
6.  FLOW THROUGH POROUS MEDIA

6.1 Introduction
	In many technical processes, liquids or gases flow through beds of porous solid particles. In particular, in the oil and gas industry, upstream operations involve flow of fluid streams through porous rock formations, while in downstream operations sand filtration represents an important application. Finally, in the petrochemical industry, motion of gases in packed towers and occasional filtration of solid suspensions are typical examples of flow through porous beds. 

6.2 Principles of fluid flow through porous beds
6.2.1 The equivalent diameter of porous bed
The development of flow equations to predict the pressure drop across a porous bed relies on the similarity with flow thorough pipes. This requires defining an equivalent diameter for the bed.


To this aim, let us consider a hollow circular pipe of diameter De and length L. The wall area Awall = , while the volume of open space in pipe Vo = 

The ratio 							(6.1)
Consider now a porous bed consisting of solid particles of size = Dp, porosity = ε and sphericity = Φ. 

The "wall" area corresponds to the total surface area of particles = 

We recall that 

The mass of solids = m = 

Hence  								(6.2)
The "open volume" is the volume of voids Vo = VB.ε, where VB is the bulk volume
The solid (particle) volume is: Vp = VB.(1 – ε)
Hence:

								(6.3)
From (6.2) and (6.3):

								(6.4)
Equating equations (6.1) and (6.4), we get the following expression for the equivalent diameter De.




								(6.5)

6.2.2 Laminar flow regime: The Kozeny – Carman equation
In order to establish an equation describing the pressure drop across a porous bed, we first consider the case of laminar flow. 
In pipes, this is described by the Hagen – Poiseuille equation:

									(6.6)

Where  is the average velocity of fluid across the pipe cross section. 

In order to develop a corresponding equation for porous beds, we first define the "superficial velocity " as being the measurable variable: 

										(6.7)
It has been proved that the relation between this velocity and the average velocity of fluid across the bed is:

										(6.8)
Also, in equation (6.6), we substitute De, the equivalent diameter for D. This way, we obtain the following equation by combining equations (6.5), (6.6) and (6.8):


Actually, the previous analysis did not take into account the fact that the path of fluid is not straight but rather tortuous. This has lead to introduce a correction parameter in the latter equation that had for effect to change the value of the constant 72 to the higher value of 150. This way, the previous equation,, known as the Kozeny – Carman equation reads:

								(6.9)
This equation is valid for low Reynolds numbers (Re < 1). In case of flow through porous particle beds, a modified Reynolds number is defined as follows:

									(6.10)
Where: ρf is the fluid density.

Finally, if the bed consists of particles with different sizes, then the term Dp in equation (6.9) is substituted by the mean volume – surface diameter Dvs previously defined as:



6.2.3 The Darcy permeability
In dealing with flow of fluids through porous strata, it is not usually possible to assign a particle size to porous rock formations. In that case, it is found more suitable to re – write equation (6.9) in the following form:



The term  in the above form represents a combination of the properties of the solid bed. Its reciprocal is called the bed permeability K and is therefore defined as:

K = 								(6.11)
Permeability has units of m2 and can be experimentally determined by re – writing equation (6.9) in the following form suggested by Darcy:

									(6.12)
The standard cgs unit of permeability is the Darcy related to the SI unit by the conversion:
1 m2 = 1.013 25 × 1012 Darcy
It is to be noted, however, that the above definition of permeability has been obtained through assuming that the flow is laminar. That is why; the concept of permeability is restricted to a slow flow of fluids.
The following example illustrates the estimation of permeability from a simple experiment.  

Example 6.1
An experimental setup was mounted to evaluate the specific surface area of a fine powder. Dry air was passed through a 4"diameter bed filled with 800 g of the powder of density = 2 g/cm3 to a height of 80 mm. 
The following data were obtained for the variation of pressure drop across the bed (mm water) with air flow rate (liter/min):
-
	Q L/min
	0.012
	0.019
	0.022
	0.034
	0.038
	0.045

	ΔP mm
	150
	270
	300
	448
	505
	615



  Prove that these data are compatible with laminar flow regime and deduce the bed permeability in Darcy and the specific surface area of the powder.

