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 -6- 

Introductory Design of Experiments 
 

6.1 Introduction 

Consider a chemical gas phase reaction where both pressure and temperature affect 

equilibrium conversion (α) so that α = α (P, T). To study the effect of both parameters on 

conversion, it is customary to fix one of the two variables and vary the other until a maximum 

conversion is obtained then the second parameter is varied with fixing the first. This method 

of performing experiments suffers from a serious drawback: that is, an optimum value of one 

of the parameters obtained at a fixed value of the other does not necessarily represent the 

optimum conditions of the experiment. To illustrate this point, consider the following 

equation that was developed to relate equilibrium conversion of a certain reaction to P (atm) 

and T (K): 

2306109500011020 T.P.T.P. .     (i) 

If pressure is kept constant, say at 1 atm., then the maximum conversion is obtained by 

differentiating the following equation and setting 
dT

d
 = 0 

26109500011020 T..T..  , 
dT

d
= T..  610950200110  = 0 

This yields: T = 579 K 

Now, substituting T = 579 in (i), we get:  

303180637020 .P..P.   and  
70318030010 .P...

dP

d 


 

Setting 
dP

d
 = 0 , we get: P = 4.88 atm. 

Actually the optimum values of P and T should have been obtained by solving the system: 

00 









P
,

T


. We get: 

021095000110 306 


  .P.T..
T


     (ii) 

03010950020 7026 


  .P.T....
P


     (iii) 

Solving (ii) and (iii), we get: P = 3.33 atm, T = 404 K 

These values are different from those obtained previously. 

That is why; in the present chapter is presented a method that takes into consideration the 

simultaneous effect of all independent variables. 
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6.2 Factorial design 

6.2.1 The full factorial 2n design 

A full factorial design is one in which all possible combinations of the n independent variables 

(or factors) involved in the experiment are used. Each factor can be varied along k levels. The 

number N of all possible combinations is: 
nkN            (6.1) 

For example, let in the example discussed in section 6.1, temperature be varied in steps of 50 

K from 300 to 600, and pressure from 2 to 8 atm in steps of 1, then k = 7. 

The number of experiments to be conducted to include all possible combinations of 

temperature and pressure = 72 = 49.   

When the number of factors is elevated, the total number of experiments increases 

considerably and it is common in that case to use a two – level design in which each factor is 

varied only twice and equation (6.1) then becomes: 

nN 2           (6.2) 

Let the factors involved in the experiment be x1, x2, x3, …xn. To each of them is assigned a 

lower limit xi min and an upper limit xi max. The mean value of xi over the interval (xi min, xi max) 

is termed the center of the interval: 

2
0

maximini
i

xx
x


          (6.3) 

And the deviation of either limit from the mean is: 

2

minimaxi
i

xx
x


          (6.4) 

The point with coordinates ( 01x , 02x , 03x , …, nx0 ) is called the center point of design. 

These values are changed to coded dimensionless variables zi using the following 

transformation: 

i

ii
i

x

xx
z



0
           (6.5) 

These transformations are best explained by considering the following example. 

 

Example 6.1 

The yield of a chemical reaction is affected by three factors: Temperature (T oC), pressure (P 

MPa) and residence time t (min.) Their upper and lower limits are respectively:100 – 200oC, 

0.2 – 0.6 MPa and 10 – 30 min. The following table shows the % conversion corresponding 

to each set of factors: 
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Exp. no Temp (x1) Pressure (x2) Time (x3) % Conversion 

1 100 0.2 10 2 

2 200 0.2 10 6 

3 100 0.6 10 4 

4 200 0.6 10 8 

5 100 0.2 30 10 

6 200 0.2 30 18 

7 100 0.6 30 8 

8 200 0.6 30 12 

   

Set the dimensionless factors table describing this experiment. 

Solution: 

The necessary transformations described by equations (6.3) to (6.5) have been made and the 

results are presented in the following table. 

150
2

200100
1 


x             40

2

6020
2 .

..
x 


            20

2

3010
3 


x  

50
2

100200
1 


x             20

2

2060
1 .

..
x 


           10

2

1030
3 


x  

Exp. no Temp (z1) Pressure (z2) Time (z3) % Conversion (y) 

1 – 1  – 1 – 1 2 

2 + 1 – 1 – 1 6 

3 – 1 + 1 – 1 4 

4 + 1 + 1 – 1 8 

5 – 1 – 1 + 1 10 

6 + 1 – 1 + 1 18 

7 – 1 + 1 + 1 8 

8 + 1 + 1 + 1 12 

 

6.2.2 The design matrix 

The general from of the design matrix for a 23 experiment takes the following form. A 

supplementary column is added consisting of a dummy variable z0 = +1. 

