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-8- 

Correlation and Regression 
 

8.1 Nature of correlation 

In many aspects of engineering applications, it is important to decide about the 

presence of some correlation between two or more variables. This is particularly 

true when there is an intuitive feeling of the presence of a correlation. For 

example, a field engineer notices that the incidence of failure of electrical 

insulators fitted to high voltage wire feeding an electrostatic precipitator 

increases with an increase in inlet gas temperature. He “feels” that there is some 

correlation between the two factors. The purpose of the present section is to 

introduce the concept of correlation and the method of its estimation in case of 

two or more variables. The simplest case is that of linear correlation between two 

variables. 

The nature of correlation between two variables x and y can follow any of the 

five schemes shown in Figure (8.1) known as scatter diagrams. In the first case 

(a), is shown a perfect linear correlation, while in (b), data suggest an increasing 

character of correlation. In (c), the correlation is very poor, while in (d), there is 

an inverse correlation, and it becomes a perfect linear decreasing correlation in 

(e). 

 

  
Fig (8.1): Types of linear correlations 

 

8.1.1 The Pearson correlation coefficient 

The extent to which the observed data fit to a linear correlation has been 

quantified by Pearson. He first stated that the type of correlation should be 

independent of the origin chosen and the scale used. So, he suggested that all x 

and y values be normalized in a way like that done in the normal distribution by 

defining: 
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He then suggested that the extent of correlation be calculated from the rule:  

R = 
𝛴 𝑋𝑖.𝑌𝑖 

𝑛
  

 

    a                          b                         c                         d                          e 



Correlation and Regression 

 

 

 77 

This factor (R) is termed the linear correlation coefficient. 

An easier way of computing this coefficient is by expanding the terms of the 

above definition. 
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as well as the definition of the 

standard deviation from equation (1.7), we get the following form for the linear 

correlation coefficient: 
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It can be generally proved that:  – 1 ≤ R ≤ 1.  

We note that the numerator in the definition:  
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=  is equivalent to a covariance term. (See Chapter 5) 

The value of R is 1 for perfectly increasing linear correlation (Case a in Figure 

(8.1), and –1 for a perfectly linear decreasing correlation (Case e). Generally 

speaking, the more the value of |R| approaches unity, the higher is the extent to 

which points gather about a straight line. The case of poor correlation (c) would 

correspond to a value of R close to zero. 

Currently, values of correlation coefficient (R) are readily obtained using the 

EXCEL function "correlation" (= CORELL).   

 

Example 8.1 

The following table relates the scores obtained by 16 students in two different 

exams A and B (Out of 20). Plot the scatter diagram then estimate the correlation 

coefficient. 

 

A 17 4 8 12 15 13 3 10 18 9 12 5 19 16 12 14 

B 14 7 6 16 14 10 3 14 17 5 10 6 20 17 9 15 

 

Solution: 

The scatter diagram is shown in Figure (8.2) 

The value of R can be directly obtained from the CORELL function that yields 

R = 0.8715 



Correlation and Regression 

 

 

 78 

 
Fig (8.2): Scatter diagram of example (8.1) 

 

 

8.1.2 Confidence interval of R: The Fisher method 

The value of R calculated in the previous example using equation (8.1) has been 

obtained from sample data. The question that arises is: How far does this value 

represent the correlation between x and y for the whole population. The 

correlation coefficient for population is designated as ρ. For relatively large 

sample size (n > 15), it may be assumed that errors are normally distributed along 

samples taken from the population. The confidence interval of ρ is: 
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Where, zcrit is the critical z – value obtained from the function NORM.S.INV at 

a confidence level 0.5(1 + 𝐿). 

The limits of ρ are then obtained from the following expression: 

tanh z1 < ρ < tanh z2        (8.4) 

For example, if this method is applied on example (8.1) case where R = 0.826 

and n = 16, at significance level = 0.05, we get from equations (8.2) and (8.3): 
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From equation (8.4): 

tanh 0.7975 < ρ < tanh 3.222 

0.663 < ρ < 0.997 

8.1.3 Testing hypothesis for correlation coefficient  

When the numerical value of R is close to 1 or to zero, then it is easy to make 

inference about the strength of correlation; that is, if R = 0.95, for example, then 

one can safely say that there is a strong correlation between the two variables. 

The same is true if R = 0.1, where practically no correlation exists. 

