
Research Article
Testing Automation of Context-Oriented Programs
Using Separation Logic

Mohamed A. El-Zawawy1,2

1College of Computer and Information Sciences, Al ImamMohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11432, Saudi Arabia
2Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Correspondence should be addressed to Mohamed A. El-Zawawy; maelzawawy@cu.edu.eg

Received 12 July 2014; Accepted 2 December 2014; Published 29 December 2014

Academic Editor: Baoding Liu

Copyright © 2014 Mohamed A. El-Zawawy. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A new approach for programming that enables switching among contexts of commands during program execution is context-
oriented programming (COP). This technique is more structured and modular than object-oriented and aspect-oriented
programming and hence more flexible. For context-oriented programming, as implemented in COP languages such as ContextJ∗
and ContextL, this paper introduces accurate operational semantics. The language model of this paper uses Java concepts and is
equipped with layer techniques for activation/deactivation of layer contexts. This paper also presents a logical system for COP
programs. This logic is necessary for the automation of testing, developing, and validating of partial correctness specifications for
COP programs and is an extension of separation logic. Amathematical soundness proof for the logical system against the proposed
operational semantics is presented in the paper.

1. Introduction

To support and dynamically control the modularization of
crosscutting concerns [1], a new programming style, context-
oriented programming (COP) [2], has appeared. COP can be
defined as a programming approach that produces software
that is dynamically adaptable. COP was invented to treat
programming problems when the behavior of the required
software changes at runtime depending on the execution
conditions.This is not easily achieved by classical approaches
of programming. COP was established on languages like
Smalltalk [3], Java [4], and JavaScript [5]. While the idea
of homogeneous crosscutting is to execute the same source
code at the join points of concerns, the idea of heterogeneous
crosscutting concerns is to execute different source code at
the join points. Heterogeneous crosscutting [1] is the type of
crosscutting concerns adopted by COP. Partial functions dec-
larations adapting common functions to their new style are
used in COP to implement these crosscuttingmethodologies.

Main components of COP include (a) layers of variant
functions for providing performance alterations and (b) a

tool for layer activation/deactavation. A variant function is
a function that can be executed after, before, and around the
same (variant) function included in another layer. Hence a
layer is a group of variant functions.

Layer declarations are used to encapsulate partial func-
tion declarations. The semantics of classes and that of cross-
cutting can be combined at the runtime. COP [2] provides a
block statement defining a group of layers to enable runtime
layer composition. Determined by the statement block, an
execution scope is also provided by COP. In this scope
layers are typically combined with the base system. Another
statement enables stopping execution of specified layers.
The keywords denoting these two statements are with and
without statements [2]. COP appears to be a very convenient
technique for encapsulation of homogeneous crosscutting
concerns as proved by many applications.

However, so far research did not provide appropriate logic
to reason about context-oriented programs. A main concern
in COP is the treatment of layers activations/deactivations.
Usually, the set of active layers changes from one program
point to another. Therefore the efficiency of any logic for

Hindawi Publishing Corporation
Applied Computational Intelligence and So Computing
Volume 2014, Article ID 930186, 8 pages
http://dx.doi.org/10.1155/2014/930186

http://dx.doi.org/10.1155/2014/930186

2 Applied Computational Intelligence and Soft Computing

COP strongly depends on using correct layers. In spite of
the concept of activating/deactvating a layer is simple, and its
logical treatment is a bit complex.

To reason about resources, Reynolds [6] and indepen-
dently Samin and O’Hearn [7] presented new logic (sep-
aration logic). This was based on Burstall’s early work. A
logical operator (separation conjunction) enabling localizing
operation actions on shared resources is among themain con-
tributions of separation logic. Sound form of local reasoning
was reached by the separation conjunction which ensures the
invariance of resources not included in preconditions.

To model the meanings of COP concepts, this paper
introduces operational semantics. Accurate meanings for
basics of COP languages are provided by the semantics.
Axiomatic semantics for COP is the second contribution
of this paper. This semantics is an extension of separation
logic to establish and ensure partial correctness specifications
for COP programs. Rather than other logic, separation logic
seems most suitable for verifying COP. This is so as the
concept of context changing is explicitly “treated” by the
special operators of separation logic. One of the challenges
in this paper is to expose this explicit relationship in the form
of formal definitions and inference rules. Judgments of the
proposed logic have the form 𝐿 ⊨ {𝑃}𝑆{𝑄}meaning that

(i) if layers of 𝐿 are active, then executing 𝑆 in a state
satisfying 𝑃 is ensured not to abort,

(ii) if layers of 𝐿 are active and the execution of 𝑆 in a state
satisfying 𝑃 ended at some state, then this last state
satisfies 𝑄.

Assertions 𝑃 and 𝑄 may reason about the program
control locations as well as upon the values of local and global
variables. A systemof axioms and inference rules constituting
the proposed logic is introduced in the paperwhich presents a
partial correctness specification, for example, COP-program,
as well. Against the proposed operational semantics, the
mathematical soundness of the logical system is shown in this
paper.

Contributions of this paper are as follows:

(1) new operational semantics to provide accurate mean-
ings for COP concepts,

(2) novel axiomatic semantics to construct and validate
partial correctness specifications for COP programs.

The rest of the paper is organized as follows. Section 2
presents in detail the programming language J-COP and its
operational semantics. The assertion language, axioms, and
inferences rules constituting the logical system are presented
in Section 3 which also presents the mathematical proof for
the correctness of the system and an example of its use.
Related research is presented in Section 4.

2. Programming Language and
Operational Semantics

The syntax and semantics of the programming language
(dubbed J-COP) used in this paper are presented in this

section. Basic aspects of object-oriented programming like
inheritance and subtyping are modeled in J-COP which
follows Java syntax for comparable structures. Algorithm 1
presents the syntax of J-COP.

J-Cop is a rich model for COP. The model includes
basic language constructs and is extendable directly over
well-studied Java features. Although the model is expressive
enough to include more language features, it is simple. In
addition to typical Java constructs, the model allows layers
activation/deactivation, overriding variant functions, and a
technique for executing proceed and super.

We let 𝐶 denote the typical member of the set of names
of classes C which is included in the set of types (Types). In
addition to C, Types includes function and reference types.
The typical element of Types is denoted by 𝜏. As it is common
in programming, J-COP’s functions contain local variables
whose scopes are the same as their functions. Also parameters
for functions are local variables which are denoted by LVar.
Instance variables model internal states of classes. We let
𝐼𝑉𝑎𝑟
𝐶
denote the set of instance variables of the class 𝐶. The

symbols 𝑜 and V denote typical elements of LVar and 𝐼𝑉𝑎𝑟
𝐶
,

respectively. Sequences of layers activation/deactivation con-
stitute layer expressions (LayerExpr) with 𝑙𝑒 ∈ 𝐿𝑎𝑦𝑒𝑟𝐸𝑥𝑝𝑟.
FunNames and LayerNames denote the sets of function and
layer names, respectively, with 𝑓 ∈ 𝐹𝑢𝑛𝑁𝑎𝑚𝑒𝑠 and 𝑙 ∈ 𝐿𝑎𝑦𝑒𝑟
𝑁𝑎𝑚𝑒𝑠.

