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Abstract

The connection between topology and computer science is based on two fundamental in-

sights: the first, which can be traced back to the beginning of recursion theory, and even

intuitionism, is that computable functions are necessarily continuous when input and out-

put domains are equipped with their natural topologies. The second, due to M. B. Smyth

in 1981, is that the observable properties of computational domains are contained in the

collection of open sets. The first insight underlies Dana Scott’s categories of semantics

domains, which are certain topological spaces with continuous functions. The second in-

sight was made fruitful for computer science by Samson Abramsky, who showed in his

“Domain Theory in Logical Form” that instead of working with Scott’s domains one can

equivalently work with lattices of observable properties. Thus he established a precise link

between denotational semantics and program logic.

Mathematically, the framework for Abramsky’s approach is that of Stone duality, which

in general terms studies the relationship between topological spaces and their lattices of

opens sets. While for his purposes, Abramsky could rely on existing duality results estab-

lished by Stone in 1937, it soon became clear that in order to capture continuous domains,

the duality had to be extended. Continuous domains are of interest to semantics because

of the need to model the probabilistic behaviour and computation over real numbers. The

extension of the Stone duality was achieved by Jung and Sünderhauf in 1996; the main out-

come of this investigation is the realisation that the observable properties of a continuous

space form a strong proximity lattice.

The present thesis examines strong proximity lattices with the tools of Priestley duality,

which was introduced in 1970 as an alternative to Stone’s duality for distributive lattices.

vi
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The advantage of Priestley duality is that it yields compact Hausdorff spaces and thus stays

within classical topological ideas.

The thesis shows that Priestley duality can indeed be extended to cover strong prox-

imity lattices, and identifies the additional structure on Priestley spaces that corresponds

to the proximity relation. At least three different types of morphism have been defined

between strong proximity lattices, and the thesis shows that each of them can be used in

Priestley duality. The resulting maps between Priestley spaces are characterised and given

a computational interpretation.

This being an alternative to the Jung–Sünderhauf duality, it is examined how the two

dualities are related on the side of topological spaces.

Finally, strong proximity lattices can be seen as algebras of the logic MLS, introduced

by Jung, Kegelmann, and Moshier. The thesis examines how the central notions of MLS

are transformed by Priestley duality.
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Chapter 1

Introduction

1.1 Background

The semantics of programming languages is about developing techniques for designing

and describing programming languages. Such techniques are quite important because, in

most cases, if one relies only on ones intuition to design a programming language, then

one will run into counter-intuitive situations, and will need a rigorous technique to guide

one through the designing process. One of those situations where semantics techniques are

needed in designing languages is demonstrated in [115, chapter 7] on a language that is like

ALGOL 60 [64].

Among the semantics approaches [76, 78, 84] are the axiomatic, operational and deno-

tational ones. The axiomatic approach (also termed ”the program logic”), that originated

in [25, 33] and proved a success in [99, 31, 38, 74], is about establishing a set of axioms

to help in developing and verifying programs. An example of a program logic is Hoare

logic [33] whose axioms have the form
�����������	�

. This is to be read as follows; if the

pre-condition
�

is satisfied before running the program
�

and if
�

terminates then the

post-condition
�

will be satisfied afterwards. The operational approach [88] of semantics

1
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emphasises the way programs are executed on an abstract machine such as the Java Ab-

stract Machine. Early versions and properties of operational techniques are discussed in

[63, 69] and [92, 87], respectively. In the denotational approach [113, 30, 98, 71], the em-

phasis is on the mathematical meaning of language constructs. These three techniques of

the semantics of programming languages are related and, in some way, complement each

other [75, 21, 68].

The idea in denotational semantics, which can be traced back to [26, 17, 114], is to

use a category [70] to interpret programming language constructs; data types and programs

are represented by objects and morphisms, respectively. The properties of data types and

programs restrict the choice of an appropriate category to carry the denotational seman-

tics. In other words, a category that can successfully develop the denotational semantics

is subject to conditions. Two of these requirements are raised by the use of recursion in

defining procedures and data structures (data-types) and are stated for a concrete category

as follows.