In the event of obtaining inconclusive values of R (such as 0.5 for example), it is 

necessary to find a way of telling whether the correlation exists or is absent. To 

this aim, a test is conducted where the null hypothesis involves assuming no 

correlation at all, that is: H0: ρ = 0 

For relatively large sample size (n > 15), the test statistic is: 

21 R

n.R
z

−
=          (8.5) 

While for smaller sample size, it is: 

21

2

R

n.R
t

−

−
=          (8.6) 

With n – 2 degrees of freedom. 

For instance, in Example (8.1), n = 16 and R = 0.8715. The null hypothesis is H0: 

ρ = 0 

From equation (8.6): 

28715.01

2168715.0

−

−
=t = 6.649 

The critical value of t at α = 0.05 and d.f. = 8 as obtained from the function 

T.INV.2T = 2.306. 

Since 6.649 > 2.306 then the null hypothesis is not accepted meaning that the 

presence of a correlation between the scores in the two exams for the whole 

population cannot be rejected. 

8.2 Linear regression 

8.2.1 Equation of the regression line 

The interpretation of the value of R obtained is better understood by obtaining 

the equation of the best straight line passing between the points.  
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As can be seen from Figure (8.2), the points seem to point out an increasing 

relation between the two variables. A straight line can be fitted to pass between 

these points. The best fit is obtained when the sum of squares of differences 

between the actual and the calculated value of 𝑦 is a minimum value. The straight 

line obtained is called the regression line.  

Let the equation of that line be: y = a.x + b 

The value of y corresponding to an entry xi calculated from the above equation is   

yc = a.xi + b 

If the actual value of y corresponding to xi is yi, then the deviation between the 

actual and the calculated value is: 

Di = yi  – (a.xi + b)  

The best line is obtained when: 

Σ Di
2 = Σ [yi  – (a.xi + b)]2  is a minimum value.           (8.7)                           

To obtain the values of the constants a and b, the following sets of equations have 

to be solved together: 

𝜕𝛴𝐷𝑖
2

𝜕𝑎
 = 0 and 

𝜕𝛴𝐷𝑖
2

𝜕𝑏
 = 0 

Developing the RHS of equation (8.7) we get: 

Σ Di
2  =  Σ [yi

2  + (a.xi + b) 2  – 2.yi .(a.xi + b)] 

= Σ yi
2  + a2. Σ xi

2 + 2.a.b.Σ xi + n.b2 – 2.a. Σ xi .yi – 2.b.Σ yi   

Performing partial differentiation with respect to a, we get; 

2.a.Σ xi
2 + 2.b.Σ xi – 2.Σ xi .yi = 0 

Also, performing partial differentiation wrt b we get: 

2.a.Σ xi + 2.n.b – 2.Σ yi = 0               

Solving the above two equations for a and b, we get: 
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The EXCEL program readily displays the regression equation through the 

command: "Add trend line" by right clicking on any point on the scatter diagram 

of Figure (8.2). 
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Example 8.3 

Find the equation of the regression line of the data in example (8.1) 

Solution: 

The equation relating the marks obtained in exam A (xA) to those of exam B (xB) 

is directly obtained by the aforementioned EXCEL command. 

xB  =  0.9052 xA + 0.8575 

 

 

Fig (8.3): Regression line with its equation 

 

8.2.2 The standard error of estimate 

The regression line gives an estimate about the average relationship between the 

two variables for the set of given points. Had another set of points been chosen, 

the equation would have been different. 

In the following section is shown a method to estimate how far does this relation 

represents the actual relation between variables. In other words, the errors 

associated with using the regression line equation, rather than the actual values, 

will be computed. 

Let the observed values of y corresponding to values of xi be yi, and the calculated 

values yci = a.xi + b 

Let 𝑦̅ be the mean value of observed value = Σ yi / n 

There are three types of deviations that can be considered: 

• The deviation of the mean from any observed value: Di = 𝑦̅ – yi  

• The deviation between observed and calculated values, known as 

unexplained deviation or residual: Dsi = yi – yc 
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• The deviation between calculated values and the mean value, known as 

explained deviation: Dci = yc – 𝑦̅ 

 

The following definitions are related to the above differences. 

