷2𝑣1 = 𝑑2𝑣2 → 𝑣1 = 𝑣2. (
𝑑

𝐷
)

2

→ 𝑣2
2. (

𝑑

𝐷
)

4

= 𝑣1
2 = 𝑣2

2 −
2(𝜌𝑙 − 𝜌)

𝜌
ℎ𝑔 

 

𝑣2
2 (1 −

𝑑4

𝐷4
) =

2(𝜌𝑙 − 𝜌)

𝜌
ℎ𝑔 → 𝑣2 = √

2(𝜌𝑙 − 𝜌)
𝜌 ℎ𝑔

(1 −
𝑑4

𝐷4)
 

Since 𝑄 =
𝜋

4
𝑑2𝑣2, the latter equation can be written in the final form, assuming 𝐶𝑑 ≠ 1: 
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𝑄 = 𝐶𝑑
𝜋

4
𝑑2√

2(𝜌𝑙−𝜌)

𝜌
ℎ𝑔

(1−
𝑑4

𝐷4)
         (3.10) 

If the venturi is used to meter the flow rate of a gas, then it is common to neglect the density 

of the gas with respect to the liquid in the manometer, so that the previous equation reads: 

𝑄 = 𝐶𝑑
𝜋

4
𝑑2√

2𝜌𝑙
𝜌

ℎ𝑔

(1−
𝑑4

𝐷4)
         (3.11) 

 

Example 3.8 

A venturi meter is installed in a tube of 4” diameter with a 2” orifice to measure the flow 

rate of water. The manometric fluid is mercury and indicates a pressure drop of 45 mmHg. 

Calculate the flow rate in m3.h-1 if the discharge coefficient = 0.97. 

Solution: 

𝑑

𝐷
=

1

2
→ (

𝑑

𝐷
)

4

=
1

16
   

2(𝜌𝑙 − 𝜌)

𝜌
𝑔ℎ =

2 × (13600 − 1000)

1000
× 9.81 × 0.045 = 11.124 

𝑄 = 0.97 ×
𝜋

4
(2 × 0.0254)2

√
11.124

(1−
1

16
)
 = 6.77 × 10−3 m3.s-1 ≡ 𝟐𝟒. 𝟑𝟕 𝐦𝟑𝐡−𝟏 

Example 3.9 

A venturi meter is installed in a pipe of 200 mm in diameter where pressurized air at 1.8 

bar (abs.) and 15oC flows. The orifice of the venturi meter is 80 mm in diameter and the 

mercury reading = 230 mm. Estimate the flow rate of air assuming a discharge coefficient 

of 0.98. 

Solution: 

𝜌 = 
𝑝𝑀

103𝑅𝑇
=

1.8×105×29

8314×(15+273)
 = 2.18 kg.m-3  

Substituting in Equation (3.11): 

𝑄 = 0.98 ×
𝜋

4
0.082√

2×13600

2.18
×0.23×9.81

(1−
804

2004)
 = 𝟎. 𝟖𝟑𝟕 𝐦𝟑. 𝐬−𝟏 
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FLUID FLOW IN PIPES 

 

4.1 Pattern of flow in ducts 

The flow of fluids in ducts can be streamlined, as if the liquid is assumed to be composed 

of parallel layers, these flow parallel to the axis of the duct. This is called laminar (or 

streamline flow). 

If, on the contrary, the liquid particles move in their general direction in an erratic way, this 

is called turbulent flow. 

The criterion deciding about the type of flow in a circular duct is the Reynolds number 𝑹𝒆. 

This is a dimensionless entity defined by: 

𝑅𝑒 = 
𝜌𝑣𝐷

𝜇
           (4.1) 

The value of this number decides about the pattern of flow in the following way: 

• If 𝑅𝑒 < 2000, the flow is laminar. 

• If 𝑅𝑒 > 4000, the flow is turbulent. 

• For values of 𝑅𝑒 such that 2000 < 𝑅𝑒 < 4000, the flow passes through an 

intermediate transition zone, gradually shifting from laminar to turbulent. 

Example 4.1 

Crude oil flows in a pipe 12” in diameter at the rate of 600 m3.h-1 at 25oC. At that temperature, 

its density = 850 kg,m-3 and its viscosity = 11 cP. State whether the flow is laminar or not. 

Solution: 

𝐴 =
𝜋

4
× (12 × 0.0254)2 = 0.073 m2 

600

3600
= 0.073𝑣 → 𝑣 = 2.28 m.s-1 

𝑅𝑒 = 
850×2.28×12×0.0254

11×10−3  = 53700 > 4000 → 𝐓𝐮𝐫𝐛𝐮𝐥𝐞𝐧𝐭 𝐟𝐥𝐨𝐰 

4.2 Pressure drop in flow in circular ducts 

4.2.1 The Darcy equation  

 

 

 

 

Fig 4.1: Elemental section in circular duct 

dx 
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Consider a fluid flowing through a circular duct of inner radius 𝑅 and let an infinitesimal 

portion of length 𝑑𝑥 with radius 𝑟 be considered as a control volume of the fluid. The 

pressure just before this volume is 𝑝 and decreases to 𝑝 + 𝑑𝑝 at the end of the considered 

portion (𝑑𝑝 < 0). Therefore the net force acting on the fluid is −𝜋𝑟2. 𝑑𝑝. Also, the shear 

force due to movement along the walls is −2𝜋𝑟. 𝜏𝑑𝑥, where 𝜏 is the shear stress developed 

along a peripheral area = −2𝜋𝑟. 𝑑𝑥. If the velocity of the fluid is considered uniform, then 

the net force = 0. We get: 

−𝜋𝑟2. 𝑑𝑝 − 2𝜋𝑟. 𝑑𝑥 = 0 

𝑑𝑝

𝑑𝑥
= −

2𝜏

𝑟
            (4.2) 

A similar equation can be deduced for a control volume of radius 𝑅 and length 𝑑𝑥, where 

the shear stress will be developed at walls 𝜏𝑤 . 

𝑑𝑝

𝑑𝑥
= −

2𝜏𝑤

𝑅
           (4.3) 

A friction factor 𝒇 is defined as being the ratio between the shear stress at pipe walls 𝜏𝑤 

and the kinetic energy per unit volume of fluid (
1

2
𝜌𝑣2). From Equation (4.3):  

𝜏𝑤 = −
𝑅

2
.

𝑑𝑝

𝑑𝑥
          (4.4) 

𝑓 =
−𝑅

2
.
𝑑𝑝
𝑑𝑥

1

2
𝜌𝑣2

             (4.5) 

The term 
𝑑𝑝

𝑑𝑥
 can be approximated by −

∆𝑝

𝐿
, where 𝐿 is the length of the duct. This makes 

use of the following assumption: The pressure drop per unit length is constant along 

the pipe. The following equation, known as the Darcy equation, is obtained, bearing in 

mind that 𝐷 = 2𝑅: 

∆𝑝

𝐿
=

2𝑓𝜌𝑣2

𝐷
            (4.6) 

Example 4.2 

Water flows in a 50 mm pipe 120 m long at the rate of 23.9 m3.h-1. If the friction factor is 

assumed to equal 0.001, calculate the pressure drop due to walls friction. 

