Beta-glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin.

Tohamy, A. A., A. A. El-Ghor, S. M. El-Nahas, and M. M. Noshy, "Beta-glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin.", Mutation research, vol. 541, issue 1-2, pp. 45-53, 2003 Nov 10.


The inhibitory effects of beta-glucan (betaG), one of the biological response modifiers, on the induction of chromosomal aberrations in the bone marrow and spermatogonial cells of mice treated with various anti-neoplastic drugs were investigated. beta-Glucan (100 mg/kg bw, i.p.) pre-treatment reduced the total number of cells with structural chromosomal aberrations scored after the treatment with cyclophosphamide (CP) (2.5 mg/kg bw, i.p.) adriamycin (ADR) (12 mg/kg bw, i.p.) and cis-diamminedichloroplatinum-II (cisplatin) (5 mg/kg bw, i.p.) by about 41.1, 26.9 and 57.7% in bone marrow and 44.4, 55 and 57.1% in spermatogonial cells, respectively. This protective effect of beta-glucan could be attributed to its scavenging ability to trap free-radicals produced during the biotransformation of these anti-neoplastic drugs. Beta-glucan also markedly restored the mitotic activity of bone marrow cells that had been suppressed by the anti-neoplastic drugs. These results indicate that in addition to the known immunopotentiating activity of beta-glucan, it plays a role in reducing genotoxicity induced by anti-neoplastic drugs during cancer chemotherapy.