A class in J-COP includes function definitions and a
group of layers containing function definitions. A function is
defined via a parameter, a statement, and an expression. The
expression models the returned value of the function. A set
of classes and a main function (marks the start of program
execution) are the components of a J-COP program.

The operational semantics of J-COP presented in this
section is defined using state representations and a subtype
relation on classes. If𝐶 inherits𝐷 by definition of𝐶, then𝐶 is
a subclass of𝐷 (denoted by𝐶 ≪ 𝐷) and𝐷 is a superclass of𝐶.
The reflexive transitive closure of≪ is denoted by ≤. States of
the operational semantics are presented in Definition 1 where
A denotes an infinite set of memory addresses with 𝛼 ∈ A
andZ is the set of integers.

Definition 1. One has the following:

(1) D = Z ∪A;
(2) 𝐿𝑎𝑦𝑒𝑟

𝐶
and𝐹𝑢𝑛

𝐶
denote the sets of function and layer

names of 𝐶, respectively;
(3) Stacks = {𝑠 | 𝑠 : LVar→

𝑝
Z};

(4) ObjCont = {𝑂
𝐶
| 𝑂
𝐶
: IVar

𝐶
→ Z, 𝐶 ∈ C};

(5) Heaps = {ℎ | ℎ : A→
𝑝
ObjCont};

(6) 𝑆𝑡𝑎𝑡𝑒𝑠 = Stacks ×Heaps.

The setD includesmodel values. States of the operational
semantics are pairs of a stack and a heap. A special variable
(called this), to point at the object being executed, is included
in the set of local variables. For each class 𝐶, we assume
two functions 𝐹

𝐶
and 𝐿

𝐶
. The map 𝐹

𝐶
determines for every

function𝑓 ∈ 𝐹𝑢𝑛
𝐶
its components (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
), the parameter

variable of the function, the function statement, and the

Applied Computational Intelligence and Soft Computing 3

𝑒 ∈ AExpr ::= 𝑛 | 𝑜 | 𝑒 ⋅ V | 𝑒
1
𝑖
𝑜𝑝
𝑒
2
| (𝐶)𝑒 | this

𝑏 ∈ BExpr ::= true | false | 𝑒
1
𝑐
𝑜𝑝
𝑒
2
| 𝑏
1
𝑏
𝑜𝑝
𝑏
2

𝑙𝑒 ∈ LayerExpr ::= with 𝑙 | without 𝑙 | 𝜖 | 𝑙𝑒 𝑙𝑒
𝑆 ∈ Stat ::= 𝑒

1
⋅ V := 𝑒

2
| 𝑜
1
:= 𝑙𝑒 𝑜

2
⋅ 𝑓(𝑒) | 𝑜

1
:= 𝑜
2
⋅ 𝑓 (𝑒) |

𝑜 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑒) | 𝑜
1
:= proceed 𝑜

2
⋅ 𝑓(𝑒) |

𝑜 := new 𝐶 | 𝑆; 𝑆 | if 𝑏 then 𝑆
𝑡
else 𝑆

𝑓
|

while 𝑏 do 𝑆
𝑡

funs ∈ Fun ::= 𝑓(𝑝){𝑆; return(𝑒); }
layer ∈ Lay ::= Layer 𝑙 {fun}

inhrt ∈ Inherits ::= 𝜖 | inherits 𝐶
cls ∈ Class ::= class 𝐶 inhrt {fun∗ layer∗}

prog ∈ Prog ::= cls∗ main() {𝑆}

Algorithm 1: The programming language J-COP.

[𝐶(𝑒)] (𝑠, ℎ) = {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, if [𝑒](𝑠, ℎ) ∈ 𝑑𝑜𝑚(ℎ), ℎ([𝑒](𝑠, ℎ)) = 𝑂

𝐷
, 𝑎𝑛𝑑 𝐷 ≰ 𝐶;

[𝑒] (𝑠, ℎ) , otherwise.

[𝑒 ⋅ V](𝑠, ℎ) = {
𝑂
𝐷
(V), if ℎ([𝑒](𝑠, ℎ)) = 𝑂

𝐷
𝑎𝑛𝑑 V ∈ 𝑑𝑜𝑚(𝑂

𝐷
);

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, otherwise.

Algorithm 2: Semantics of J-COP expressions.

returned expression of the function. The map 𝐼
𝐶
determines

for every layer 𝑙 ∈ 𝐿𝑎𝑦𝑒𝑟
𝐶
the parts of the layer’s function

(𝑓, 𝑝
𝑓
, 𝑆
𝑓
, 𝑒
𝑓
). We also assume a function SerLay(𝐿, 𝑙𝑒, 𝑓) =

𝐿
󸀠

= {𝑙
1
, . . . , 𝑙
𝑚
} whose inputs are a set of layers, a layer

expression, and a function name. SerLay adds (removes)
layers activated (deactivated) by 𝑙𝑒 to (from) 𝐿. Then SerLay
returns the set of layers in 𝐿 containing definitions for 𝑓.

The semantics of arithmetic and boolean expressions of
J-COP is similar to the case of simple imperative language.
The cases of (𝐶)𝑒 and 𝑒 ⋅ V are shown in Algorithm 2. Some
comments on this algorithm are in order. The expression 𝑒 ⋅ V
denotes the variable V of the class referenced by 𝑒. In line
with common OOP concepts, variables of 𝐶 and that of its
ancestors are included in domain of 𝐼𝑉𝑎𝑟

𝐶
. Therefore the

semantics of 𝑒 ⋅ V is defined only if V is a local variable of
the class referenced by 𝑒 or any of the class’s ancestors. The
semantics of 𝑒 (in 𝑒⋅V) is supposed to be an address containing
a class object. The semantics of (𝐶)𝑒 is undefined if 𝑒 is the
address of an object of a class𝐷 that is not a descendant of 𝐶.

Algorithm 3 presents the semantics of J-COP’s state-
ments. The judgments of the semantics have the form 𝐿 ⊣

𝑆 : (𝑠, ℎ) → (𝑠
󸀠

, ℎ
󸀠

) meaning that executing 𝑆 in the state
(𝑠, ℎ) results in the state (𝑠󸀠, ℎ󸀠) provided that 𝐿 is the set of
the currently active layers. Some comments on the rules are
as follows. The local variable V of the object pointed to by
𝑒
1
is updated in the rule (:=𝑠

𝑒
). This amounts to modifying

the function 𝑂
𝐶
in the image of [𝑒

1
](𝑠, ℎ) under ℎ. With

input 𝑒, the rule (:=𝑠
𝑜⋅𝑓
) provides semantics for running the

function 𝑓 of the object pointed to by 𝑜
2
. The semantics

of 𝑙𝑒 in 𝑜
1
:= 𝑙𝑒 𝑜

2
⋅ 𝑓(𝑒) is to activate/deactivate certain

layers. The rule (:=𝑠
𝑙⋅𝑜⋅𝑓

) provides operational semantics for
this statement. This rule does the call SerLay(𝐿, 𝑙𝑒, 𝑓) to add

(remove) layers activated (deactivated) via 𝑙𝑒 to (from) 𝐿.This
call then returns the subset of 𝐿 with definitions for 𝑓. The
rule then executes the bodies of layer functions sequentially.
The execution number 𝑖 builds on its previous execution by
updating 𝑜

1
to the value [𝑒

𝑖−1
](𝑠
𝑖
, ℎ
𝑖
). The statement 𝑜 :=

super ⋅ 𝑓(𝑒) running the function 𝑓 of an ancestor of the
current object is given semantics in the rule (sup𝑠). The rule
assumes a function super that finds the ancestor of the class
pointed to by 𝑜

2
such that this ancestor includes a definition

for𝑓. Semantics for 𝑜
1
:= proceed 𝑜

2
⋅𝑓(𝑒) is given in the rule

(pro𝑠). This statement runs all functions 𝑓 in active layers of
the object referenced by 𝑜

2
.