Solution: 

𝐴 =
𝜋

4
× 0.052 = 1.9635 × 10−3m2        

23.9

3600
= 1.9635 × 10−3𝑣 → 𝑣 = 3.381m. s−1  

Hence: 

∆𝑝

120
=

2×0.001×1000×3.3812

0.05
   

Hence: ∆𝒑 = 𝟓𝟒𝟖𝟕𝟓 𝐏𝐚 
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4.2.2 Velocity profile in circular duct at laminar flow 

When the flow is laminar, two assumptions can be made:  

• First, the velocity at walls is negligible with respect to that at axis. 

• Second, the velocity is a function of  𝑟 only, and not of 𝑥. 

From Equations (4.2) and (4.3), we get: 

𝜏 = 
𝜏𝑤.𝑟

𝑅
            (4.7) 

Following the definition of viscosity: 

𝜏 = 𝜇
𝑑𝑣

𝑑𝑟
           (4.8) 

Equating (2.7) and (2.8), one gets: 

𝜏𝑤.𝑟

𝑅
= 𝜇

𝑑𝑣

𝑑𝑟
  

𝑣 = 
𝜏𝑤

𝜇.𝑅
 ∫ 𝑟. 𝑑𝑟

𝑅

𝑟
  

𝑣 = 
𝜏𝑤

2𝜇.𝑅
 (𝑅2 − 𝑟2)          (4.9) 

This equation reveals that the distribution of velocity in laminar flow is parabolic as seen 

in Figure (4.2). 

 

Fig 4.2: Radial velocity profile in laminar flow 

The maximum velocity 𝑣𝑚𝑎𝑥 is seen to exist at the center line, as 𝑟 = 0. Substituting in 

the above equation, we get: 

𝑣𝑚𝑎𝑥 = 
𝜏𝑤.𝑅

2𝜇
          (4.10) 

From Equations (4.9) and (4.10), we get: 

𝑣 = 𝑣𝑚𝑎𝑥 (1 − (
𝑟

𝑅
)

2

)         (4.11) 

The average velocity can be proved to equal ½ the maximum velocity. From equation 

(4.10), it equals: 

�̅� = 
𝜏𝑤.𝑅

4𝜇
          (4.12) 
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4.2.3 Pressure drop for laminar flow in circular ducts 

In the next sections, we will only deal with the average velocity of the fluid, so that it will 

be more convenient to simply write it as 𝑣 instead of �̅�. 

From Equations (4.12) and (4.4): 

𝑣 = 
𝜏𝑤.𝑅

4𝜇
 and 𝜏𝑤 = −

𝑅

2
.

𝑑𝑝

𝑑𝑥
 

Making use of the assumption that −
𝑑𝑝

𝑑𝑥
 = 

∆𝑝

𝐿
, we can write: 𝑣 = 

𝐷

4
.
∆𝑝

𝐿
.
𝐷

2

4𝜇
 

∆𝑝

𝐿
=

32𝜇𝑣

𝐷2            (4.13) 

This equation, known as the Hagen – Poiseuille equation, is used to predict the pressure 

drop in laminar flow. 

It is worth noticing that the shear rate at walls can be related to the average fluid velocity 

from Equation (4.12) since 𝜏𝑤 = 𝜇�̇�𝑤. This yields: 

𝑣 = 
�̇�𝑤.𝑅

4
=

�̇�𝑤.𝐷

8
 

�̇�𝑤 = 
8𝑣

𝐷
           (4.14) 

4.2.4 Determination of the friction factor 𝒇 

Comparing Equation (4.13) with (4.6): 

2𝑓𝜌𝑣2

𝐷
=

32𝜇𝑣

𝐷2                 𝑓 = 
16𝜇

𝜌𝑣𝐷
 

Hence, for laminar flow: 

𝑓 = 
16

𝑅𝑒
           (4.15). 

For transition and turbulent flow, the value of f not only depends on the Reynolds 

number, but also on the roughness of the internal surface of the pipe. Because of 

manufacturing defects and eventual erosion and corrosion, asperities develop along the 

internal surface. The absolute roughness 𝜖 is the average height or depth of these defects. 

The relative roughness is obtained by dividing the average absolute roughness by the 

internal pipe diameter = 𝜖/𝐷. 

The value of 𝑓 is obtained from generalized charts known as Moody charts. These are 

curves obtained experimentally and shown as a log – log plot between 𝑓 and 𝑅𝑒 for 

different values of relative roughness.  

For laminar flow, if the logarithms of both sides of Equation (4.15) are taken we get: 
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ln 𝑓 = ln 16 − ln 𝑅𝑒         

On a ln 𝑓 − ln 𝑅𝑒 plot, this relation will show up as a straight line with slope = −1., that is 

sloping 135o to the horizontal. 

Moody charts are shown in Figure (4.3). The line corresponding to laminar flow does not 

look like sloping 135o, as predicted. The reason is that the horizontal axis on the chart starts 

at number 102. 

Fig 4.3: Moody charts 

Example 4.3 

Crude oil (Specific gravity = 0.86) flows inside a stainless-steel pipe of 18” diameter at 

1800 m3.h-1, with relative roughness = 2 × 10−5. The pipe is 200 m long and the kinematic 

viscosity of the crude = 11 cSt. Determine the pressure drop in bar. 

Solution: 

𝜌 = 860 kg.m-3 and 𝜈 = 11 × 10−6 m2.s-1  

Hence, 𝜇 = 860 × 11 × 10−6 = 0.00946 Pa.s 

𝐴 =
𝜋

4
× (18 × 0.0254)2 = 0.1642 m2 

𝑣 = 

1800

3600

0.1642
 = 3.0456 m.s-1 
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𝑅𝑒 = 
860×3.0456×18×0.0254

0.0946
 = 126584 > 4000  Turbulent flow 

From Figure (4.3), at the given relative roughness and 𝑅𝑒 ≈ 125000, 𝑓 = 0.016   

From equation (4.6): 

∆𝑝

200
=

2×0.016×860×3.04562

18×0.0254
 = 111665 Pa ≡ 𝟏. 𝟏𝟏𝟕 𝐛𝐚𝐫 

Example 4.4 

Molasse is being transported in a pipe 30 m long and 60 mm in diameter, at the rate of 45 

L.min-1, The density and the viscosity of molasse at the prevailing temperature are 1500 

kg.m-3 and 8100 cP respectively. Evaluate the pressure drop in kPa.  