 

Exp. no z0 z1 z2 z3 y 

1 + 1 – 1  – 1 – 1 y1 

2 + 1 + 1 – 1 – 1 2y 

3 + 1 – 1 + 1 – 1 3y 

4 + 1 + 1 + 1 – 1 4y 

5 + 1 – 1 – 1 + 1 5y 

6 + 1 + 1 – 1 + 1 6y 

7 + 1 – 1 + 1 + 1 7y 

8 + 1 + 1 + 1 + 1 8y 
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This matrix satisfies the following two properties: 

 The scalar product of any two column vectors = 0    (6.6)  

 The sum of any column  = 0
1




N

i

jiz      (6.7) 

6.2.3 The regression equation 
Once the design matrix is set, a regression equation is assumed in the general form: 

3211231331322321123322110 z.z.z.az.z.az.z.az.z.az.az.az.aayc   

(6.8) 

Where: cy is the calculated value of y from the regression equation. 

The first four terms in the above equation represent a linear model while the remaining terms 

are known as interaction terms. The determination of the 8 coefficients requires extending 

the design matrix to include combinations of zizj (i  ≠ j) as well as z1.z2.z3.  

For example, the value of z1.z2 for the first set of conditions = 111   and for the 

second set = 111  , so that using the data of example (6.1), the matrix shows as 

follows: 

 

no z0 z1 z2 z3 z1. z2 z2. z3 z3. z1 z1 z2 z3 y 

1 + 1 – 1  – 1 – 1 + 1 + 1 + 1 – 1 2 

2 + 1 + 1 – 1 – 1 – 1 + 1 – 1 + 1 6 

3 + 1 – 1 + 1 – 1 – 1 – 1 + 1 + 1 4 

4 + 1 + 1 + 1 – 1 + 1 – 1 – 1 – 1 8 

5 + 1 – 1 – 1 + 1 + 1 – 1 – 1 + 1 10 

6 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 18 

7 + 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 8 

8 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 12 

 

The 8 coefficients can be written in form of a column vector as follows: 

A 

123

31

23

12

3

2

1

0

a

a

a

a

a

a

a

a

        The dependent variable vector is:  Y =  

12

8

18

10

8

4

6

2

 

Whereas the square design matrix is:  
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M = 

 

 

 

 

 

 

 

 

In matrix form equation (6.8) reads: 

Y = M.A           (6.9) 

Hence  A = M-1.Y         (6.10) 

 

Example 6.2 

Find the values of the regression coefficients for the data of example (6.1) 

Solution: 

Using the EXCEL function MINVERSE, M-1 shows as follows: 

 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

-0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 

-0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 0.125 

-0.125 -0.125 -0.125 -0.125 0.125 0.125 0.125 0.125 

0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 

0.125 0.125 -0.125 -0.125 -0.125 -0.125 0.125 0.125 

0.125 -0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125 

-0.125 0.125 0.125 -0.125 0.125 -0.125 -0.125 0.125 

 

Where as the column vector Y = 

12

8

18

10

8

4

6

2

 

+ 1 – 1  – 1 – 1 + 1 + 1 + 1 – 1 

+ 1 + 1 – 1 – 1 – 1 + 1 – 1 + 1 

+ 1 – 1 + 1 – 1 – 1 – 1 + 1 + 1 

+ 1 + 1 + 1 – 1 + 1 – 1 – 1 – 1 

+ 1 – 1 – 1 + 1 + 1 – 1 – 1 + 1 

+ 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 

+ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 

+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 
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Hence the column vector A is obtained from equation (6.10):  A = 

50

50

51

50

53

50

52

58

.

.

.

.

.

.

.

.









 

 

 

Hence the coded regression equation is: 

321133221321 5050515053505258 z.z.z.z.z.z.z.z.z.z.z.z..yc 
 

 

6.2.4 Testing the coefficients of the regression equation 

The coefficients of the regression equation obtained are not necessary significant; that is, 

some of them may be eliminated without affecting the strength of correlation. This is done by 

performing a set of replicate tests at the design center of the experiment which in example 

(6.1) is (150, 0.4, 20) and determining the variance of the obtained values of y. Let the values 

of y obtained for three such tests be 8, 9 and 8.8. Their standard deviation s = 0.53 

The standard deviation of the 8 coefficients is related to the standard deviation of replicates 

by: 

N

s
sa             (6.11) 

So that in the present example: 1870
8

530
.