3. Assertion Language and Logical System

Extended separation logic to cover context-oriented pro-
grams is presented in this section.The section introduces the
assertion language followed by the logical system’s axioms
and inference rules. Against the operational semantics pre-
sented in the previous section, this section also outlines a
formal mathematical proof for the correctness of the logical
system. Finally an example of a derivation for a partial
correctness specification using the logical system is included
in this section as well.

Boolean expressions, classical connectives, first order
quantifications, and assertions specific to separation logic are
the components of separation logic assertions. The following
version of assertions is used in this section.

(i) emp denotes an empty heap.
(ii) 𝑒 󳨃→ 𝐶 denotes that the heap has a unique memory

cell whose address is 𝑒 and whose content is an
instance of the class 𝐶.

4 Applied Computational Intelligence and Soft Computing

𝑂
𝐶
= ℎ ([𝑒

1
] (𝑠, ℎ)) 𝑂

󸀠

𝐶
= 𝑂
𝐶
[V 󳨃→ [𝑒

2
] (𝑠, ℎ)]

𝐿 ⊣ 𝑒
1
⋅ V := 𝑒

2
: (𝑠, ℎ) → (𝑠, ℎ [[𝑒

1
] (𝑠, ℎ) 󳨃→ 𝑂

󸀠

𝐶
])
(:=
𝑠

𝑒
)

ℎ([𝑜
2
](𝑠, ℎ)) = 𝑂

𝐶
𝐹
𝐶
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
)

𝐿 ⊣ 𝑆
𝑓
: (𝑠[this 󳨃→ 𝑠(𝑜

2
), 𝑝
𝑓
󳨃→ [𝑒](𝑠, ℎ)], ℎ) → (𝑠

󸀠󸀠

, ℎ
󸀠󸀠

)

𝐿 ⊣ 𝑜
1
:= 𝑜
2
⋅ 𝑓(𝑒) : (𝑠, ℎ) → (𝑠󸀠󸀠[𝑜

1
󳨃→ [𝑒
𝑓
](𝑠󸀠󸀠, ℎ󸀠󸀠)], ℎ󸀠󸀠)

(:=
𝑠

𝑜⋅𝑓
)

SerLay (𝐿, 𝑙𝑒, 𝑓) = 𝐿󸀠 = {𝑙
1
, . . . , 𝑙

𝑚
}

ℎ(𝑠(𝑜
2
)) = 𝑂

𝐶
∀1 ≤ 𝑖 ≤ 𝑚 (𝐿

𝐶
(𝑙
𝑖
) = (𝑓, 𝑝

𝑖
, 𝑆
𝑖
, 𝑒
𝑖
))

𝐿
󸀠

⊣ 𝑆
1
: (𝑠[this 󳨃→ 𝑠(𝑜

2
), 𝑝
1
󳨃→ [𝑒](𝑠, ℎ)], ℎ) → (𝑠

2
, ℎ
2
)

∀𝑖 > 1. 𝐿
󸀠

⊣ 𝑆
𝑖
: (𝑠
𝑖
[𝑜
1
󳨃→ [𝑒
𝑖−1
](𝑠
𝑖
, ℎ
𝑖
), this 󳨃→ 𝑠

𝑖
(𝑜
2
),

𝑝
𝑖
󳨃→ [𝑒](𝑠

𝑖
, ℎ
𝑖
)], ℎ
𝑖
) → (𝑠

𝑖+1
, ℎ
𝑖+1
)

𝐿 ⊣ 𝑜
1
:= 𝑙𝑒 𝑜

2
⋅ 𝑓(𝑒) : (𝑠, ℎ) → (𝑠

𝑚+1
[𝑜
1
󳨃→ [𝑒
𝑚
](𝑠
𝑚+1

, ℎ
𝑚+1

)], ℎ
𝑚+1

)
(:=
𝑠

𝑙⋅𝑜⋅𝑓
)

ℎ(𝑠(this)) = 𝑂
𝐶
𝐶 ≪ 𝐸

super(𝐸, 𝑓) = 𝐷 𝐹
𝐷
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
)

𝐿 ⊣ 𝑆
𝑓
: (𝑠[𝑝

𝑓
󳨃→ [𝑒](𝑠, ℎ)], ℎ) → (𝑠

󸀠󸀠

, ℎ
󸀠󸀠

)

𝐿 ⊣ 𝑜 := super ⋅ 𝑓(𝑒) : (𝑠, ℎ) → (𝑠󸀠󸀠[𝑜 󳨃→ [𝑒
𝑓
](𝑠󸀠󸀠, ℎ󸀠󸀠)], ℎ󸀠󸀠)

(sup𝑠)

𝑎 ∈ A \ 𝑑𝑜𝑚(ℎ)

𝐿 ⊣ 𝑜 := new 𝐶 : (𝑠, ℎ) → (𝑠[𝑜 󳨃→ 𝑎], ℎ[𝑎 󳨃→ 0])
(new𝑠)

ℎ (𝑠 (𝑜
2
)) = 𝑂

𝐶

𝐿
󸀠

= {𝑙
1
, . . . , 𝑙

𝑚
} ⊆ 𝐿. (∀1 ≤ 𝑖 ≤ 𝑚 (𝐿

𝐶
(𝑙
𝑖
)) = (𝑓, 𝑝

𝑖
, 𝑆
𝑖
, 𝑒
𝑖
))

𝐿
󸀠

⊣ 𝑆
1
: (𝑠
1
[this 󳨃→ 𝑠 (𝑜

2
) , 𝑝
1
󳨃→ [𝑒] (𝑠

1
, ℎ
1
)] , ℎ
1
) → (𝑠

2
, ℎ
2
)

∀𝑖 > 1. 𝐿
󸀠

⊣ 𝑆
𝑖
: (𝑠
𝑖
[𝑜
1
󳨃→ [𝑒
𝑖−1
] (𝑠
𝑖
, ℎ
𝑖
) , this 󳨃→ 𝑠 (𝑜

2
) , 𝑝
𝑖
󳨃→ [𝑒] (𝑠

𝑖
, ℎ
𝑖
)] , ℎ
𝑖
) → (𝑠

𝑖+1
, ℎ
𝑖+1
)