Solution: 

𝐴 =
𝜋

4
× 0.062 = 2.2827 × 10−3m2 

𝑣 = 

0.045

60

2.2827×10−3
 = 0.265 m.s-1 

𝑅𝑒 = 
1500×0.265×0.06

8.1
 = 2.947 < 2000  Laminar flow 

∆𝑝

30
=

32×8.1×0.265

0.062   → ∆𝑝 = 572957 Pa ≡ 𝟓𝟕𝟑 𝐤𝐏𝐚 

4.2.5 Head losses due to interruptions in the fluid path 

When a fluid flows in a pipe, it often encounters obstacles that interrupt its flow, causing 

the fluid pressure to drop. The main interruptions to flow are: 

• Sudden enlargement 

• Sudden contraction  

• Gradual enlargement 

• Gradual contraction 

• 90o threaded elbows 

• 90o flanged elbows 

• Valves (Globe) 

The general form of head losses due to interruptions is: 

ℎ𝑙𝑜𝑠𝑠 = 𝐾.
𝑣2

2𝑔
           (4.16) 

The values of the constant 𝐾 for different types of interruptions, together with 

diagrammatic representations of these cases are illustrated in Table (4.1). 
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Therefore, in flow of fluid through circular ducts, the head losses due to friction and 

interruptions have both to be taken into consideration. This results in rewriting Bernoulli 

equation in the following generalized form: 

𝑣1
2

2𝑔
+ 

𝑝1

𝜌1𝑔
+ ℎ1 = 

𝑣2
2

2𝑔
+ 

𝑝2

𝜌2𝑔
+ ℎ2 +  

2𝑓𝐿𝑣2

𝑔.𝐷
+ ∑ 𝐾𝐿𝑖 .

𝑣2

2𝑔
       (4.17) 

The friction head loss 
2𝑓𝐿𝑣2

𝑔.𝐷
 is deduced from Equation (4.6) by dividing by 𝜌𝑔. 

Table 4.1: Values of 𝑲 for flow interruptions 

Type  Diagrammatic Representation 𝑲 

Sudden enlargement 

 

(𝟏 − (𝒅/𝑫)𝟐)𝟐 

Sudden contraction  

 

0.2 – 0.5 

Gradual 

enlargement 
 

0.02 – 0.05  

Gradual contraction 

 

0.2 – 0.6  

90o threaded elbow 

 

0.9 

90o flanged elbow 0.3 

Open globe valve 

 

10 

 

4.2.6 Pumping power 

Pumps are used to overcome the different lead losses besides imparting higher velocities 

and pressures to the pumped liquid.  
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The pumping power (W) is calculated by knowing the total pressure difference (Pa) and 

the volumetric flow rate (m3.s-1) by use of the following equation: 

P = 
𝑄.∆𝑃

𝜼
           (4.18) 

Here, 𝜂 is the pump efficiency, which normally varies from 0.6 to 0.9.  

It is also possible to express the power in horsepower (hp) by dividing the power in Watt 

by 735. This is known as the Break Horsepower of the pump (BHP). 

The pressure difference is obtained as follows: A pump must in general supply the three 

types of heads besides overcoming head losses. The pressure difference that must be 

overcome by the pump ∆𝑝 is calculated from the Bernoulli equation as follows: 

Let the initial pressure be 𝑝1, the velocity 𝑣1and the vertical height ℎ1 and let the 

corresponding conditions following the pump be 𝑝2, 𝑣2and ℎ2. Then: 

∆𝑝 = 
1

2
𝜌2𝑣2

2 + 𝜌2𝑔ℎ2 + 𝑝2 − (
1

2
𝜌1𝑣1

2 + 𝜌1𝑔ℎ1 + 𝑝1) + ∆𝑝𝑙𝑜𝑠𝑠𝑒𝑠   (4.19) 

Example 4.5 

The pump shown discharges water at 57 m3.h-1. Estimate the pump horsepower in kW, 

assuming 70% efficiency. 

 

 

 

 

 

Solution: 

𝐴1 =
𝜋

4
× 0.092 = 6.636 × 10−3m2 𝑣1 = 

57

3600

6.636×10−3  = 2.488 m.s-1 

𝐴2 =
𝜋

4
× 0.032 = 7.069 × 10−4m2 𝑣2 = 

57

3600

7.069×10−4  = 22.4 m.s-1 

𝑝1 = 120000 Pa 

𝑝2 = 400000 Pa 

Substituting in Equation (4.19), assuming no losses: 

∆𝑝 = 
1

2
× 1000 × 22.42 + 400000 − (

1

2
× 1000 × 2.4882 + 120000) = 527770 Pa 

P = 

57

3600
×527770

0.7×1000
 = 𝟏𝟏. 𝟗𝟒 𝐤𝐖 
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Example 4.6  
When the pump shown in figure draws water from the 

reservoir at the rate of 220 m3.h-1, the head losses = 5 m. 

Estimate the pump theoretical power in kW.  

Solution: 

𝐴1 =
𝜋

4
× 0.122 = 0.01131m2 

𝑣1 = 

220

3600

0.01131
 = 5.403 m.s-1 

𝐴2 =
𝜋

4
× 0.052 = 1.963 × 10−3m2 

𝑣2 = 

220

3600

1.963×10−3
 =31.131 m.s-1 

∆𝑝𝑙𝑜𝑠𝑠𝑒𝑠 = 5 × 1000 × 9.81 = 49050 Pa 

Applying Equation (4.19): 

∆𝑝 = 
1

2
× 1000 × 31.1312 + 2 × 1000 × 9.81 + 49050 − (

1

2
× 1000 × 5.4032)  =

538643 Pa 

P = 

220

3600
×538643

1000
 = 𝟑𝟐. 𝟗 𝐤𝐖 

Example 4.7 

In the figure, water flows at 54 m3.h-1 in a 60 mm pipe in position (1). The head friction 

losses amount to 5.2 m and two 90o flanged elbows are placed on the line.  A pump is to 

raise water at a level of 3 m and delivers it to a nozzle 30 mm in diameter at position (2). 

Assuming 70% efficiency, calculate the BHP of the pump.  

Solution: 

𝐴1 =
𝜋

4
× 0.062 = 2.827 × 10−3m2 𝑣1 = 

54

3600

2.827×10−3  

= 5.306 m.s-1 

𝐴2 =
𝜋

4
× 0.032 = 7.069 × 10−4m2 𝑣2 = 

54

3600

7.069×10−4  

= 21.22 m.s-1 

∆𝑝𝒍𝒐𝒔𝒔 = 5.2 × 1000 × 9.81 = 51012 Pa   

∆𝑝𝒆𝒍𝒃𝒐𝒘𝟏 = 1000 × 0.3 ×
5.3062

2
= 4223 Pa 

  3 
m 

(1) 

(2) 
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∆𝑝𝒆𝒍𝒃𝒐𝒘𝟐 = 1000 × 0.3 ×
21.222

2
= 67543 Pa 

∆𝑝 = (
1

2
× 1000 × 21.222 + 3 × 9.81 × 1000 + 4223 + 67543 + 51012) −

(
1

2
× 1000 × 5.3062) = 363275 Pa 

P = 

54

3600
×363275

0.75×735
 = 9.88 → 𝟏𝟎 𝐡𝐩 

4.3 Pressure drop of compressible fluids 

To evaluate the pressure drop in the flow of compressible fluids, care must be taken that 

gases suffer from changes in their densities as pressure is varied. Also, A variation in 

temperature will likewise cause a change in density. The continuity equation must be 

applied therefore in its general form: 

𝜌1. 𝐴1. 𝑣1 = 𝜌2. 𝐴2. 𝑣2         (3.1) 

The density is determined from the expression: 

𝜌 = 
𝑝𝑀

103𝑅𝑇
           (1.6) 

Example 4.9 

Warm air enters a circular duct of 12” diameter at a pressure of 1.08 bar and at 35oC. Along 

the path cools down and at the end of the pipe, it is discharged to the atmosphere at 25oC. 