.
sa      

The significance of each coefficient is determined using the t – test by calculating each time 

the statistic: 

a

ijk

ijk
s

a
t            (6.12) 

These are compared to critical values of t obtained from T.INV.2T function at a suitable value 

of α and r – 1 degrees of freedom. (Where, r is the number of replications at center of design). 

The tested hypothesis is: 

H0: aijk = 0 

Rejecting H0 means that the coefficient is significant. This will occur if  

tijk > tcrit 

 

Example 6.3 

Estimate the significance of the regression coefficients for example (6.2) 

 

Solution: 
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The following table shows the steps undertaken to test the 8 coefficients. At α = 0.05, d.f. = 3 

– 1 =2, tcrit = 4.3 

 

aijk 8.5 2.5 -0.5 3.5 -0.5 -1.5 0.5 -0.5 

tijk 46.434 13.363 2.67 18.71 2.67 8.02 2.673 -2.67 

Result  reject 

H0 

reject 

H0 

accept 

H0 

reject 

H0 

accept 

H0 

reject 

H0 

accept 

H0 

accept 

H0 

 

Hence four coefficients are considered significant: 8.5, 2.5, 3.5 and – 1.5. The coded form of 

the regression equation becomes
 3231 51535258 zz.z.z..y 

 

Replacing the dimensionless variables (z) by the original variables using equation (6.5), we 

get: 
i

ii
i

x

xx
z



0
  

So that 
10

20

20

40

50

150 3
3

2
2

1
1










x
z,

.

.x
z,

x
z . 

The regression equation becomes:  32321 7506501505012 x.x.x.xx.yc   

 

4.2.5 Testing the validity of the regression equation 
A preliminary evaluation of the validity of the equation obtained can be made by calculating 

the determination coefficient. To this aim, equation (9.11) is used: 

R2 = 













n

i

i

n

i

c

yy

yy

1

2

1

2

)(

)(

 = 
174

166
 = 0.954 

Calculations are shown next: 

 

 

 

 

 

 

 

 

 

 

yobs ycalc (yobs - y )2 (ycalc - y )2 (ycalc - yobs)2 

2 1 42.25 56.25 1 

6 6 6.25 6.25 0 

4 4 20.25 20.25 0 

8 9 0.25 0.25 1 

10 11 2.25 6.25 1 

18 16 90.25 56.25 4 

8 8 0.25 0.25 0 

12 13 12.25 20.25 1 

Mean 8.5  174 166 8 

 

A more decisive criterion is to calculate an F – ratio defined by: 



Introductory design of experiments 

 

49 

 

21

2

/

)(

s
cN

yy

F

N

i

cii

calc







         (6.13) 

 

Where, s is the variance of replicate readings at center of design (0.28) and c the number of 

eliminated coefficients in the regression equation.  

In the present case, 
cN

yy

N

i

cii




1

2)(

= 
48

8


 = 2, so that Fcalc = 2/0.532 = 7.12  

This is compared to the critical F – value obtained from FINV function at degrees of freedom: 

d.f.n = N – c and d.f.d = r – 1 (Where, r is the number of replications at center of design). In 

the present case: d.f.n = 8 – 4 = 4 and d.f.d = 3 – 1 = 2. At a significance level α = 0.05, the 

critical F – value is 19.24 

Since Fcalc. < Fcrit., then, the obtained regression equation fits the experimental data 

adequately. 

6.3 Optimization by steepest ascent method 

The regression equation obtained in the previous 

section has been derived over a limited 

experimentation range. It is usually required to 

use this equation to seek an extremum value to 

optimize the parameter y; one method often use 

is the steepest ascent method.  

Consider the simple case where y = f(x1, x2). The 

surface representing this relation is called the 

response surface. Fig.(6.1) shows a typical 

response surface exhibiting a maximum point. In 

the first figure, point represents the center of 

design point. Starting from that point, there is a 

particular path that would lead to the maximum 

point M. This path is  

known as the path of steepest ascent. Any other 

path like CK will not lead to this maximum. 

 

6.3.1 The linear model 

As a start an approximate linear model can be obtained to follow the path of steepest ascent.  

To understand how this path can be followed, the vector Grad f is defined as: 

k̂.
z

f
...ĵ.

z

f
î.

z

f
)f(Grad

N














21

      (6.14) 

The line of steepest ascent is the one defined by the direction of this vector. 

In case of a linear regression model in the form: 

...x.ax.ax.aayc  3322110  

The partial derivatives are the coefficients of the different terms: 

C 

M 

K 

Fig 6.1: Response surface  

with maximum value 
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,...a
z

f
,a

z

f
2

2

1

1










 

So that: to move along this path, one chooses an increment corresponding to each variable. 