1. A map which assigns to every endomorphism 
 on an object � a point ��
�� such

that 
���������� (a fix-point for 
 ).

2. With every functor ������� �"!#�%$'& � , there should exist an object � such that

�(�)�+*,�-��.� � .

Classical categories in mathematics such as sets, topological spaces, vectors spaces, and

groups fail to meet the requirements for a suitable universe for denotational semantics.

Domain theory, which was invented in 1969 by Dana Scott [100, 101, 102, 103, 105],

has proved so far to be a very convenient mathematical environment for denotational se-

mantics. In this theory, data types are represented by domains, which are ordered sets

satisfying certain conditions, and programs are represented by functions between domains.

Scott equipped domains with a certain topology named after him as the Scott-topology.

Hence computability of programs can be checked by testing the topological continuity of
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their representing functions with respect to Scott-topologies on domains.

The Scott-topology helps establishing axiomatic semantics for programs as follows.

According to the geometric logic (logic of observable properties) [118] the Scott-open sets

of a domain are interpreted as properties, where a point in the domain satisfies a property

if and only if it belongs to the open set. Suppose
�

is a continuous map (computable

function) from a domain /10 to a domain /	2 . If
� 2 is a property (a Scott-open subset) of

/	2 then
� 03�4� �65 0 � � 27� is a property of /10 , by continuity of

�
. Moreover, it is certain that

if an input 8 to the program
�

satisfies
� 0 then the output

� �98:� will satisfy property
� 2 .

This idea was first proposed by Smyth in [107].

In 1936, Stone presented his famous representation theorem [110] which proved that to-

tally disconnected compact spaces represent Boolean algebras. This was the starting point

of a whole area of research known as Stone duality in which mathematicians are interested

in establishing “Stone-type” dualities between classes of topological spaces and algebras.

Stone duality was introduced to computer science by Samson Abramsky in his famous

paper, Domain Theory in Logical Form [2]. In this paper Abramsky showed that Stone

duality is the appropriate mathematical framework for studying the relationship between

denotational and axiomatic semantics.

In [2], Abramsky presented a logical representation for a particular Cartesian-closed

category of domains, namely the bifinite domains. In this framework, bifinite domains are

represented by propositional theories, and functions between bifinite domains are repre-

sented by a program logic axiomatising the properties of domains. Moreover, Abramsky

proved that the domain interpretation via bifinite domains and his logical interpretation are

Stone duals to each other and specify each other up to isomorphism.

Later in [54, 55, 50, 52, 56] Abramsky’s work was extended by Achim Jung, Philipp

Sünderhauf, Mathias Kegelmann, and Andrew Moshier to a class of topological spaces,

stably compact spaces defined as follows.

Definition 1.1.1. A stably compact space is a topological space which is sober, compact,
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locally compact, and for which the collection of compact saturated subsets is closed under

finite intersections where a saturated set is an intersection of open sets.

These spaces are the appropriate general topological setting for compact coherent do-

mains in their Scott topologies. Coherent domains include bifinite domains and other in-

teresting Cartesian-closed categories of domains such as FS domains.

Bifinite domains are algebraic domains in which every element can be approximated

by finite (compact) elements below it. This is the main reason that one can go from the

domain side to the logic side of Abramsky [2] by constructing the lattice of open-compact

(with respect to the Scott-topology) sets. But for coherent domains this is not true anymore;

finite elements do not necessarily approximate elements of domains and hence we can not

just consider the lattice of open-compact sets. We have to work harder to understand the

more general situation of coherent domains. Achim Jung and Philipp Sünderhauf in their

papers [54, 55] managed to find a way to appropriately construct the lattices of observable

properties of compact coherent domains. According to their work if ;9<=*?>A@ is a stably

compact space then its lattice B�C of observable properties is defined as follows:

BDCE� � ;GF(*,H�@JI�FK
=>L*,HM
=NOC and FKP�H � *
where NOC is the set of compact saturated subsets of < . The computational interpretation

is as follows. For a point 8=
Q< and a property ;)F(*,H�@3
RB�C :

S 8Q
RFUTWVX8 satisfies the property ;)FO*,H�@ ,
S 8Q
Q<ZYLH�TWVX8 does not satisfy the property ;GF(*,H�@ , and

S 8Q
RH�Y[FUTWV the property ;)FO*,H�@ is unobservable for 8 .