If the velocity of warm air = 6 m.s-1, at what velocity is it discharged at the end of the duct? 

(Neglect pressure losses). 

Solution: 

Since there is no variation in pipe diameter, then: 𝜌1. 𝑣1 = 𝜌2. 𝑣2 

Equation (1.6) reveals that density is inversely proportional to temperature (K). Hence: 

𝜌2

𝜌1

=
𝑝2𝑇1

𝑝1𝑇2

=
1

1.08
×

35 + 273

25 + 273
=

308

321.84
=

𝑣1

𝑣2

=
6

𝑣2

 

Consequently: 

𝒗𝟐 = 𝟔. 𝟐𝟕 𝐦. 𝐬−𝟏 

Example 4.10 

Natural gas possesses a molecular weight=17 and is assumed to behave ideally. It enters a 

horizontal circular duct 18” in diameter at a speed of 36 m.s-1 and 30oC at an absolute 

pressure of 15.2 psi. What would be the pressure at the outlet if it cools down to 20oC. 

(Neglect head losses) 

Solution: 
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The Bernoulli equation is applied in the form: 

1

2
𝜌1𝑣1

2 + 𝜌1𝑔ℎ1 + 𝑝1 =
1

2
𝜌2𝑣2

2 + 𝜌1𝑔ℎ2 + 𝑝2 

The inlet pressure = 15.2 psi ≡ 1.034 atm. ≡ 1.0476 bar ≡ 1.0476×105 Pa 

𝜌1 = 
𝑝1𝑀

103𝑅𝑇
=

1.0476×105×17

1000×8.314×(30+273)
 = 0.707 kg.m-3. 

𝜌2 = 
𝑝2𝑀

103𝑅𝑇
=

𝑝2×17

1000×8.314×(20+273)
 = 6.98 × 10−6𝑝2 kg.m-3 

𝜌1. 𝑣1 = 𝜌2. 𝑣2 → 0.707 × 36 = 6.98 × 10−6𝑝2 𝑣2 → 𝑣2 =
3.646×106

𝑝2
  (i) 

1

2
𝜌1𝑣1

2 + 𝑝1 =
1

2
𝜌2𝑣2

2 + 𝑝2 

1

2
× 0.707 × 362 + 1.0476 × 105 =

1

2
× 6.98 × 10−6𝑝2 × (

3.646 × 106

𝑝2

)

2

+ 𝑝2 

105218.14 = 3.49 × 10−6 ×
13.065 × 1012

𝑝2

+ 𝑝2 

105218.14𝑝2 = 4.559 × 107 + 𝑝2
2 

Solving the quadratic equation 𝑝2
2 − 105218.14𝑝2 + 4.559 × 107 = 0 yields two positive 

solutions: 

𝑝2 = 1.0478 × 105 Pa and 435 Pa. 

The inlet total pressure (Static + dynamic) being 1.274×105 Pa, the first solution is the more 

logical one.  

𝒑𝟐 = 𝟏. 𝟎𝟒𝟕𝟖 × 𝟏𝟎𝟓 𝐏𝐚 

Had the second solution been chosen, the outlet speed would have equaled 8381 m.s-1. That 

is, more than five times the speed of sound in water (about 1500 m.s-1).  

4.4 Choice of pipes 

4.4.1 The schedule number 

As materials with higher mechanical strength and higher corrosion resistance properties 

were developed, it became possible to vary the thickness of pipes considerably. To 

accommodate the many pipe thickness sizes developed, the schedule (SCH) system was 

invented. This system standardizes pipe thickness. Actually, in all previous sections, the 

symbol 𝐷 referred to the internal pipe diameter whereas pipes are usually defined by their 

nominal diameter.  
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The nominal diameter is a standard diameter characterizing the pipe, to which may 

correspond more than one inner and outer diameter. 

For example, a pipe with nominal diameter 40 mm, can have several inner diameters 

corresponding to a fixed outer diameter, depending on its schedule number which 

determines its thickness, as can be followed in the following table: 

 

Table 4.2: Schedule numbers of pipe with nominal diameter 40 mm 

Schedule # 5 10 – 20  30 40 80 

𝑫𝒐𝒖𝒕 𝐦𝐦 48.26 mm 

Thickness mm 1.651 2.769 3.175 3.683 5.080 

𝑫𝒊𝒏 𝐦𝐦 44.958 42.722 41.985 40.894 38.10 

 

4.4.2 Choice of proper pipe schedule 

The thickness of a pipe depends on the maximum gauge pressure developed inside the pipe 

and the material of construction of the pipe. In general, for a thickness 𝑡 mm, the internal 

pressure is related to the maximum allowed tensile stress of the pipe material by the 

formula: 

𝜎𝑚𝑎𝑥 = 
𝑝.𝐷𝑖𝑛

2𝑡−𝐶
          (4.20) 

In that equation: 

𝑝  is the gauge pressure (Pa) 

𝐷𝑖𝑛  is the inner pipe diameter (mm) 

𝐶  is termed corrosion allowance (mm) 

𝜎𝑚𝑎𝑥  is the maximum allowable stress (Pa) 

The value of 𝐶 depends on the type of fluid and its corrosive or erosive nature. It usually 

ranges from 0 to 6 mm. 

The maximum allowable strength depends on the type of material used for the pipe. Table 

(4.3) gives it value for some common pipe materials. 

Table 4.3: Approximate maximum allowable stress (MPa) 

Material Low C steel Stainless steel Nickel Polypropylene 

Max All. Stress 124 – 138  138 – 186  275 – 372  1.93 

 

Example 4.11 

A 40 mm Schedule 40 polypropylene pipe is used to handle domestic water. Considering a 

zero-corrosion allowance, what is the maximum gauge pressure this pipe can withstand? 
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Solution: 

𝐷𝑖𝑛 = 40.894 mm 

𝑡 = 3.683 mm 

𝐶 = 0 

1.93 × 106 = 
𝑝×40.984

2×3.683
  Hence, 𝒑𝒎𝒂𝒙 = 𝟑𝟒𝟔𝟖𝟕𝟔 𝐏𝐚 ≡ 𝟑. 𝟒𝟕 𝐛𝐚𝐫 

Example 4.12 

Water is pumped from the basement of a building from a water tank to a level 30 m higher 

at the rate of 10.4 m3.h-1 in a 40 mm Schedule 30 carbon steel pipe to deliver it at 

atmospheric pressure. The total losses correspond to a head of 6.3 m. Calculate the pressure 

developed by the pump and find whether the pipe can withstand that pressure. (Assume 