• The total variation:                 
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• The unexplained variation:    
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• The explained variation:         

2

11

2 
==

−=
n

i

c

n

i

ci )yy(D   (8.12) 

 

Finally, it can be shown that: 
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The above definitions can be understood in the light of the following discussion:  

When the value of the independent variable x is higher than the mean values 𝑥̅ of 

observations, we expect in an increasing relation that the value of y will also be 

higher than that of the mean 𝑦̅. This expected difference between yc and 𝑦̅ is 

hence called explained difference. The difference between observed and 

calculated values is termed unexplained since it will probably be associated with 

other factors than the independent variable under consideration. 

The square root of the unexplained variance is a type of standard deviation known 

as the standard error of estimate. This is computed from the definition: 

𝑠𝑦𝑥 =  √
𝛴(𝑦𝑐−𝑦𝑖)2

𝑛−2
       (8.14)  

The calculation of this quantity is necessary to set the limits of accuracy of the 

calculated values of y to any desired confidence level. It is   assumed that the 

errors are normally distributed about their mean value. 

Let the required significance level be α corresponding to a value of zcrit  as 

obtained from Table (6.1) (or from NORMINVS) , then the expected limits of 

the values of y corresponding to xi, can be determined from: 

yc  – zcrit. syx < y < yc  + zcrit. syx      (8.15) 

Note that the standard error of estimate can be directly obtained in EXCEL from 

the function STEYX. 

 

8.2.3 The coefficient of determination 

         The extent to which the variables x and y are correlated can be estimated 

by obtaining the ratio of explained variation to the total variation: This is a 

positive number known as the determination coefficient.  
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For linear regression this value is directly obtained after the line is plotted by 

clicking on the command “Display R2 value on chart”. 

In example (8.4), its value = R2 = 0.631. 

This means that 63.1% of the variation in strength is due to the variation in water 

to cement ratio while the remaining 36.9% are due to other factors including 

experimental errors. 

8.2.5 Limits of accuracy of experimental plots and Error bars 

It is common in experimental runs to repeat the experiment more than once and 

obtain the mean value of each reading. The extent of the accuracy of the mean 

values is usually determined using bar charts. 

Since the number of experimental points is usually less than 30, the following 

section addresses errors in terms of t – distribution rather than normal.  

As pointed out to in Chapter 5, the error in determining the mean value of 

population is t. 
𝑠

√𝑟−1
 (Equation 5.7). 

The value of t is obtained from the function T.INV2T (0.05, r – 1), and r 

represents the number of replicate results under the same experimental 

conditions. The standard deviation of these results = s.  

Consider the following data related to the determination of viscosity of a lube oil 

at 7 different temperatures, each run being repeated three times. 

Run  1 2 3 mean s t error 

ToC Viscosity cP     

20 53 53 50 52 1.732 4.303 5.270 

25 48 45 47 46.667 1.5275 4.303 4.647 

30 42 40 43 41.667 1.5275 4.303 4.6474 

35 40 38 37 38.333 1.5275 4.303 4.6474 

40 37 35 35 35.667 1.1547 4.303 3.5131 

45 33 34 36 34.333 1.5275 4.303 4.6474 

50 29 30 30 28.667 0.5774 4.303 1.7565 

 

To place the error bars on the linear regression curve, we plot the mean value 

against temperature, then on the “design” option, choose “Add Chart Element” 

then “Error Bars”. We choose “custom” followed by “specify value” then drag 

the error values for both positive and negative errors. Vertical error bars appear 

on the chart indicating the upper and lower confidence limits of each run. (Figure 

8.6) 
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Fig (8.6): Error bars 

 

Finally, to decide whether any of the experimental runs would be considered 

irrelevant, two straight lines are drawn according to equation (8.15) using the 

obtained critical t – value instead of z. The standard error of estimate as calculated 

for experimental viscosity mean values (y) and temperature (x) from the function 

STEYX = 1.377. With tcrit = 4.303, equation (8.15) is written as: 

yc  – 5.92 < y < yc  + 5.92 

This means subtracting and adding to each calculated value of viscosity the 

number 5.92 to obtain the following table. 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum and maximum values of μ at each temperature are plotted so that 

we get the two straight lines shown in Figure (8.7). Since the upper and lower 

limits of the error bars lie within the two dotted lines, then there all experimental 

points are statistically significant.                   