We note that the condition F�P\H in the definition of B�C is necessary for avoiding any

contradictions; without this condition a point may be considered having and not having a

property at the same time.
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This idea of constructing the lattice B�C and interpreting it as the lattice of observable

properties is very convenient for dealing with continuous phenomena. For example, if we

want to classify people according to their heights, one can argue that:

S people of height in ]_^a`[b cm $c^ed[b cm f have about average height,

S people of height less than ^hgib cm or more than ^aj[b cm do not have about average

height, and

S other people may or may not be considered having about average height and therefore

the property is unobservable for them.

As another example if we try to specify an interval on the thermometer inside which the

weather is cool then we will face a situation similar to the one explained in the example

above.

On the lattice BkC of observable properties a binary relation (proximity relation) was

defined by Jung and Sünderhauf in [54] as:

;)F(*,H�@3lm;)F�no*?HQnp@mq?r sTWV HtPuFvnow
The computational interpretation of the proximity relation l can be stated as follows:

;)FO*,H�@Alm;)F n *,H n @tT(V �yxz8Q
Q<{� either ;)F n *?H n @ is observably satisfied for 8 or

;)FO*,H�@ is (observably) not satisfied for 8|w
Thus we can say that l behaves like a classical implication.

A different way to understand the relation l is the following. For a property ;)F(*?H�@
we interpret F as the set of positive information about the property and <{Y[H as the set of

negative information about the property. It makes sense to consider a property ;GF(*,H�@ to be

more definite than a property ;)F n *,H n @ if the positive and negative information of the first

property include the positive and negative information of the second property, respectively,
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i.e. if F n PZF and <{Y[H n P}<{Y[H . Now, it is easy to see that if a property ;)F60,*,H~0�@ is

related to a property ;)Fk2e*,HO2�@ under l then any property that is more definite than ;GF	0�*,H"0�@
must be related to any property that is more definite than ;)Fv2e*,HO2�@ .

The following algebraic structures (introduced in [54]) represent stably compact spaces

and abstractly capture their lattices of observable properties (of the form of B�C ).

Definition 1.1.2. A binary relation l on a bounded distributive lattice ;)�����3*��3*,b�*e^h@ is

called a proximity if, for every ��*�8|*?�1
=� and � P3����� ,

��l�lD� l��Ol��Ul�*
�G��$Ul�� � lu�6TWV � � lu��*
��l�$D��� �Wl�� TWV �Wl�� ��*
��l�$D��� �Wlc8	������V �)��8�n *���n�
=���|8�n:lc8|*���n�lu� and �(lc8�ni����n�*
�G��$Ul�� 8��~�1lu�	��V �)��8 n *�� n 
=���|8=lc8 n *��1l � n and 8 n ��� n lu��w

� l\� and �#l¡� , respectively, stand for �ox:� 
��-��� l\� and �ox:� 
��-�A�#l}� .

A strong proximity lattice is a bounded distributive lattice ;)�����3*��3*,b�*e^h@ together with a

proximity relation l on � .1

The notion of strong proximity lattice subsumes that of bounded distributive lattice as

the lattice order ¢ is always a proximity.