𝐶 = 0.and neglect the initial velocity of water)  

Solution: 

From Table (4.2), for the chosen pipe: 𝐷𝑖𝑛 = 0.041985 m  

𝐴1 =
𝜋

4
× 0.0419852 = 1.384 × 10−3m2 𝑣1 = 

10.4

3600

1.384×10−3
 = 2.087 m.s-1 

∆𝑝 = 
1

2
× 1000 × 2.0872 + (6.3 + 30) × 9.81 × 1000 = 358281 Pa 

Maximum allowable stress = 1.24 × 108 Pa        Lowest strength from Table (4.3) 

Thickness = 3.175 mm  

𝜎 =  
358281×41.985

2×3.175
 =  2.37 × 106 < 1.24 × 108  

Therefore, the pipe will withstand the pressure. 
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CHAPTER 5 

FLOW PAST IMMERSED BODIES 

 

5.1 Flow streamlines 

These are hypothetical lines showing the direction of the velocity vector of the fluid in its 

different regions. These indicate the direction of motion of the different layers of the fluid 

(Figure 5.1). 

 

 

 

 

 

 

 

Fig 5.1: Streamlines in flow through a duct 

In the case of laminar flow, these lines are almost parallel during the flow of a fluid in a 

duct, whereas they take more erratic directions in the case of turbulent flow. (Figure 5.2). 

 

 

 

 

 

Fig 5.2: Streamlines in laminar and turbulent flow 

5.2 Flow past rigid bodies 

5.2.1 Patterns of flow 

In case of flow past a body, like a cylindrical disk, the idealized pattern would indicate 

regular streamlines only disturbed by the body, to re-align once more after crossing the 

body. What actually happens is that strong disturbances occur as a result of impingement 

against the body, strongly disrupting the regular flow pattern. (Figure 5.3) 
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Fig 5.3: Idealized and actual flow pattern for flow past a disk 

5.2.2 The drag force 

As a result of the disturbance following flowing past an immersed body, a force acting on 

the body develops, known as the drag force. Following Newton’s third law, the solid 

opposes a force of equal magnitude and opposite direction to fluid motion. This is defined 

as follows: 

𝐹𝑑 =
1

2
𝐶𝑑𝜌𝑣2𝐴𝑝          (5.1) 

Where: 

𝐶𝑑 is known as the drag coefficient and is generally a function of Reynolds number. 

𝐴𝑝 is the frontal projected area opposed to fluid flow 

For flow past a plate of length 𝐿, thickness 𝑡 and breadth 𝑏, the drag coefficient is 

calculated from: 

𝐶𝑑 = 1.328𝑅𝑒𝐿
−0.5 (𝑅𝑒 < 1)       (5.2)  

 

 

 

 

 

 

Fig 5.4: Flow past a plate 

𝐶𝑑 = 1   (𝑅𝑒 > 2000) 

Where 𝑅𝑒𝐿 is the Reynolds number based on the length of the plate. 

L 

b  
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If 1 < 𝑅𝑒 < 2000, special charts relating the drag coefficient to 𝑅𝑒 must be used. 

In that case, 𝐴𝑝 = 𝑏. 𝑡 

For flow past a cylinder in a direction perpendicular to its axis (Figure 5.3), in laminar 

flow (𝑅𝑒 <  1), the drag coefficient is related to Reynolds number by the following 

expression, where the Reynolds number is based on the diameter of the cylinder.: 

𝐶𝑑 = 10𝑅𝑒−1          (5.3) 

For turbulent flow, 𝑅𝑒 > 1000, the drag coefficient is almost constant 𝐶𝑑 ≈ 1. 

In that case, the projected area is 2𝑅. ℎ 

For flow past a sphere, in laminar flow (𝑅𝑒 <  1), the drag coefficient is related to 

Reynolds number by the following expression, where the Reynolds number is based on the 

diameter of the sphere: 

𝐶𝑑 = 24𝑅𝑒−1          (5.4) 

For turbulent flow, 𝑅𝑒 > 2000, the drag coefficient is almost constant at 𝐶𝑑 ≈ 0.44. 

The projected area = 𝜋𝑅2. 

Example 5.1 

In a river of approximate rectangular shape of width 8 m and water height = 2.8 m, water 

flows at 36 m3.s-1. It encounters in its flow a large concrete cube of side = 800 mm weighing 

1.56 ton. Calculate the drag force acting on the rock.  

Solution: 

𝐴 = 8 × 2.8 = 22.4 m2 → 𝑣 =
36

22.4
= 1.607 m. s−1 

𝑅𝑒 =  
1000×1.607×0.8

0.001
 = 1285600 > 2000 

𝐶𝑑 = 1 →   𝐹𝑑 =
1

2
𝐶𝑑𝜌𝑣2𝐴𝑝 = 0.5 × 1 × 1000 × 1.607 2 × 0.82 = 𝟖𝟐𝟔 𝐍 

Example 5.2 

Molasse of specific gravity 1.45 flows in a pipe at 0.2 m.s-1 past a spherical pebble of 5 

mm diameter. Estimate the drag force due to the presence of the pebble in the fluid path 

(Viscosity = 7900 Pa.s). 

Solution: 

𝑅𝑒 =  
1450×0.2×0.005

7.9
 = 0.1835 < 1   

Therefore 𝐶𝐷 =  
24

0.1835
= 130.8 
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𝐴𝑝 = 0.25𝜋 × 0.0052 = 1.9635 × 10−5m2 

𝐹𝑑 =
1

2
130.8 × 1450 × 0.22 × 1.9635 × 10−5 = 𝟎. 𝟎𝟕𝟒𝟓 𝐍 

Example 5.3 

Water flows in a channel at 2.5 m.s-1, when it crosses a cylindrical obstacle 50 mm in 

diameter and 300 mm high. Evaluate the drag force. 

Solution: 

𝑅𝑒 =  
1000×2.5×0.05

0.001
 = 1.25 × 105 > 1000  Hence, 𝐶𝐷 = 1 

𝐴𝑝 = 0.05 × 0.3 = 0.015 m2 

𝐹𝑑 =
1

2
× 1 × 1000 × 2.52 × 0.015 = 𝟒𝟔. 𝟖𝟕𝟓 𝐍 

Example 5.4 

The van in the figure is 1904 mm wide and 2170 mm high. It moves at a velocity of 100 

km.h-1, facing incoming wind in the opposite direction at 35 km.h-1 at 20oC and about 1 

atm. Under these conditions, the drag coefficient is assumed to be constant and equals 0.6. 

Evaluate the drag force acting on the car. 