𝐿 ⊣ 𝑜
1
:= proceed 𝑜

2
⋅ 𝑓(𝑒) : (𝑠, ℎ) → (𝑠

𝑚+1
[𝑜
1
󳨃→ [𝑒
𝑚
] (𝑠
𝑚+1

, ℎ
𝑚+1

)] , ℎ
𝑚+1

)
(𝑝
𝑠

)

([𝑏](𝑠, ℎ) = true ∧ 𝐿 ⊣ 𝑆
𝑡
: (𝑠, ℎ) → (𝑠

󸀠

, ℎ
󸀠

))∨

([𝑏](𝑠, ℎ) = false ∧ 𝐿 ⊣ 𝑆
𝑓
: (𝑠, ℎ) → (𝑠

󸀠

, ℎ
󸀠

))

𝐿 ⊣ if 𝑏 then 𝑆
𝑡
else 𝑆

𝑓
: (𝑠, ℎ) → (𝑠󸀠, ℎ󸀠)

(if𝑠)

[𝑏](𝑠, ℎ) = false
𝐿 ⊣ while 𝑏 do 𝑆

𝑡
: (𝑠, ℎ) → (𝑠, ℎ)

(whl𝑠
1
)

𝐿 ⊣ 𝑆
1
: (𝑠, ℎ) → (𝑠

󸀠󸀠

, ℎ
󸀠󸀠

)

𝐿 ⊣ 𝑆
2
: (𝑠
󸀠󸀠

, ℎ
󸀠󸀠

) → (𝑠
󸀠

, ℎ
󸀠

)

𝐿 ⊣ 𝑆
1
; 𝑆
2
: (𝑠, ℎ) → (𝑠󸀠, ℎ󸀠)

(sq𝑠)

[𝑏](𝑠, ℎ) = true
𝐿 ⊣ 𝑆
𝑡
: (𝑠, ℎ) → (𝑠

󸀠󸀠

, ℎ
󸀠󸀠

)

𝐿 ⊣ while 𝑏 do 𝑆
𝑡
: (𝑠
󸀠󸀠

, ℎ
󸀠󸀠

) → (𝑠
󸀠

, ℎ
󸀠

)

𝐿 ⊣ while 𝑏 do 𝑆
𝑡
: (𝑠, ℎ) → (𝑠󸀠, ℎ󸀠)

(whl𝑠
2
)

Algorithm 3: Inference rules of the operational semantics for J-COP constructs.

(iii) this 󳨃→ 𝐶 denotes a special case of the previous
assertion where 𝑒 = this.

(iv) 𝑃 ∗ 𝑄 dubbed separating conjunction.
(v) 𝑃 −∗𝑄 dubbed separating implication.
(vi) ⊛

𝑖∈𝐼
𝑃
𝑖
is a general form of separating conjunction.

Algorithm 4 presents the specific definition of the lan-
guage of assertions. A group of states are modeled by every
assertion via a modeling relation ((𝑠, ℎ) ⊨ 𝑃). The semantics
of this relation is that the state (𝑠, ℎ) satisfies the assertion
𝑃. Definition 2 formalizes the semantics of the modeling
relation.

Definition 2. One has the following:

(i) (𝑠, ℎ) ⊨ fine(𝑒
1
, . . . , 𝑒

𝑛
)
def
⇔ for all 𝑖. ⟦𝑒

𝑖
⟧(𝑠, ℎ) ̸= abort;

(ii) (𝑠, ℎ) ⊨ emp
def
⇔ dom(ℎ) = 0;

(iii) (𝑠, ℎ) ⊨ 𝑒 󳨃→ 𝐶
def
⇔ dom(ℎ) = {⟦𝑒⟧(𝑠, ℎ)} and

ℎ(⟦𝑒⟧(𝑠, ℎ)) = 𝑂
𝐶
;

(iv) (𝑠, ℎ) ⊨ 𝑃
1
∗𝑃
2

def
⇔ ∃ℎ

󸀠

, ℎ
󸀠󸀠. ℎ󸀠# ℎ󸀠󸀠, ℎ = ℎ󸀠 ⋅ℎ󸀠󸀠, (𝑠, ℎ󸀠) ⊨

𝑃
1
, and (𝑠, ℎ󸀠󸀠) ⊨ 𝑃

2
;

(v) (𝑠, ℎ) ⊨ 𝑃
1
−∗𝑃
2

def
⇔ for all ℎ󸀠((ℎ󸀠#ℎ and (𝑠, ℎ

󸀠

) ⊨ 𝑃
1
) ⇒

(𝑠, ℎ ⋅ ℎ
󸀠

) ⊨ 𝑃
2
).

The fact that dom(ℎ
1
) ∩ dom(ℎ

2
) = 0 is denoted by the

expression ℎ
1
ℎ
2
. The union of heaps is denoted by ℎ

1
⋅ ℎ
2

and is defined only if ℎ
1
ℎ
2
.

A judgment of the proposed logical system is of the form
𝐿 ⊨ {𝑃}𝑆{𝑄} where 𝑃 and 𝑄 are the pre- and postconditions,
respectively. The semantics of this judgment is that if layers
of 𝐿 are active and 𝑆 is executed in a state satisfying 𝑃,
then the final state will satisfy 𝑄. Definition 3 formalizes the

Applied Computational Intelligence and Soft Computing 5

𝑒 ∈ AExpr ::= 𝑛 | 𝑜 | 𝑒 ⋅ V | 𝑒
1
𝑖
𝑜𝑝
𝑒
2
| (𝐶)𝑒 | this

𝑏 ∈ BExpr ::= true | false | 𝑒
1
𝑐
𝑜𝑝
𝑒
2
| 𝑏
1
𝑏
𝑜𝑝
𝑏
2

𝑃,𝑄, 𝑅, 𝐽
1
, 𝐽
2
∈ Asset ::= 𝑏 | 𝑃 ∧ 𝑄 | 𝑃 ∨ 𝑄 | 𝑃 ⇒ 𝑄 | ¬𝑃 | ∀𝑥. 𝑃 |

∃ 𝑥. 𝑃 | fine(𝑒) | emp | 𝑒 󳨃→ 𝐶 | 𝑃 ∗ 𝑄 |

𝑃 −∗ 𝑄 | ⊛
𝑖∈𝐼
𝑃
𝑖
.

Algorithm 4: The assertion language.

soundness concept of specifications produced by the logical
system. Axioms and inference rules of the logical system are
introduced in Algorithm 5.

We fix the abortion notion for Definition 3. A statement 𝑆
is aborting at (𝑠, ℎ) (denoted by 𝑆 : (𝑠, ℎ, 𝐿) → abort) if (a) a
state (𝑠󸀠, ℎ󸀠) such that 𝑆 : (𝑠, ℎ) → (𝑠

󸀠

, ℎ
󸀠

) is not available and
(b) 𝑆 is not stuck in an infinite loop.