Now we want to define a suitable notion of morphism between strong proximity lattices

in order to capture (represent) continuous maps (computable programs) between stably

compact spaces. While a map that preserves order and proximity relations (a proximity

homomorphism) between strong proximity lattices is the obvious choice for such a notion,

it is computationally too specialised; if we consider its manifestation on semantic domains

(compact coherent domains as stably compact spaces) then we realise it as a (an order-

preserving) Lawson continuous function [28]. This does not cover the computable maps
1The qualifier “strong” distinguishes the concept from its precursor in [109], where £o¤'¥�¦�§ was not a

requirement.
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which typically are only Scott-continuous. Therefore Jung and Sünderhauf arrived at a

situation similar to domain theory where also more than one kind of map is studied on a

fixed class of spaces such as embedding-projection pairs, Scott-continuous function, strict

Scott-continuous function, stable function, etc.

Two more general notions of morphism between strong proximity lattices were con-

sidered in order to capture all computable (Scott-continuous) functions between compact

coherent domains (in their topological setting of stably compact spaces). On the side of

strong proximity lattices, homomorphisms were replaced with approximable relations; a

notion that dates back to Scott’s morphisms for information systems in [104]. The defini-

tion is as follows:

Definition 1.1.3. Let ;)�307���3*��3*,b¨*©^[�elk0ª@ and ;G��2a���3*��3*,b�*e^[�elL2�@ be strong proximity lat-

tices and let « be a binary relation from ��0 to �¬2 . The relation « is called approximable if

for every �W
R�A07*,­�
R�¬2 , �®0APA���k�A0 and �¯2LPA���k��2 ,
�)«{$UlL27� «Q��lJ2¬��«�*
�ªlk0�$�«|� lk0���«"��«�*

�)�3$+«|� �®0¬«Q­�T(V � �®0�«�­a*
�)«{$D��� �6«Q�¯23T(V �	« � �¯2©*
�)«{$D��� �6« � �¯23��V �)�	°±PA���k�30ª���Wlk0 � ° and �yx:²�
�°=�

�)���%
��¯27�³²�«��Rw
The relation « is called weakly approximable if it satisfies all of the above conditions but

not necessarily �)«�$D��� .
The relationship between proximity homomorphisms and approximable relations is

analogous to that between Dijkstra’s weakest preconditions: A homomorphism ´ from

�¬2 to �30 specifies the weakest precondition ´��Gµ'� needed to be satisfied by the input so that

the corresponding output satisfies the condition µ at the end of the computation.
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Now let us look at the computational interpretation of approximable relations. Suppose


=�[<"03$:&X<(2 is a continuous map between stably compact spaces ;9<Q0�*�>�0G@ and ;�<O2e*?>�2�@ .
Then the binary relation «|¶�PuBDC�·A!=BDC�¸ defined as:

;)F(*?H�@¬«|¶�;)Fvn�*,HQn_@mq?r sT(V 
���H��AP�Fvn�*
is an approximable relation [52]. Therefore the relation «�¶ relates all propositions (prop-

erties) ;GF(*,H�@¹*a;)F n *,H n @ where the satisfaction and un-observability of ;GF(*,H�@ by the input

entails the satisfaction of ;)F n *,H n @ by the corresponding output. Moreover, the notion of

approximable relation was basically introduced to abstractly capture the set of all relations

established in this way i.e. the set:

� «|¶¨I�
 is a continuous map between two stably compact spaces
� w

Dealing with relations, rather than functions, puts no constraints on turning around the

direction. Thus Jung and Sünderhauf arrived at an equivalence of categories rather than a

duality; the category of stably compact spaces and continuous maps between them and the

category of strong proximity lattices and approximable relations between them.

The equivalence established in [54] played later a pivotal role in developing a logical

description (expounded in [50, 52]) for stably compact spaces similar to Samson Abram-

sky’s domain theory in logical form. The logical description is via the category MLS

(Multi Lingual Sequents) of logical systems. This category is the primary object of interest

in Mathias Kegelmann’s PhD thesis [56]. Figure 1.1 illustrates the situation.