Solution: 

𝐴𝑝 = 1.904 × 2.17 = 4.132 m2 

The actual velocity of air is the relative velocity between the wind and 

the car = 100 + 35 = 135 km. h−1 =
135000

3600
= 37.5 m. s−1 

𝜌 = 
𝑝𝑀

103𝑅𝑇
=

1.0132×105×29

1000×8.314×(273+20)
= 1.206 kg.m-3 

𝐹𝑑 =
1

2
× 0.6 × 1.206 × 37.52 × 4.132 = 𝟐𝟏𝟎𝟐 𝐍  

5.2.3 An application: Fall of a sphere in a fluid medium 

When a body falls vertically into a fluid, there is a relative motion between the fluid and 

the sphere so that the drag force, as calculated from the last section, can be applied.  

Consider the vertical motion of a spherical body of density 𝜌𝑠  and diameter 𝐷 in a fluid 

medium of density 𝜌𝑓. As can be seen in Figure (5.5), this body is under the action of three 

vertical forces: 

• Gravity force 𝐹𝑔, which represents its weight = 𝜌𝑠𝑉𝑔 

• Buoyant force 𝐹𝑏, which, according to Archimede’s principle, equals the weight of 

the displaced fluid = 𝜌𝑓𝑉𝑔 
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• Drag force 𝐹𝑑, calculated from Equation (5.3) =
1

2
𝐶𝑑𝜌𝑣2𝐴𝑝 

 

 

 

 

 

 

 

Fig 5.5: Forces acting on a sphere falling through a fluid 

The equation of motion of this body can be written as: 

𝜌𝑠𝑉𝑔 − 𝜌𝑓𝑉𝑔 −
1

2
𝐶𝑑𝜌𝑓𝑣2𝐴𝑝  = 𝑚

𝑑𝑣

𝑑𝑡
       (5.5) 

In general, the velocity of the body decreases in the first few centimeters to reach a uniform 

velocity so that 𝑑𝑣/𝑑𝑡 = 0, and the body reaches a terminal velocity 𝒗𝒕.  

Since the body is spherical in shape, then:  

𝑉 = 
4𝜋

3
𝑟3 and 𝐴𝑝 = 𝜋𝑟2, which on substituting in Equation (5.5) as the body reaches its 

terminal velocity, yields: 

𝑣𝒕
𝟐 = 

8𝑟(𝜌𝑠−𝜌𝑓)𝑔

3𝐶𝑑𝜌𝑓
         (5.6) 

The Reynolds number is defined as follows: 

𝑅𝑒 = 
𝜌𝑓.𝑣𝑡.𝐷

𝜇
           (5.7) 

If the flow is laminar (𝑅𝑒 < 1), then, according to Equation (5.5), 𝐶𝑑 = 24𝑅𝑒−1. 

Substitution of 𝑅𝑒 from Equation (5.9), and noticing that 𝑟 = 𝐷/2, an expression for 𝑣𝑡  

appears in the following form, known as Stokes law: 

𝑣𝑡 = 
𝑔𝐷2(𝜌𝑝−𝜌𝑓)

18𝜇
           (5.8) 

If the flow is turbulent (𝑅𝑒 > 2000), then 𝐶𝑑 ≈ 0.44, and the following form for 𝑣𝑡 is 

obtained: 
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𝑣𝑡 = √
3𝑔𝐷(𝜌𝑝−𝜌𝑓)

𝜌𝑓
          (5.9)  

For values of Reynolds numbers ranging from 1 to 2000, charts for 𝐶𝑑 as function of 𝑅𝑒 

are rather used. 

In calculating the terminal velocity, care should be taken to check the Reynolds number 

after obtaining the value of 𝑣𝑡 to ensure that the right equation has been used. 

Example 5.5 

10 μm spherical dust particles of density 700 kg.m-3 settle in air at 25oC in a chamber 2 m 

high. At that temperature, the viscosity of air = 0.018 cP. Calculate the time required for 

these particles to settle. 

Solution: 

Assuming Stokes law to apply, the density of air is first calculated: 

𝜌 = 
𝑝𝑀

103𝑅𝑇
=

1.0132×105×29

1000×8.314×(273+25)
= 1.186 kg.m-3 

Substituting in equation (5.10): 

𝑣𝑡 = 
9.81×(10−5)2×(700−1.186)

18×1.8×10−5  = 0.00212 m. s−1 

Time required to reach bottom of chamber = 
2

0.00212
 = 𝟗𝟒𝟓 𝐬 

Check on Re: 

𝑅𝑒 = 
1.186×0.00212×10−5

1.8×10−5  = 1.39 × 10−3 ≪ 1. The use of Stokes law is justified. 

Example 5.6 

Spherical oil drops of diameter 100 μm are allowed to rise in a water tank 3 m high. Their 

density = 800 kg.m-3 and their viscosity = 25 cP. Calculate the time required to free water 

from oil. 

Solution: 

Assuming Stokes law to apply: 

𝑣𝑡 = 
9.81×(10−4)2×(1000−800)

18×0.001
 = 1.09 × 10−3 m. s−1 

Time required for oil to reach the top = 
3

1.09×10−3
 = 𝟐𝟕𝟓𝟐 𝐬 

Check on Re: 𝑅𝑒 = 
1000×0.00109×10−4

0.001
 = 0.109 ≪ 1. The use of Stokes law is justified 
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Example 5.7 

A spherical 2 kg steel ball of density 7850 kg.m-3, is left to fall in water. Calculate its 

terminal settling velocity. 

Solution: 

Volume of ball = 
2

7850
 = 

4𝜋

3
𝑟3 → 𝑟 = 0.0393m → 𝐷 = 0.0786 m 

If Stokes law is assumed to apply: 

𝑣𝑡 = 
9.81×(0.0786)2×(7850−1000)

18×0.001
 = 415149 m. s−1, which is impossible. 

So, we assume that equation (5.11) applies: 

𝑣𝑡 = √
3𝑔𝐷(𝜌𝑝−𝜌𝑓)

𝜌𝑓
= 𝑣𝑡 = √

3×9.81×0.0796×(7850−1000)

1000
 = 𝟒 𝐦. 𝐬−𝟏 

Check on Re: 𝑅𝑒 = 
1000×4×0.257

0.001
 = 1.03 × 106 ≫ 2000.  

The use of equation (5.9) is justified 
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CHAPTER 6 

FLOW OF NON-NEWTONIAN FLUIDS 

 

6.1 Introduction 

The basic definition of viscosity is based on the following equation, which shows that this 

parameter is the proportionality constant of the linear dependence of shear stress on shear 

rate” 

𝜏 = 𝜇. 𝛾 ̇            (1.2) 

Some liquids, however, do not follow this simple rule, as the relation between 𝜏 and �̇� is 

not as simple as that expressed in Equation (1.2). Such fluids are called Non – Newtonian 

and the study of their properties is called Rheology. The relation between shear stress and 

shear rate is called the constitutive law of the fluid. The general form of that law is: 

𝜏 = 𝑓(𝛾) ̇            (6.1) 

The importance of rheology resides in the fact that non – Newtonian fluids are very 

common in engineering applications, and the application of the conventional equations of 

flow does not lead to satisfactory results for the prediction of pressure drop. 