μ = - 0.6905T + 63.976

R² = 0.981
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20 50.166 44.246 56.086 

25 46.714 40.794 52.634 

30 43.261 37.341 48.181 

35 38.809 33.889 45.729 

40 36.356 30.436 42.276 

45 32.904 26.984 38.824 

50 28.451 23.531 35.371 
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Fig (8.7): Upper and lower confidence limits of experimental points 

8.3 Non – linear regression 

Regressions obtained through experimentation are not necessary linear. In that 

case, the methods explained in the previous section are not valid.   

• In general, it is always possible to assume a polynomial relation between the 

variables. This takes the form: 

yc =  a0 + a1.x + a2.x2 + …+ an.xn  =  Σ ak.xi
k     (8.17) 

The values of the coefficients a0 , a1 , a2, …, an are obtained by setting n 

conditions in the form: 

For k = 1 to n:   

𝜕𝛴𝐷𝑖
2

𝜕𝑎𝑘
 = 0 Where Di  =  yi – Σ ak.xi

k  

This yields a set of n linear equations that can be written in the following matrix 

form: 

Z = N.A         (8.18) 

 

For example, if the suggested regression equation is a second degree polynomial 

in the form:   yc  =  a0 + a1.xi + a2.xi
2, the form of the matrix N is: N =  

(

𝑛 𝛴𝑥𝑖 𝛴𝑥𝑖
2

𝛴𝑥𝑖 𝛴𝑥𝑖
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3
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2 𝛴𝑥𝑖

3 𝛴𝑥𝑖
4

) 

Where A is the column matrix [ak] = [

𝑎0 
𝑎1

𝑎2

]  and Z is the column vector [

𝛴𝑦𝑖  
𝛴𝑥𝑖𝑦𝑖

𝛴𝑥𝑖
2𝑦𝑖

] 

 

Hence the coefficients can be obtained from: A = N-1Z 

μ = - 0.6905T + 63.976

R² = 0.981
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The value of the determination coefficient is calculated from the basic definition 

(8.14) 

• If the suggested regression is of the exponential type in the form: 

    yc  =  a.ekxi 

This can be transformed to a linear form by taking logarithms of both sides: 

ln yc  = ln a  +  k.xi 

A linear regression will thus be performed between ln yc and xi.  

• If the suggested regression is of the power type in the form; 

     yc  =  a.𝑥𝑖
𝑛 

This can be transformed to a linear form by taking logarithms of both sides to 

get: 

ln yc  = ln a  +  n.ln xi 

A linear regression will thus be performed between ln yc and ln xi.  

Currently, all common types of non – linear regressions are available through the 

EXCEL program using the curve fitting module (Insert chart). This gives the best 

fit between experimental data for any assumed regression, as well as the 

coefficient of determination. 

 

Example 8.4 

A distribution that is often used to relate the mass fraction of suspended solid 

particles in water to their size is the Rosin – Rammler distribution: 

𝜑 =  𝑒
−(

𝐷
𝐷𝑚

)
𝑛

 

Where: φ is the fraction having particle size > D, n an empirical constant and Dm 

a characteristic particle diameter. 

The following table illustrates experimental data obtained in this respect using a 

sedigraph analyzer. 

D μm 80 60 50 30 15 10 8 6 5 4 3 2 1 

φ 0.005 0.017 0.047 0.277 0.627 0.767 0.887 0.917 0.941 0.963 0.98 0.995 0.999 
 

From a suitable plot, determine the values of the parameters Dm and n. 

Solution: 

First, the relation should be linearized. Taking logarithms of both sides: 

ln 𝜑 =  − (
𝐷

𝐷𝑚

)
𝑛

 

ln(−ln 𝜑) =  𝑛 ln 𝐷 − 𝑛 ln 𝐷𝑚  

Therefore, a plot of ln(− ln 𝜑) against ln D should produce a straight line of 

slope n and intercept n.ln Dm 

The table of calculations is shown below together with the corresponding plot. 
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D μm 80 60 50 30 15 10 8 6 5 4 3 2 1 

φ 0.002 0.018 0.048 0.248 0.638 0.798 0.858 0.908 0.932 0.952 0.971 0.987 0.999 

ln D 4.382 4.094 3.912 3.401 2.708 2.303 2.079 1.792 1.609 1.386 1.099 0.693 0.000 

ln ln -φ 1.667 1.405 1.118 0.250 -0.762 -1.327 -2.121 -2.446 -2.800 -3.278 -3.902 -5.296 1.667 

 

The regression equation is: 

ln(−ln 𝜑) =  1.794 ln 𝐷 − 5.862       (R2 = 0.984) 

Hence n = 1.794 and n.ln Dm = 5.862, which finally yields Dm = 26.25 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (8.8): Linear relation for data of example (8.4) 

 

Example 8.5 

An experiment was conducted to follow up the effect of temperature on the yield 

strength of a polymer. The results are shown in the following table. 