Let the increment corresponding to the variable zi be Δzi, then the corresponding increment in 

any other variable should be proportional to the coefficient of this variable in the regression 

equation. That is: 

j

i

j

i

a

a

z

z





          (6.15) 

We start at the design center (0, 0, 0, …) and choose the increment of the variable (i) which 

has the highest coefficient Δzi, then we calculate the increments of the other variables using 

equation (6.15). 

For example, let the first dimensionless variable z1 that which has the highest coefficient (a1). 

Let the chosen increment = Δz1 

Then ,. 1

1

2
2 z

a

a
z  ,. 1

1

3
3 z

a

a
z  etc… 

Hence, z11 = 0 + Δz1,  z21 = 0 + Δz2,  z31 = 0 + Δz3, … and 

   z12 = z11 + Δz1,  z22 = z12 + Δz2,  z32 = z13 + Δz3, … 

Generally:  z1, i+1 = z1i + Δz1,  z2, i+1 = z1i + Δz2,  z3,i+1 = z1i + Δz3, …  

A series of experiments is then undergone at the obtained values of z1i, zi2, zi3, etc…for value 

of i = 1, 2, 3, etc. until the value of y stabilizes which means that a maximum value is obtained. 

Example 6.4 

Solid state sintering of magnesia is governed by soaking time (𝑡 h), temperature (𝑇oC) and 

compacting pressure (𝑝 MPa). A 23 factorial experiment gave the following results for bulk 

density of pressed compacts (g/cm3). 

Four replicate experiments performed at the center of design gave the following bulk 

densities: 2.425, 2.415, 2.42, 2.4056. 

Perform a full factorial design at significance level = 0.05 and use the steepest ascent method 

to show how you would reach the optimum conditions 

No Time Temp Pressure Density 

1 1 1100 20 2.37 

2 5 1100 20 2.44 

3 1 1500 20 2.44 

4 5 1500 20 2.39 

5 1 1100 40 2.41 

6 5 1100 40 2.45 

7 1 1500 40 2.43 

8 5 1500 40 2.41 

 

Solution: 

Center of experiment: x1 = t = 3 h, x2 = T = 1300oC, x3 = P = 30 MPa 
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Deviations: Δx1 = 2, Δx2 = 200, Δx3 = 10 

The dimensionless matrix is: 

No Dummy Time Temp Pressure Density 

1 1 -1 -1 -1 2.31 

2 1 1 -1 -1 2.44 

3 1 -1 1 -1 2.38 

4 1 1 1 -1 2.43 

5 1 -1 -1 1 2.38 

6 1 1 -1 1 2.45 

7 1 -1 1 1 2.42 

8 1 1 1 1 2.41 

 

The design dimensionless matrix M is: 

 

x0 x1 x2 x3 x1.x2 x2.x3 x3.x1 x1.x2.x3 

1 -1 -1 -1 1 1 1 -1 

1 1 -1 -1 -1 1 -1 1 

1 -1 1 -1 -1 -1 1 1 

1 1 1 -1 1 -1 -1 -1 

1 -1 -1 1 1 -1 -1 1 

1 1 -1 1 -1 -1 1 -1 

1 -1 1 1 -1 1 -1 -1 

1 1 1 1 1 1 1 1 

 

The inverse matrix is then obtained and multiplied by the column vector corresponding to 

density values. This yields the coefficient column vector 

 

 A =  

[
 
 
 
 
 
 
 
2.4025
0.03

0.0075
0.0125
−0.02
−0.008
−0.015

0 ]
 
 
 
 
 
 
 

  

 

The dimensionless regression equation is then: 

𝑦 = 2.4025 + 0.03𝑧1 + 0.0075𝑧2 + 0.0125𝑧3 − 0.02𝑧1𝑧2 − 0.008𝑧2𝑧3 − 0.015𝑧3𝑧1 

 

The next step is to eliminate insignificant coefficients by considering the four replicate values 

at center of design: 2.425, 2.415, 2.41, 2.406.  
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Their standard deviation = 0.0082. The standard deviation of coefficients is therefore: sa = 

8

00820.
 = 0.0029 

The following table shows the steps undertaken to test the coefficients for the null hypothesis:  

H0: aijk = 0 

At α = 0.05, d.f. = 4 – 1 = 3, tcrit =  3.18 

 

aijk 2.4025 0.03 0.0075 0.0125 -0.02 -0.008 -0.015 0 

tijk 828 10.34 2.58 4.31 6.89 2.58 5.17 0 

Result 
reject 

H0 

reject 

H0 

accept 

H0 

reject 

H0 

reject 

H0 

accept 

H0 

reject 

H0 

accept 

H0 

 

The final equation is; 

322131 01500200125003040252 z.z.z.z.z.z..y     (6.16) 

This is tested for validity using the R2 criterion. Following equation (9.11), we get: R2 = 0.999 

Also, from equation (6.13), for N = 8 and c = 3, we get:  

 
cN

)yy(
N

i

cii




1

2

 = 
38

00090



.
 = 0.00018 

The calculated value of F = 200820

000180

.