(1 d = 9.8710-11 m2)

Solution:
Calculation of bed area:


= 8.10710-3 m2



Bulk volume of solids = 8.10710-3  0.08 = 6.48610-4 m3


Solid volume = = 410-4 m3

Porosity = ε = = 0.383
The data in table are now converted to velocity (m/s) against pressure drop (Pa)
through:


  and  ΔP = 

	v m/s
	
2.46
	
3.89
	
4.51
	
6.97
	
7.79
	
9.23

	ΔP Pa
	1471.5
	2648.7
	2943
	4394.9
	4954
	6033.1
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The plot is linear denoting laminar flow regime.


From plot, slope = 64767146 = = 
Hence: 

K = 2.2210-14 m2 ≡ 0.023 Darcy






Since , hence:  =  = 4.7610-6 m



Since Aw =  =  
Hence:
Aw = 630 m2/kg




(If Re is calculated for the highest velocity (9.23) it yields approximately:  = << 1)


6.2.4 Turbulent flow regime: The Burke - Plummer equation
In turbulent flow regime, for high Reynolds numbers (Re > 103), the Hagen – Poiseuille equation does not hold. Instead, we refer to the Fanning equation, which for flow in circular pipes reads:

								(6.13)
Where f is the friction factor f = f(Re)

Here also,  is substituted for v and the equivalent diameter as defined by equation (6.5) for D. The result shows as follows:



Burke and Plummer assumed that most of the pressure loss is due to losses in kinetic energy of the fluid due to irregular changes in available area of flow. This in turns is related to the tortuous paths through the bed. This way, they introduced a correction factor λ in the latter equation and subsequently calculated the value of λf as 0.583. This way, the previous equation can be written as:

							(6.14)
This equation is only applicable for high values of Re > 103.

6.2.5 The Ergun equation
Ergun was able to prove that summing up equations (6.9) and (6.14) yielded a reasonable form that could be used to calculate the pressure drop over any range of Re. The generalized equation reads:

					(6.15)
The two terms of this equation were calculated for flow of water across a bed of 0.1 mm spherical particles with a mean porosity of 0.4. The following figure shows that the generalized Ergun equation identifies with the Kozeny – Carman equation for laminar flow for values of Re up to 100, while its results are comparable with those predicted from the Burke – Plummer equation for Re > 103.
[image: ]




















Fig.(6.1) Validity of K – C and B – P equations

Example 6.2
100 kg of moist crystals are dried using warm air at 90oC and 1.25 atmg at a rate of 760 sm3/h. These crystals have the following differential analysis:

	Dp  mm
	4
	2.8
	1.4
	0.8
	0.5
	0.25

	Fraction 
	0
	0.25
	0.25
	0.35
	0.15
	0



Their average sphericity is 0.87 and their particle density increases on drying from 1650 to 1750 kg/m3. It is required to calculate the height of a 400 mm diameter bed in which these crystals shall be placed to effect drying.

Consider air viscosity to equal 2.210-5 Pa.s
Solution:
The Ergun equation will be applied:



To this aim we need to calculate the following parameters:  
The flow rate Q has to be adjusted to the given conditions:

 , from which Q = 425 m3/h ≡ 0.118 m3/s


Hence = = 0.94 m/s
The mean volume to surface diameter is calculated from:


= , from which Dvs = 1.35 mm
 ≡ 0.00135 m 

The porosity is calculated from:




= = 
 (The particle density has been taken as mean value)

Hence: 

Also, ΔP = 2.25 – 1 atm ≡ 1.266105 Pa
And, 

= 2.19 kg/m3

Substituting in Ergun equation:





Solving, we get:
ε = 0.26
And, 

L = ≈ 0.63 m ≡ 630 mm
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