Continuous domains have been the primary objects of interest of much research carried

out by both computer theorists and mathematicians. In the following, we briefly review

some of the recent research activity concerning these domains. Tix, Keimel and Plotkin, in

[91], introduced domain theoretical tools for combining probability with nondeterminism

for continuous domains. later, in [58], Keimel showed that these tools can be extended

to cover larger classes of spaces including stably compact spaces. Lawson and Xu, in



9

Distributive lattices

Equipped with:

Proximity relations

º

»

Algebraic representation

Jung and Sünderhauf (1995)

Compact coherent domains ¼in their Scott
topologies

Stably compact spaces

º

»

Logical representation

Kegelmann’s PhD thesis (1999)

MLS

Figure 1.1: Stably compact spaces



10

[67], showed that the function space of continuous locally bounded functions, from core

compact spaces into poset, equipped with the Scott-topology and for which each interval

is a continuous sup-semilattice, has intervals that are continuous sup-semilattices. Smyth,

in [106], studied the partial metrizability of ½ -continuous domains. In [10], a study of the

logical content of continuous domains presented a finite information logic which was seen

as a complementary logic to MLS [50, 52, 56].

In 1937, Marshall Stone extended his celebrated representation theorem for Boolean al-

gebras [110, 111] to cover bounded distributive lattices [112]; the notion of Stone space was

extended to that of spectral space (stably compact space with a basis of compact open sets).

Typically the spaces defined by the latter notion are ¾³¿ but not Hausdorff. In 1970, Hilary

Priestley realised that Stone’s duality for Boolean algebras can be differently extended to

bounded distributive lattices to produce Hausdorff spaces; Priestley enriched Stone spaces

with an order relation and obtained ordered topological spaces that are compact and totally

order-disconnected [89, 90]. These spaces are known as Priestley spaces and defined as

follows:

Definition 1.1.4. A Priestley space is a compact ordered space ;�<À�?>L*e¢�@ such that for

every 8|*?�(
=< , if 8ÀÁÂ � then there exists a clopen upper set Ã such that �1
¯Ã and 8EÄ
¯Ã .

Ever since they were invented, Priestley spaces have been receiving growing interest

and attention by both mathematicians and computer scientists. In the following, we cite re-

cent research related to Priestley duality. Many successful attempts for presenting Priestley

duality constructively (using constructive mathematics) in a localic form exist; for example

[116, 117] by C. Townsend, and [60] by M. Korostenski and C. C. A. Labuschagne. In

[81, 82], A. Palmigiano presented a categorical equivalence between the category K Å of

H Å -spaces (ordered sets equipped with certain binary relations and associated with cer-

tain sublattices) and the category Coalg(V) of coalgebras of a certain endofunctor Æ on

the category of Priestley spaces. A study about linear Heyting algebras, using Priestley
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duality, was presented by L. Rueda in [93]. In [72], N. Martinez and A. Petrovich used a

Priestley duality for MV-algebras to specify a condition that guarantees the uniqueness of

the implication for totally ordered MV-algebras.

1.2 Aim of our Research

Let ;�<=*�>3@ be a stably compact space, N(C be the collection of compact saturated subsets

of < , and

BkCE� � ;)F(*?H�@JIiFK
Q>J*,HM
=N�C and FKPuH �
be the lattice of observable properties (introduced in the previous section) of ;�<=*�>3@ . This

is a strong proximity lattice. In logic, theories (or models) of BvC are represented by prime

filters, which are the points of the Priestley dual space of BvC as a bounded distributive

lattice. Therefore if we can extend the Priestley duality of bounded distributive lattices

to cover strong proximity lattices then the resulting notion (on the topological side of the

duality) will be an abstract description of the models (theories) of properties of stably

compact spaces including compact coherent domains. This is indeed the first and the basic

objective of this thesis.

Therefore we can say that the primary aim of this thesis is to introduce Priestley

spaces to the world of semantics of programming languages.

Hence the research programme of the thesis is as follows:

1.2.1 The First Aim

The first goal, of the thesis, is to answer the following questions:

1. How can Priestley duality for bounded distributive lattices be extended to

strong proximity lattices?
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2. What is the computational interpretation of the answer of the previous

question?