6.2 Classification of non – Newtonian fluids 

There are three main categories of non – Newtonian fluids, namely: Time independent 

fluids, time dependent fluids and visco-elastic fluids. Since most non – Newtonian fluids 

encountered in practice are of the first type, this will represent the main topic discussed in 

this chapter. The main types included in that category are detailed in the following sections. 

6.2 Bingham fluids 

6.2.1 Constitutive law 

Bingham fluids possess a constitutive law close to that of Newtonian fluids (1.2), except 

for the presence of a constant term in the equation, taking the form: 

𝜏 = 𝜏0 + 𝑘. 𝛾 ̇           (6.2) 

The constant term 𝜏0 is known as the yield stress, which represents the initial stress 

necessary to initiate motion. The constant 𝑘 is known as the plastic viscosity, and its 

physical meaning can be understood by dividing both sides of Equation (6.2) by 𝛾 ̇ . 

𝜏

𝛾 ̇
=

𝜏0

𝛾 ̇
+ 𝑘 



43 

 

The LHS represents the viscosity of the liquid, which is seen to decrease with the shear 

rate. As 𝛾 ̇ → ∞,
𝜏

𝛾 ̇
→ 𝑘. This means that the plastic viscosity is the limiting viscosity of the 

liquid at very high values of shear rate. That is why, it is often referred to as 𝜇∞.  

Figures (6.1) and (6.2) show the shear stress – shear rate and the viscosity shear rate 

relations for Bingham fluids, against Newtonian fluids. 

 

 
 

Fig 6.1: Shear stress – Shear rate relation for Bingham fluids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.2: Viscosity – Shear rate relation for Bingham fluids 
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Examples of Bingham behavior are particularly found in the oil drilling industry, where 

most drilling fluids belong to that type. Other examples include toothpaste, tomato sauce 

and some types of paints.  

6.2.2 Pressure drop correlation for Bingham fluids 

To determine the pressure drop in case of Bingham flow, the Darcy equation is used: 

∆𝑝

𝐿
=

2𝑓𝜌𝑣2

𝐷
            (4.6) 

The main problem is the determination of the friction factor f, since it cannot be obtained 

using the conventional methods used for Newtonian fluids. Since most Bingham fluid flow 

is laminar, this will be the only case of interest.  

The Reynolds number is defined by Equation (4.1) as is the case in Newtonian fluids: 

𝑅𝑒 = 
𝜌𝑣𝐷

𝜇∞
           (4.1) 

Another dimensionless group, known as the Hedström number is used in that contest. It is 

defined as follows: 

𝐻𝑒 = 
𝜌𝜏0𝐷

𝜇∞
2            (6.3) 

The friction factor is then calculated from the following expression: 

𝑓 =
46

𝑅𝑒
[1 +

𝐻𝑒

6𝑅𝑒
−

64𝐻𝑒4

3𝑓3𝑅𝑒7
]       (6.4) 

The presence of 𝑓 in both sides necessitates solving using a trial-and-error technique. 

Example 6.1 

Acrylic paint is produced in a factory and is allowed to flow in a 50 mm pipe to be 

distributed into containers at a rate of 500 L.h-1. Its specific gravity = 1.6. This type is 

known to exhibit Bingham behavior of constitutive law: 

𝜏 = 0.032 + 1.93𝛾 ̇ Pa 

Determine the Reynolds and the Hedström numbers, then predict the value of the friction 

factor. What would the pressure drop over 10 m be? 

Solution: 

From the constitutive equation, 𝜏0 = 0.032 Pa and 𝜇∞ = 1.33 Pa. s 

𝐴 = 0.25𝜋 × 0.052 = 0.0019635 m2 → 𝑣 =
0.5

3600 × 0.0019635
= 0.0707 𝑚. 𝑠−1 
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𝑅𝑒 = 
1600×0.0707×0.05

1.33
 = 4.25 ≪ 2000 

𝐻𝑒 = 
1600×0.032×0.05

1.332  = 1.925 

Equation (6.4) is applied: 

𝑓 =
46

𝑅𝑒
[1 +

𝐻𝑒

6𝑅𝑒
−

64𝐻𝑒4

3𝑓3𝑅𝑒7
] 

Hence: 

𝑓 =
46

4.25
[1 +

1.925

6 × 4.25
−

64 × 1.9254

3𝑓3 × 4.257
] → 𝑓 = 11.64 −

0.0117

𝑓3
 

Solving by trial, one gets: 𝒇 = 𝟎. 𝟏𝟎𝟎𝟒𝟔 ≈ 𝟎. 𝟏 

Applying Equation (4.6): 

∆𝑝

10
=

2 × 0.1 × 1600 × 0.07072

0.05
 

Hence, ∆𝒑 = 𝟑𝟏𝟗. 𝟗 𝐏𝐚 

6.3 Shear thinning fluids 

6.3.1 Constitutive law 

Shear thinning (or pseudo-plastic) liquids are characterized by a non – linear shear stress – 

shear rate relationship. They represent part of a larger group known as power law fluids, 

which follow the following constitutive law: 

𝜏 = 𝑘. 𝛾 ̇ 𝑛           (6.5) 

In the case of shear thinning fluids, 𝑛 < 1. 

𝑛 is known as the flow index and as it approaches 1, the fluid behavior approaches 

Newtonian behavior, whereas 𝑘 is known as the consistency index. 

Dividing the previous equation by 𝛾 ̇ , we get: 

𝜇 =
𝜏

𝛾 ̇
= 𝑘. 𝛾 ̇ 𝑛−1         (6.6) 

Since 𝑛 < 1 → 𝑛 − 1 < 0, and the viscosity – shear rate curve will show a decreasing trend 

approaching 0 as 𝛾 ̇ → ∞. 

Modified lubricating oils and greases used to lubricate bearings represent examples of 

shear thinning liquids. In case of rapid shaft motion, their viscosity drops considerably. 

Figures (6.3) and (6.4) illustrate the shear stress – shear rate and viscosity – shear rate 

behavior of such fluids. 
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Fig 6.3: Shear stress – Shear rate relation for shear thinning fluids 

 

Fig 6.4: Viscosity – Shear rate relation for shear thinning fluids  

 

To test whether a fluid is shear thinning or not and calculate the parameters 𝑘 and 𝑛, a plot 

is carried out between ln 𝜏 and ln �̇�. The plot should yield a straight line of slope 𝑛. The 

value of k can then be determined by substituting with any point on the line in the following 

form of equation (6.5): 

ln 𝜏 = ln 𝑘 + 𝑛. ln �̇�         (6.7) 
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6.3.2 Pressure drop correlation for shear thinning fluids 

Regardless of whether the flow regime is laminar or turbulent, the following equation can 

be applied to estimate the pressure drop of shear thinning liquids with a high degree of 

accuracy: 

∆𝑝

𝐿
= 

2𝑘

𝑟
[

𝑣.(3𝑛+1)

𝑛.𝑟
]

𝑛

        (6.8) 

Example 6.2 

From the following data obtained on a lubricating grease, show that it behaves as a shear 

thinning fluid and calculate the consistency and flow indices. 