 

T oC 25 30 40 50 60 70 

Strength MPa 8.82 8.25 7.32 6.2 5.26 0.69 

 

Fit a second order polynomial to represent this correlation and calculate the 

coefficient of determination. 

Solution: 

A second order polynomial can be fitted using EXCEL module: Insert chart: 2nd 

degree polynomial. The plot is shown in Fig (8.9) together with the determination 

coefficient R2. 
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Fig (8.9): Second order polynomial fitting of data of example (8.6)  

 

Example 8.6 

The following data were obtained relating the mean bending strength of hardened 

gypsum board samples to the particle size of gypsum, under a restriction that the 

maximum particle size that can be used is 1 mm (1000 μm) 

Size D μm 74 104 147 208 294 416 590 

Strength σ MPa 7.2 6.4 5.6 4.9 4.5 4.3 4.1 

Optimize the relation between strength and particle size by choosing the most 

suitable regression equation. 

Solution: 

The relation is plotted and the following trials are performed: 

Power function 

The regression equation is σ = 22.95 𝐷−0.28 with R2 = 0.961 (Fig 8.10) 

Polynomial  

A third-degree polynomial has been fitted in fig 8.11 and although it yields a 

value of R2 = 0.998, it cannot be accepted as an extrapolation of the trend 

indicates that the strength can reach negative values if D > 800 μm, which is 

illogic. 

A direct exponential function fitting of data does not yield a reasonable value of 

R2, as exponential functions tend to approach 0 as D approaches ∞ (R2 = 0.787). 

However, a look at the table reveals that an asymptotic value of about 4 MPa 

may be assumed as D approaches 1000. 

That is why, a plot of σ – 4 was performed against D as shown in Fig (8.12). 

 

σ = -0.00395T2 + 0.2155T + 5.5456
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Fig (8.10): Fitted power function for data of Example (8.7) 

 

Fig (8.11): Fitted 3rd degree polynomial for data of Example (8.7) 

 

A direct exponential function fitting of data does not yield a reasonable value of 

R2, as exponential functions tend to approach 0 as D approaches ∞ (R2 = 0.787). 

However, a look at the table reveals that an asymptotic value of about 4 MPa 

may be assumed as D approaches 1000. 

That is why, a plot of σ – 4 was performed against D as shown in Fig (8.12). 
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Fig (8.12): Fitted modified exponential function for data of Example (8.7) 

 

The deduced function takes the form: σ = 4 + 4.305𝑒−0.0066𝐷  with R2 = 0.983 

 

8.4 Exercise problems 

(1) During a test with a thermocouple the e.m.f. (mV) was related to temperature 

through the following table: 

 

T oC 100 200 300 400 500 600 700 800 900 1000 

E mV 5 5.5 10.5 13.6 18 20.2 26.5 27.3 28.6 35 

 

       Obtain a linear regression for temperature as function of e.m.f., and 

determine the correlation coefficient. Then construct a confidence interval for 

the population coefficient at significance level = 0.05 

    

 (2) The following table shows the results obtained in a poll covering 24 

randomly chosen graduate students to relate their scores in the midterm exam in 

a certain subject A and another subject B. The results were as follows:   

A 16 12 11 13 8 14 19 4 5 14 13 20 

B 14 10 12 12 10 14 20 7 4 12 13 20 

A 12 13 17 11 9 15 12 11 8 20 18 14 

B 12 12 15 12 11 14 10 9 5 17 17 12 

 

 Prepare a scatter diagram and deduce the regression equation and the 

correlation coefficient. 
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 (3) The following table shows experimental values for thermal conductivity of 

insulating boards K at different values of porosity. Express K as a linear function 

of porosity and deduce the correlation coefficient. At a confidence level of 0.95, 

construct a confidence interval for the population determination coefficient using 

the Fisher method. 