Definition 3. A specification 𝐿 ⊣ {𝑃}𝑆{𝑄} is sound if, for each
(𝑠, ℎ) such that (𝑠, ℎ) ⊨ 𝑃, the following is satisfied:

(1) ¬(𝐿 ⊨ 𝑆 : (𝑠, ℎ) → abort),

(2) if 𝐿 ⊨ 𝑆 : (𝑠, ℎ) → (𝑠
󸀠

, ℎ
󸀠

), then (𝑠󸀠, ℎ󸀠) ⊨ 𝑄.

Some of the rules in Algorithm 5 are certainly notewor-
thy. In many rules like (:=𝑙

𝑒
) and (:=

𝑙

𝑜⋅𝑓
), the expressions of

relevant statements contribute to the preconditions of the
rules. This has the advantage of ensuring that the meant
memory addresses are indeed allocated and hence evalua-
tions of expressions do not abort. The preconditions of (:=𝑙

𝑒
)

and (:=
𝑙

𝑜⋅𝑓
) also ensure that appropriate variables reference

objects in heap. The side-conditions of (:=𝑙
𝑜⋅𝑓
) and (:=

𝑙

𝑙⋅𝑜⋅𝑓
)

consider that executing these statements involves executing
certain function bodies. We let mod(𝑆, 𝐿) denote the set of
locations modified by 𝑆 provided that layers of 𝐿 are active.
The symbol 𝑓V(𝑅) denotes the set of free variables of 𝑅. The
rule (share𝑙) enables the composition of specifications having
disjoint sets of activated layers if the preconditions of the
specifications describe disjoint regions of the heap. The rule
(frame𝑙) enables avoiding a frame of the heap,𝑅, that does not
affect the statement. This rule also ensures that 𝑅 is satisfied
by the postcondition.

Soundness. The soundness of the logical system is guaranteed
by the following theorem.

Theorem 4. Specifications 𝐿 ⊣ {𝑃}𝑆{𝑄} that resulted using the
logical system of Algorithm 5 are sound (Definition 3).

Proof. Structure induction on axioms and inference rules of
Algorithm 5 achieves the proof. In the following, basic cases
are outlined.

(i) The case of the rule (:=𝑙
𝑒
): in this case

(a) 𝑆 = 𝑒
1
⋅ V := 𝑒

2
,

(b) 𝑃 ⇔ 𝑒
1
󳨃→ 𝐶 ∧ fine(𝑒

1
⋅V) ∧ fine(𝑒

2
) ∧ 𝑄[𝑒

2
/𝑒
1
⋅

V].

Suppose that, for state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝑃. Hence
𝑂
𝐶
= ℎ(⟦𝑒

1
⟧(𝑠, ℎ)) and ⟦𝑒

2
⟧(𝑠, ℎ) �= abort. Therefore

𝑂
󸀠

𝐶
= 𝑂
𝐶
[V 󳨃→ ⟦𝑒

2
⟧(𝑠, ℎ)] is defined and so does

(𝑠, ℎ[⟦𝑒
1
⟧(𝑠, ℎ) 󳨃→ 𝑂

󸀠

𝐶
]). Hence ¬(𝐿 ⊨ 𝑆 : (𝑠, ℎ) →

abort). Now we suppose 𝐿 ⊨ 𝑆 : (𝑠, ℎ) → (𝑠
󸀠

, ℎ
󸀠

). In
this case (𝑠󸀠, ℎ󸀠) = (𝑠, ℎ[⟦𝑒

1
⟧(𝑠, ℎ) 󳨃→ 𝑂

󸀠

𝐶
]). Therefore

(𝑠
󸀠

, ℎ
󸀠

) ⊨ 𝑄 because (𝑠, ℎ) ⊨ 𝑄[𝑒
2
/𝑒
1
⋅ V]. This

completes the proof for this case.
(ii) The case of the rule (∗:=𝑙

𝑜⋅𝑓
): in this case

(a) 𝑆 = 𝑜
1
:= 𝑜
2
⋅ 𝑓(𝑒),

(b) 𝐹
𝐶
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
),

(c) 𝐿 ⊣ {𝑅[𝑜
2
/this, 𝑒/𝑝

𝑓
]} 𝑆
𝑓
{𝑄[𝑒
𝑓
/𝑜
1
]},

(d) 𝐿 ⊣ 𝑆
𝑓
: (𝑠[this 󳨃→ 𝑠(𝑜

2
), 𝑝
𝑓
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) →

(𝑠
󸀠󸀠

, ℎ
󸀠󸀠

),
(e) 𝑃 ⇔ 𝑜

2
󳨃→ 𝐶 ∧ 𝑅 ∧ fine(𝑒, 𝑒

𝑓
).

Suppose that, for state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝑃. This implies
ℎ(⟦𝑜
2
⟧(𝑠, ℎ)) = 𝑂

𝐶
. The condition fine(𝑒, 𝑒

𝑓
) implies

(𝑠[this 󳨃→ 𝑠(𝑜
2
), 𝑝
𝑓

󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) is defined.
Therefore (𝑠[this 󳨃→ 𝑠(𝑜