Shear strain s-1 10 20 30 50 100 150 300 

Shear stress Pa 140 220 280 375 600 750 1150 
 

Solution: 

The following table is set and a plot between the two logarithms carried out. 

ln γ 2.303 2.996 3.401 3.912 4.605 5.011 5.704 

ln τ 4.948 5.378 5.629 5.946 6.376 6.627 7.057 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slope is obtained = 𝒏 = 𝟎. 𝟔𝟐 

Substituting with any point from the given table, like (30,280) in equation (6.5): 

280 = 𝑘. 30 ̇ 0.62 → 𝒌 = 𝟑𝟒 

4

5
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6

6

7

7

8
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 τ
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Example 6.3 

Considers a shampoo product being transported through a straight pipe with a diameter of 

250 mm and length of 10 m. The volumetric flow rate is 0.0005 m3.s-1 and the power law 

index is 0.15, while the consistency index = 48.7. Estimate the pressure drop along the 

pipe. Then predict the theoretical power for pumping in W. 

Solution: 

𝐴 = 0.25𝜋 × 0.0252 = 0.00040875 m2 → 𝑣 =
0.0005

0.00040875
= 1.223 𝑚. 𝑠−1 

∆𝑝

10
= 

2×48.7

0.0125
[

1.223×(3×0.15+1)

0.15×0.0125
]

0.15

 

∆𝑝 = 188307 Pa 

The theoretical power required for pumping = 𝑄 × ∆𝑝 = 0.0005 × 188307 = 𝟗𝟒 𝐖 

6.3.3 velocity profile for laminar flow of shear thinning fluids 

The velocity profile of shear thinning liquids in laminar flow is different from that of 

Newtonian fluids. The profile is shown in Figure (6.5) for a fluid with flow index 𝑛 = 0.2. 

A comparison with Figure (4.2) shows that the distribution of velocity across the radius of 

the pipe is no more parabolic.  

 
Fig 6.5: Velocity profile for shear thinning fluid 

 

6.4 Shear thickening fluids 

6.4.1 Constitutive law 

Shear thickening (or dilatant) fluids obey the power law rule (6.6), but with 𝑛 > 1. This 

means that the shear stress increases at a higher rate with an increase in shear rate. If 

Equation (6.6) is applied: 

𝜇 =
𝜏

𝛾 ̇
= 𝑘. 𝛾 ̇ 𝑛−1 
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The fact that 𝑛 > 1 means that the viscosity will increase with increasing shear rate. 

Figures (6.6) and (6.7) reveal this behavior. 

The most common example of shear thickening liquids is the suspension of starch in water. 

The more this suspension is agitated, the thicker its consistency gets. However, lately, some 

new liquids have shown similar behavior, which consist of suspensions of nanoparticles in 

a liquid, otherwise known as nanofluids. These nanofluids are widely used to enhance heat 

transfer in industrial cooling and heating applications as smart fluids, in nuclear reactors, 

for extraction of geothermal and other energy sources, in space and defense, in mass 

transfer applications, in the automotive application as coolants and brake fluids.  

6.4.2 Pressure drop correlation for shear thickening fluids 

The pressure drop of shear thickening fluids is calculated by the same equation used for 

shear thinning fluids (Equation 6.8). 

6.5 Time dependent fluids 

6.5.1 Thixotropy and rhepopepsy 

This type of fluid is characterized by the dependence of viscosity on both shear rate and 

time. This means that at constant shear rate, viscosity of the liquid will vary with time. The 

fluid is said to be thixotropic if viscosity decreases with time at constant shear rate and 

rheopeptic if it increases.  

 

Fig 6.6: Shear stress – Shear rate relation for shear thickening fluids 
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Fig 6.7: Viscosity – Shear rate relation for shear thickening fluids 

Thixotropy is much more common than rheopepsy and is encountered in diverse fluids 

such as drilling fluid, wastewater sludge, some paints, flocculants used in water treatment, 

some types of clay suspensions and many others. Figure (6.7) illustrates the drop in 

viscosity at constant shear rate, characteristic of thixotropic fluids. Viscosity decreases and 

stabilizes at a certain value. If the test is then run backward, by decreasing the shear rate, 

the viscosity values obtained at any shear rate will always be lower than the forward test 

values. The corresponding curves for shear stress – shear rate will form a loop known as 

the thixotropy hysteresis loop. (Figure 6.8). 

It is important to know the level of thixotropy when choosing the right machinery for 

manufacturing thixotropic products, given that the mixing equipment must have the 

necessary power to break it while maintaining a constant speed over time. Once 

manufactured, the product’s temperature drops and its viscosity increases when mixing 

stops, acquiring the appropriate state for its application. 

In their finishing stage, thixotropic products must be stored in tanks fitted with mixing 

equipment, also known as finishing tanks. The time of mixing must ensure reaching a 

steady state value for viscosity.  

Drilling mud, besides acting as lubricant for the drilling head, must allow for the 

transportation of rock debris (known as drilling cuttings) to the surface. Because of its 

thixotropic behavior, the viscosity of drilling mud decreases with time to negatively affect 

its ability to transport the cuttings. Drilling cuttings are separated from the drilling fluid, 

which is recycled to the boring head. 
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Figure 6.7: Variation of viscosity in thixotropic fluids 

 

 
Figure 6.8: Variation of shear stress in thixotropic fluids 

6.5.2 Reason for thixotropic behavior 

Thixotropy is usually associated with shear thinning behavior. Such liquids possess a 

certain structure although the bond between molecules is weak. When a thixotropic liquid 

is agitated to a certain level of shear rate and movement stopped, this structure starts to 

break down in favor of a new one. If the process is then reversed, by decreasing the shear 
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rate, the new structure will revert partially to the original one. The extent of thixotropy is 

the extent to which this original structure has been destroyed after waiting for a long time 

at the constant shear rate, until viscosity values stabilize.  

This can be measured by several methods, none of which has proved to be entirely reliable 

since they depend on indirect estimation of the extent of destruction of the original 

structure, and to what extent a decrease in shear rate will help recover that structure. Some 

of these methods are mentioned in what follows: 

• Area of hysteresis loop: This method has been used for a long time to measure the 

extent of destruction of the original structure. As it did not always yield reliable results, 

it is not much in use nowadays.  

• Extent of recovery of viscosity: In this method, the initial viscosity at the lower shear 

rate is noted (𝜇0) and after reaching a sufficiently high shear rate, the process is 

reversed by gradually decreasing the shear rate. As the lower value of shear rate is 

reached, the final viscosity is noted (𝜇𝑓). The ratio between the final and initial 

viscosities is taken as a measure of the extent of thixotropy.  

• Extent of recovery of shear stress: This method is like the previous one except that 

it relies on measuring shear stress instead of viscosity. 

• The exponential stretching method: This is a relatively recent method relying on 

defining a parameter (𝜆) to measure at each value of shear rate the extent of decrease 

of viscosity as function of time. A plot between ln 𝜆 and time at different values of 

shear rate is used to obtain almost constant values of time constants that represent the 

extent of thixotropy. 

 

 