 

(4) Compressive strength tests are performed on samples of concrete mortar 

cubes after 28 days curing as function of cement content per cubic meter 

concrete. Each sample consists of 3 specimens. The results are as follows: 

Cement content Specimen 1 Specimen 2 Specimen 3 

230 28 27 30.2 

260 32.3 30.9 33.4 

320 36 34.8 33.9 

345 38.7 40 38.2 

390 41.3 42.5 42.7 

420 43.5 42.8 43 

 

 Obtain a linear regression equation relating the mean sample strength to the 

cement content. For a confidence level of 0.95, draw error bars as well as two 

lines representing the lower and upper boundaries of expected strength values. 

(5)   The following equation has been suggested to relate specific heat of a solid 

(J/mol.K) to temperature (K):  cp = a + b.T + c.T2.  

Using a proper regression, find the values of the constants a, b and c. Obtain the 

determination coefficient. 

      

 (6) The rate constant of a chemical reaction is known to be related to   

temperature (K) by the relation:  k = 𝐴𝑒−
𝐸

𝑅𝑇 

From the following data relating k to temperature, estimate the values of A and 

E (J/mole) and estimate the coefficient of determination. 

 

 

 

   

(7)  The compressibility factor Z of a real gas has been related to its molar volume 

by the relation:  Z = a + b/V +c/V2. Using a suitable regression find the values 

of the constants a, b and c and estimate the coefficient of determination. 

Porosity 0.35 0.43 0.28 0.49 0.36 0.50 0.38 0.44 0.52 0.33 

K  W/m.K 0.89 0.77 0.98 0.78 0.85 0.65 0.85 0.80 0.60 0.81 

T K 300 400 500 600 700 800 900 

cp 25 27.5 27.7 28.5 28.8 30.1 30.4 

T K 300 340 385 420 455 500 

k 0.016 0.02 0.022 0.023 0.024 0.026 
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(8) The following data were obtained on following the sedimentation of fine silt 

in water. The height represents the level of interface between clear liquid and 

suspension. 

Time min 0 15 30 45 60 90 120 150 360 

Height mm 430 405 385 380 355 345 335 325 290 
 

 Find an equation describing the sedimentation operation in the form:  

 h = 280 + 𝑘𝑒−𝑐.𝑡 given the constraint that at t = 0, h = 430. 

Write down the coefficient of determination. 

(9) An agricultural waste is used for the adsorption of heavy metal ions from 

wastewater. The equilibrium concentration of ions ( 𝑞𝑒  mg.L-1) follows the 

Langmuir model: 

 𝑞𝑒 = 
𝑘.𝑐

1+𝑏𝑐
 

      Where, 𝑐 is the concentration of the adsorbed phase (mg.L-1). 

 Prove that the following data are compatible with the above expression using 

a linear plot: 

𝒄 0.0045 0.0087 0.021 0.026 0.092 0.195 

𝒒𝒆 0.026 0.053 0.075 0.082 0.123 0.129 

 

 Obtain a correlation coefficient for that relation. 

(10) The friction factor in an experiment involving flow of heavy oil in a duct 

was correlated to the Reynolds number through a relation in the form: 

 𝑓 = 𝑘. 𝑅𝑒𝑛    

 Obtain the values of the constants 𝑘 and 𝑛 by linearization of the above 

expression and find the correlation coefficient. Draw the error bars at 

significance level = 0.05. 

𝑅𝑒  0.1 1 10 50 100 200 500 1000 

# 1 1.37 0.266 0.039 0.0095 0.0068 0.0031 0.0019 0.0011 

# 2 1.51 0.241 0.041 0.012 0.0054 0.0035 0.002 0.002 

# 3 1.29 0.219 0.029 0.011 0.0076 0.0029 0.0027 0.001 

 

 

V  m3/mole 0.02 0.03 0.04 0.05 0.06 0.07 

Z  1.23 1.15 1.14 1.09 1.07 1.05 
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(11) The relation between the mole fraction of a volatile component in vapor 

phase (𝑦) and its mole fraction in liquid phase (𝑥) is often obtained by the 

following expression where 𝛼 is the relative volatility: 

 𝑦 = 
𝛼.𝑥

1+(𝛼−1).𝑥
     

Express the following data in linearized form, then find the value of 𝛼 from two 

different parameters obtained from the regression equation.  

  

 

 