2
), 𝑝
𝑓

󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) ⊨

𝑅[𝑜
2
/this, 𝑒/𝑝

𝑓
]. By induction hypothesis 𝑆

𝑓
does not

abort at (𝑠[this 󳨃→ 𝑠(𝑜
2
), 𝑝
𝑓

󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) and
therefore 𝑜

1
:= 𝑜
2
⋅ 𝑓(𝑒) does not abort at (𝑠, ℎ). Now

we suppose that 𝑜
1
:= 𝑜
2
⋅ 𝑓(𝑒) : (𝑠, ℎ) → (𝑠

󸀠

, ℎ
󸀠

). By
(:=
𝑠

𝑜⋅𝑓
), (𝑠󸀠, ℎ󸀠) = (𝑠

󸀠󸀠

[𝑜
1
󳨃→ ⟦𝑒

𝑓
⟧(𝑠
󸀠󸀠

, ℎ
󸀠󸀠

)], ℎ
󸀠󸀠

). Also
by induction hypothesis (𝑠󸀠󸀠, ℎ󸀠󸀠) ⊨ 𝑄[𝑒

𝑓
/𝑜
1
] implying

(𝑠
󸀠

, ℎ
󸀠

) ⊨ 𝑄. This completes the proof for this case.
(iii) The case of the rule (∗:=𝑙

𝑙⋅𝑜⋅𝑓
): in this case

(a) 𝑆 = 𝑜
1
:= 𝑙𝑒 𝑜

2
⋅ 𝑓(𝑒),

(b) SerLay(𝐿, 𝑙𝑒, 𝑓) = 𝐿
󸀠

= {𝑙
1
, . . . , 𝑙
𝑚
}, for all 1 ≤

𝑖 ≤ 𝑚(𝐿
𝐶
(𝑙
𝑖
) = (𝑓, 𝑝

𝑖
, 𝑆
𝑖
, 𝑒
𝑖
)),

(c) 𝐿󸀠 ⊣ 𝑆
1
: (𝑠[this 󳨃→ 𝑠(𝑜

2
), 𝑝
1
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) →

(𝑠
2
, ℎ
2
),

(d) for all 𝑖 > 1. 𝐿
󸀠

⊣ 𝑆
𝑖
: (𝑠
𝑖
[𝑜
1
󳨃→ ⟦𝑒
𝑖−1
⟧(𝑠
𝑖
, ℎ
𝑖
),this

󳨃→ 𝑠
𝑖
(𝑜
2
), 𝑝
𝑖
󳨃→ ⟦𝑒⟧(𝑠

𝑖
, ℎ
𝑖
)], ℎ
𝑖
) → (𝑠

𝑖+1
, ℎ
𝑖+1
),

(e) 𝐿󸀠 ⊣ {𝑅[𝑜
2
/this, 𝑒/𝑝

1
]} 𝑆
1
{𝑄
1
[𝑒
1
/𝑜
1
]},

(f) for all 𝑖 > 1. 𝐿
󸀠

⊣ {𝑄
𝑖−1
[𝑜
2
/this, 𝑒/𝑝

𝑖
]}

𝑆
𝑖
{𝑄
𝑖
[𝑒
𝑖
/𝑜
1
]},

(g) 𝑃 ⇔ 𝑜
2
󳨃→ 𝐶 ∧ 𝑅 ∧ fine(𝑒, 𝑒

1
, . . . , 𝑒

𝑚
).

Suppose that, for state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝑃. This implies
ℎ(⟦𝑜
2
⟧(𝑠, ℎ)) = 𝑂

𝐶
. The condition fine(𝑒, 𝑒

1
, . . . , 𝑒

𝑚
)

implies (𝑠[this 󳨃→ 𝑠(𝑜
2
), 𝑝
1
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) is defined.

Therefore (𝑠[this 󳨃→ 𝑠(𝑜
2
), 𝑝
1
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) ⊨

𝑅[𝑜
2
/this, 𝑒/𝑝

1
]. By induction hypothesis 𝑆

1
does

not abort at (𝑠[this 󳨃→ 𝑠(𝑜
2
), 𝑝
1
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ).

6 Applied Computational Intelligence and Soft Computing

𝐿 ⊣ {𝑒
1
󳨃→ 𝐶 ∧ fine (𝑒

1
⋅ V) ∧ fine (𝑒

2
) ∧ 𝑄 [𝑒

2
/𝑒
1
⋅ V]} 𝑒

1
⋅ V := 𝑒

2
{𝑄}

(:=
𝑙

𝑒
)

𝐹
𝐶
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
)

𝐿 ⊣ {𝑅[𝑜
2
/this, 𝑒/𝑝

𝑓
]} 𝑆
𝑓
{𝑄[𝑒
𝑓
/𝑜
1
]}

𝐿 ⊣ {𝑜
2
󳨃→ 𝐶 ∧ 𝑅 ∧ fine(𝑒, 𝑒

𝑓
)} 𝑜
1
:= 𝑜
2
⋅ 𝑓(𝑒) {𝑄}

(:=
𝑙

𝑜⋅𝑓
)

SerLay(𝐿, 𝑙𝑒, 𝑓) = 𝐿󸀠 = {𝑙
1
, . . . , 𝑙

𝑚
}

𝐿
󸀠

⊣ {𝑅[𝑜
2
/this, 𝑒/𝑝

1
]} 𝑆
1
{𝑄
1
[𝑒
1
/𝑜
1
]}

∀𝑖 > 1. 𝐿
󸀠

⊣ {𝑄
𝑖−1
[𝑜
2
/this, 𝑒/𝑝

𝑖
]} 𝑆
𝑖
{𝑄
𝑖
[𝑒
𝑖
/𝑜
1
]}

𝐿 ⊣ {𝑜
2
󳨃→ 𝐶 ∧ 𝑅 ∧ fine(𝑒, 𝑒

1
, . . . , 𝑒

𝑚
)} 𝑜
1
:= 𝑙𝑒 𝑜

2
⋅ 𝑓(𝑒) {𝑄

𝑚
}
(:=
𝑙

𝑙⋅𝑜⋅𝑓
)

super(𝐸, 𝑓) = 𝐷 𝐹
𝐷
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
)

𝐿 ⊣ {𝑅[𝑒/𝑝
𝑓
]} 𝑆
𝑓
{𝑄[𝑒
𝑓
/𝑜]}

𝐿 ⊣ {this 󳨃→ 𝐶 ∧ 𝐶 ≪ 𝐸 ∧ 𝑅 ∧ fine(𝑒, 𝑒
𝑓
)} 𝑜 := super ⋅ 𝑓(𝑒) {𝑄}

(sup𝑙)

𝐿 ⊣ {emp} 𝑜 := new 𝐶 {𝑜 󳨃→ 𝐶}
(new𝑙)

𝐿
󸀠

= {𝑙
1
, . . . , 𝑙

𝑚
} ⊆ 𝐿. (∀1 ≤ 𝑖 ≤ 𝑚 (𝐿

𝐶
(𝑙
𝑖
)) = (𝑓, 𝑝

𝑖
, 𝑆
𝑖
, 𝑒
𝑖
))

𝐿
󸀠

⊣ {𝑅[𝑜
2
/this, 𝑒/𝑝

1
]} 𝑆
1
{𝑄
1
[𝑒
1
/𝑜
1
]}

∀𝑖 > 1. 𝐿
󸀠

⊣ {𝑄
𝑖−1
[𝑜
2
/this, 𝑒/𝑝

𝑖
]} 𝑆
𝑖
{𝑄
𝑖
[𝑒
𝑖
/𝑜
1
]}

𝐿 ⊣ {𝑜
2
󳨃→ 𝐶 ∧ 𝑅} 𝑜

1
:= proceed 𝑜

2
⋅ 𝑓(𝑒) {𝑄

𝑚
}

(pro𝑙)

𝐿 ⊣ {𝑃} 𝑆
1
{𝑅}

𝐿 ⊣ {𝑅} 𝑆
2
{𝑄}

𝐿 ⊣ {𝑃} 𝑆
1
; 𝑆
2
{𝑄}

(Seq𝑙)

𝐿 ⊣ {𝑃} 𝑆 {𝑄}

𝐿 ⊣ {𝑃
󸀠

} 𝑆 {𝑄
󸀠

}

𝐿 ⊣ {𝑃 ∨ 𝑃󸀠} 𝑆 {𝑄 ∨ 𝑄󸀠}
(Disj𝑙)

𝐿 ⊣ {𝑃 ∧ 𝑏} 𝑆
𝑡
{𝑄}

𝐿 ⊣ {𝑃 ∧ ¬(𝑏)} 𝑆
𝑓
{𝑄}

𝐿 ⊣ {𝑃} if 𝑏 then 𝑆
𝑡
else 𝑆

𝑓
{𝑄}

(if𝑙)

𝐿 ⊣ {fine(𝑏) ∧ 𝑃} 𝑆
𝑡
{fine(𝑏) ∧ 𝑃}

𝐿 ⊣ {fine(𝑏) ∧ 𝑃} while 𝑏 do 𝑆
𝑡
{¬(𝑏) ∧ 𝑃}

(while𝑙)