.
 = 2.67 

This is compared to the critical F – value obtained from FINV function at degrees of freedom: 

d.f.n = n – c and d.f.d = r – 1. In the present case: d.f.n = 8 – 3 = 5 and d.f.d = 4 – 1 = 3. At a 

significance level α = 0.05, the critical F – value is 9.013 obtained regression equation is 

adequate. 

The actual equation can be obtained from:  

10

30

200

1300

2

3 3
3

2
2

1
1










x
z,

x
z,

x
z  

This way we get: 

3221321 000007500000500110000375008083251 x.x.x.x.x.x.x..y 
 
   (6.17) 

To follow the steepest ascent direction, we arbitrarily choose an increment of time Δx1 = 0.5 

h. This corresponds to a dimensionless increment Δz = 0.25
 

The increment in temperature, from the obtained dimensionless model is zero. So, we can 

move along with a fixed temperature of 1300oC.    

As for pressure, the increment is calculated from equation (6.15) to be: 25.0
03.0

0125.0
  = 0.104 

(corresponding to a pressure increment = 0.10410 = 1.04 MPa) 
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We have to note, however, that a linear approximation has been made as the regression 

equation contains a non – linear term z2.z3 

The suggested experimental conditions to be followed towards maximum density will then 

yield the following values for density by substitution in equation (6.17): 

Step no Time Temp. Pressure ρ g.cm-3 

1 3 1300 30 2.373 

2 3.5 1300 31.04 2.380 

3 4 1300 32.08 2.388 

4 4.5 1300 33.12 2.396 

5 5 1300 34.16 2.404 

 

The last entry for time is 5 hours, as this is its maximum value. Therefore, according to that 

model, a maximum density would be obtained at the following conditions: t = 5 h, T = 1300oC 

and P = 34.16 atm. One gets a maximum value of density = 2.404 g/cm3. 

 

6.4 Exercise problems 

(1) The strength of polystyrene boards (kPa) depends on their porosity and temperature of 

exposure. In a 22 experiment, the following design center is chosen: porosity = 0.6 with 

step = 0.15 and temperature = 30oC and step = 10oC. The following results were obtained: 

Step Porosity  Temp. Strength 

1 0.45 20 450 

2 0.75 20 180 

3 0.45 40 300 

4 0.75 40 125 

 

       Five replicate experiments performed at the center of design gave the following values 

of strength: 256, 284, 270, 278, 250 kPa 

  Perform a full factorial design at significance level = 0.025 and use the steepest ascent 

method to show how you would reach the optimum conditions. 

(2) To study the effect of temperature, time and particle size on the extraction of a certain 

liquid from a solid a full factorial two – level design was performed. The results are listed 

in the following table: 

       The last three rows represent a replicate at the center of the design. 

       Derive a first order regression equation showing the dependence of yield on the three 

factors then check the significance of the different coefficients. 

            Also check the validity of the system. (Take α = 0.05) 

 

 

          

Time  

(min ) 

Temp  

)  Co (  

Particle size 

( mm ) 

Yield 

( mg / g ) 20 40 0.1 16 
20 40 0.3 14 
20 80 0.1 21 
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20 80 0.3 17 
40 40 0.1 23 
40 40 0.3 21 
40 80 0.1 26 
40 80 0.3 24 
30 60 0.2 21 
30 60 0.2 22 
30 60 0.2 23 

 

  

(3) The following data have been obtained on studying the effect of three variables: 

temperature of calcination (oC), time of leaching (h) and acid concentration (%) on the 

concentration of aluminum sulfate in solution upon treatment of kaolin with sulfuric 

acid. Four specimens investigated at the center of design (750oC, 3 h, 40%) yielded 

concentrations of 6.82%, 7.27%, 6.77% and 7.8%.  Derive a regression equation showing 

the dependence of yield on the three factors then check the significance of the different 

coefficients. 

             Also check the validity of the system. (Take α = 0.05) 

 

 

# Temp. oC Time h Conc. % Yield % 

1 600 2 20 8.27 

2 600 2 60 7.08 

3 600 4 20 7.36 

4 600 4 60 9.31 

5 900 2 20 4.95 

6 900 2 60 4.45 

7 900 4 20 6.22 

8 900 4 60 2.57 

 