𝐿 ⊣ {𝑃} 𝑆 {𝑄}

𝑃
󸀠

󳨐⇒ 𝑃 𝑄 󳨐⇒ 𝑄
󸀠

𝐿 ⊣ {𝑃󸀠} 𝑆 {𝑄󸀠}
(seq𝑙)

𝐿
1
⊣ {𝑃} 𝑆 {𝑄}

𝐿
2
⊣ {𝑃
󸀠

} 𝑆 {𝑄
󸀠

}

𝐿
1
∪ 𝐿
2
⊣ {𝑃 ∧ 𝑃󸀠} 𝑆 {𝑄 ∧ 𝑄󸀠}

(Conj𝑙)

𝐿
1
⊣ {𝑃} 𝑆 {𝑄}

𝐿
2
⊣ {𝑅} 𝑆 {𝑅}

𝐿
1
∩ 𝐿
2
= 0

𝐿
1
∪ 𝐿
2
⊣ {𝑃 ∗ 𝑅} 𝑆 {𝑄 ∗ 𝑅}

(share𝑙)

𝐿 ⊣ {𝑃} 𝑆 {𝑄}

𝑓V(𝑅) ∩ mod(𝑆, 𝐿) = 0
𝐿 ⊣ {𝑃 ∗ 𝑅} 𝑆 {𝑄 ∗ 𝑅}

(frame𝑙)

{𝑙} ⊣ {𝑃} 𝑆 {𝑄}

𝐿 \ {𝑙} ⊣ {𝐽
1
} 𝑆 {𝐽

2
}

𝐿 ⊣ {𝑃 ∧ 𝐽
1
} 𝑆 {𝑄 ∨ 𝐽

2
}
(glob𝑙)

𝐿 ⊣ {𝑃} 𝑆 {𝑄}

𝑥 ∉ 𝑓V(𝑆)
𝐿 ⊣ {∃𝑥. 𝑃} 𝑆 {∃𝑥. 𝑄}

(Ex𝑙)

Algorithm 5: The inference rules of the proposed logical system.

Now we suppose that 𝑆
1
: (𝑠, ℎ) → (𝑠

2
, ℎ
2
). By induc-

tion hypothesis (𝑠
2
, ℎ
2
) ⊨ 𝑄[𝑒

1
/𝑜
1
] implying (𝑠

2
[𝑜
1
󳨃→

⟦𝑒
1
⟧(𝑠
2
, ℎ
2
), this 󳨃→ 𝑠

2
(𝑜
2
), 𝑝
2
󳨃→ ⟦𝑒⟧(𝑠

2
, ℎ
2
)], ℎ
2
) ⊨

𝑄
1
[𝑜
2
/this, 𝑒/𝑝

2
]. Therefore by induction hypothesis

𝑆
2
does not abort at (𝑠

2
[𝑜
1
󳨃→ ⟦𝑒

1
⟧(𝑠
2
, ℎ
2
), this 󳨃→

𝑠
2
(𝑜
2
), 𝑝
2
󳨃→ ⟦𝑒⟧(𝑠

2
, ℎ
2
)], ℎ
2
). Now we suppose that

𝑆
2
: (𝑠
2
[𝑜
1
󳨃→ ⟦𝑒

1
⟧(𝑠
2
, ℎ
2
), this 󳨃→ 𝑠

2
(𝑜
2
), 𝑝
2
󳨃→

⟦𝑒⟧(𝑠
2
, ℎ
2
)], ℎ
2
) → (𝑠

3
, ℎ
3
). By induction hypoth-

esis (𝑠
3
, ℎ
3
) ⊨ 𝑄[𝑒

2
/𝑜
1
] implying (𝑠

3
[𝑜
1

󳨃→

⟦𝑒
2
⟧(𝑠
3
, ℎ
3
), this 󳨃→ 𝑠

3
(𝑜
2
), 𝑝
3
󳨃→ ⟦𝑒⟧(𝑠

3
, ℎ
3
)], ℎ
3
) ⊨

𝑄
2
[𝑜
2
/this, 𝑒/𝑝

3
]. Therefore by induction hypothesis

𝑆
3
does not abort at (𝑠

3
[𝑜
1
󳨃→ ⟦𝑒

2
⟧(𝑠
3
, ℎ
3
), this 󳨃→

𝑠
3
(𝑜
2
), 𝑝
3
󳨃→ ⟦𝑒⟧(𝑠

3
, ℎ
3
)], ℎ
3
). Hence a simple induc-

tion on𝑚 completes the proof for this case.

(iv) The case of the rule (sup𝑙): in this case

(a) 𝑆 = 𝑜 := super ⋅ 𝑓(𝑒),
(b) super(𝐸, 𝑓) = 𝐷,
(c) 𝐹
𝐷
(𝑓) = (𝑝

𝑓
, 𝑆
𝑓
, 𝑒
𝑓
),

(d) 𝐿 ⊣ 𝑆
𝑓
: (𝑠[𝑝
𝑓
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) → (𝑠

󸀠󸀠

, ℎ
󸀠󸀠

),
(e) 𝐿 ⊣ {𝑅[𝑒/𝑝

𝑓
]} 𝑆
𝑓
{𝑄[𝑒
𝑓
/𝑜]},

(f) 𝑃 ⇔ this 󳨃→ 𝐶 ∧ 𝐶 ≪ 𝐸 ∧ 𝑅 ∧ fine(𝑒, 𝑒
𝑓
).

Applied Computational Intelligence and Soft Computing 7

Suppose that, for state (𝑠, ℎ), (𝑠, ℎ) ⊨ 𝑃. This implies
ℎ(⟦this⟧(𝑠, ℎ)) = 𝑂

𝐶
.The condition fine(𝑒, 𝑒

𝑓
) implies

(𝑠[𝑝
𝑓
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) is defined. Therefore (𝑠[this 󳨃→

𝑠(𝑜
2
), 𝑝
𝑓
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ) ⊨ 𝑅[𝑒/𝑝

𝑓
]. By induction

hypothesis 𝑆
𝑓
does not abort at (𝑠[𝑝

𝑓
󳨃→ ⟦𝑒⟧(𝑠, ℎ)], ℎ)

and therefore 𝑜 := super ⋅ 𝑓(𝑒) does not abort at (𝑠, ℎ).
Nowwe suppose that 𝑜

1
:= 𝑜
2
⋅𝑓(𝑒) : (𝑠, ℎ) → (𝑠

󸀠

, ℎ
󸀠

).
By (:=𝑠

𝑜⋅𝑓
), (𝑠󸀠, ℎ󸀠) = (𝑠

󸀠󸀠

[𝑜 󳨃→ ⟦𝑒
𝑓
⟧(𝑠
󸀠󸀠

, ℎ
󸀠󸀠

)], ℎ
󸀠󸀠

). Also
by induction hypothesis (𝑠󸀠󸀠, ℎ󸀠󸀠) ⊨ 𝑄[𝑒

𝑓
/𝑜] implying

(𝑠
󸀠

, ℎ
󸀠

) ⊨ 𝑄. This completes the proof for this case.

(v) The case of the rule (pro𝑙): it is similar to the case of
(∗:=
𝑙

𝑙⋅𝑜⋅𝑓
).

4. Discussion

Related Work. The most related logic to our work is that of
object-oriented programs. Specifically for Java, a huge liter-
ature on specification proof techniques for object-oriented
languages exists. For example, for annotated Java programs
in JML (Java modeling language), [8] presents calculus for
weakest precondition. An introduction to applications and
tools of JML is presented in [9]. Via annotating Java source
files, JML enables determining Java interfaces and classes.
Considering abnormal termination resulting from failures of
Java programs, [10] presents an extension to Hoare logic. For
theses failures, transformational techniques do not work.

Notably, dynamically growing reference-structures are
involved in object-oriented programs. This results in the
aliasing problem in OOP languages. Much logic treating
aliasing does exist. One of these techniques is presented
in [11] and reasons about linked lists which are treated
using separation logic [6]. Via including global stores in
the assertion language, [12] presents Hoare logic for OOP
languages. However the use of this model for global storing
is proved to be a potential cause of incompleteness. Classes
encapsulation in an OOP language equipped with subtyping
and pointers is guaranteed by aliasing restrictions in [13].

The work in [14] is an example of logic achieving mod-
ular verification for OOP and focusing on corresponding
methodology and object invariants. Modular verification
of complex object structures was treated in [15] using an
invariant class. Sound proof systems producing restricted
formal justifications for OOP languages were introduced
in [16, 17]. Producing a complete logical system for OOP
languages is a very complex problem due to complex features
of OOP languages.

Interestingly, none of the techniques mentioned above
treat context-oriented programs. This adds to the value of
the work presented in the current paper; apparently there is
no research to generalize separation logic to cover context-
oriented programs.

Operational semantics and type systems are presented
in [18, 19] for checking and modeling context-oriented
programs. The language model of [19] is structural and very
similar to the model of the current paper. The language
model of [18] is functional. Type systems introduced in both
of these papers prevent execution of faculty functions by

proceed. The operational semantics of the current paper is
much simpler and powerful than semantics of [18, 19].

Utilizing concepts of delegation based calculus, [20]
presents operational semantics for a COP language, namely,
𝑐𝑗. For COP concepts as introduced in ContextJ∗ and Con-
textL, [21] introduces syntax-based semantics. Compared to
the work mentioned above, a logical system that stops COP
program from getting stuck is presented in the current paper.
To model context-dependent behavior of COP programs, the
proposed logical system is based on general calculi.

Future Work. Extending the language model of the current
paper to allow executing candidate functions of proceed on
priority bases is a direction for a future work. Extending the
language to include layer inheritance and layer dependency is
another direction for future work. Doing so allows one layer
to assume the existence of another layer and allows expressing
the assumption that two layers are not active at the same time.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar et al., “Aspect-oriented
programming,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP ’97), pp. 220–242,
Jyväskylä, Finland, June 1997.

[2] R.Hirschfeld, P. Costanza, andO.Nierstrasz, “Context-oriented
programming,”The Journal ofObject Technology, vol. 7, no. 3, pp.
125–151, 2008.

[3] W. Golubski and W.-M. Lippe, “A complete semantics for
SMALLTALK-80,” Computer Languages, vol. 21, no. 2, pp. 67–
79, 1995.

[4] M. Campione, K. Walrath, and A. Huml, The Java Tutorial: A
Short Course on the Basics, Addison-Wesley Longman Publish-
ing, Boston, Mass, USA, 3rd edition, 2000.

[5] D. Flanagan, JavaScript—Pocket Reference: Activate Your Web
Pages, O’Reilly, 3rd edition, 2012.

[6] J. C. Reynolds, “Separation logic: a logic for sharedmutable data
structures,” in Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science (LICS ’02), pp. 55–74, July 2002.

[7] S. S. Samin and P. W. O’Hearn, “BI as an assertion language
for mutable data structures,” in Principles of Programming
Languages, C. Hankin and D. Schmidt, Eds., pp. 14–26, ACM,
2001.

[8] B. Jacobs, “Weakest pre-condition reasoning for Java programs
with JML annotations,” Journal of Logic and Algebraic Program-
ming, vol. 58, no. 1-2, pp. 61–88, 2004.

[9] L. Burdy, Y. Cheon, D. R. Cok et al., “An overview of JML tools
and applications,” International Journal on Software Tools for
Technology Transfer, vol. 7, no. 3, pp. 212–232, 2005.

[10] M. Huisman and B. Jacobs, “Java program verification via
a hoare logic with abrupt termination,” in Fundamental
Approaches to Software Engineering, T. S. E. Maibaum, Ed.,
vol. 1783 of Lecture Notes in Computer Science, pp. 284–303,
Springer, Berlin, Germany, 2000.

8 Applied Computational Intelligence and Soft Computing

[11] J. M. Morris, “A general axiom of assignment,” in Theoretical
Foundations of Programming Methodology, pp. 25–34, Springer,
Berlin, Germany, 1982.

[12] N. Dershowitz, Ed., Verification: Theory and Practice, Essays
Dedicated to ZoharManna on the Occasion of His 64th Birthday,
vol. 2772 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, 2003.

[13] A. Banerjee and D. A. Naumann, “Ownership confinement
ensures representation independence for object-oriented pro-
grams,” Journal of the ACM, vol. 52, no. 6, pp. 894–960, 2005.

[14] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: a modular reusable verifier for object-oriented
programs,” in Formal Methods for Components and Objects, F.
S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
Eds., vol. 4111 of Lecture Notes in Computer Science, pp. 364–387,
Springer, Berlin, Germany, 2006.

[15] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens, “Modular
invariants for layered object structures,” Science of Computer
Programming, vol. 62, no. 3, pp. 253–286, 2006.

[16] D. von Oheimb, “Hoare logic for Java in Isabelle/hol,” Concur-
rency Computation Practice and Experience, vol. 13, no. 13, pp.
1173–1214, 2001.

[17] G. Klein and T. Nipkow, “A machine-checked model for a Java-
like language, virtual machine, and compiler,” ACM Transac-
tions on Programming Languages and Systems, vol. 28, no. 4, pp.
619–695, 2006.

[18] R. Hirschfeld, A. Igarashi, and H. Masuhara, “Contextfj: a
minimal core calculus for context-oriented programming,” in
Proceedings of the 10th International Workshop on Foundations
of Aspect-Oriented Languages (FOAL ’11), pp. 19–23, ACM,
March 2011.

[19] M. A. El-Zawawy and E. A. Aleisa, “A new model for context-
oriented programs,” Life Science Journal, vol. 10, no. 2, pp. 2515–
2523, 2013.

[20] H. Schippers, D. Janssens, M. Haupt, and R. Hirschfeld,
“Delegation-based semantics for modularizing crosscutting
concerns,” inProceedings of the 23rdACMConference onObject-
Oriented Programming Systems, Languages, and Applications
(OOPSLA ’08), pp. 525–542, Nashville, Tenn, USA, October
2008.

[21] D. Clarke and I. Sergey, “A semantics for context-oriented
programming with layers,” in Proceedings of the International
Workshop on Context-Oriented Programming (COP ’09), ACM,
Genova, Italy, July 2009.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