1.2.2 The Second Aim

Having question ^ answered naturally motivates a curiosity to understand the direct links

between stably compact spaces and the answer of question ^ . Therefore it is the second

aim, of the research, to answer the following question:

3. What is the direct relationship between the category resulting from an-

swering question ^ and the category SCS of stably compact spaces (com-

pact coherent domains in their Scott topologies = data types) and contin-

uous maps (computable programs) between them?

1.2.3 The Third Aim

The third goal of the research is to answer the following questions:

4. What are the direct links between the category MLS (a logical represen-

tation for the category SCS) and the category resulting from answering

question ^ ?

5. How can the category resulting from answering question ^ help establish-

ing new semantics, in Priestley form, for essential concepts and facts of

the category MLS?

6. How can domain constructions be done in Priestley form (the category

resulting from answering question ^ )?

We are also aiming for
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7. developing a study of the elements of the category resulting from answer-

ing question ^ . This will be done by different means including directly

linking the elements of this category to existing structures in mathematics.

1.3 Achievements of the Research

1.3.1 Concerning the First Aim

To answer question 1, we introduce the notion of apartness relation [23, 24] on Priestley

spaces as follows:

Definition 1.3.1. A binary relation Î on a Priestley space ;�<#�e¢�*�>3@ is called an apartness

if, for every ��*,Ïh*,Ð�*,Ñv
�< ,

�GÎ�>A� Î is open in ;�<À��>3@¬!®;�<À��>3@
�9Ò�ÎDÓ�� � Â ÏÔÎ-Ð Â Ñ���V �6Î-Ñ[*
�)Î�x�� �	Î-ÏÔTWV �yx'­J
Q<{���6Î-­ or ­ÔÎ-Ïh*

�)ÎDÓÕÓ�� �	Î��9Ó�Ï�Ö~Ó�Ð��¬��V �ox'­�
=<{�|�	Î-­a*¬­�Î�Ï or ­ÔÎ-Ð�*
�9ÒÕÒ�Î�� �9Ò�Ï¬Ö"Ò�Ð��¬ÎU����V �ox'­�
=<{�|Ð	Î-­a*¬Ï�Î�­ or ­3Î-��w

where �+Î-× is a shorthand for �	Î-­ for all �W
=� , ­�
R× .

Remark 1.3.2. 1. For any Priestley space ;�<À�e¢v*?>A@ , Á¢ is an apartness because the order

is closed in the product topology for Priestley spaces.

2. Î is an apartness on ;�<À�©¢�*?>A@ if and only if the dual of Î is an apartness on

;�<#� Â *�>3@ .
3. It aids the intuition to assume that an element can not be apart from itself but as a

matter of fact our results do not rely on this assumption.
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4. If we were to axiomatise indistinguishability instead of apartness, then �)ÎJx�� would

express the transitivity of this relation. Axiom � Ò�Î�Ó�� , however, would not have a

simple formulation.

5. On the real line, axioms �)ÎkÓÕÓ�� and �9ÒÕÒ�Îv� are the same as �)ÎJx�� .
Question 1 above is answered as follows:

The dual of a strong proximity lattice � is the corresponding Priestley space of

prime filters, equipped with the apartness,

Ø Î�Ù"� q?r sT(V �G��8=
 Ø �©�G���¯Ä
R���|8Ql �:w
Vice versa, the dual of a Priestley space < with apartness Î is the lattice of

clopen upper sets equipped with the proximity,

��l�Ú�× q?r sTWV �+Î�� <{Yi×	��w
Up to isomorphism, the correspondence is one-to-one.

From a representation point of view the answer to this question can be classified as

follows:

¾:¿ spaces Hausdorff spaces ( ¾�2 )
strong proximity lattices Jung & Sünderhauf, [54] the answer to question 1

distributive lattices Stone, [112] Priestley, [89, 90]

Boolean algebras Stone, [110, 111]

From a semantics point of view, in [52] the argument was made that the proximity l
relates two logical propositions (pairs of the form �GFO*,H�� ) µ and Û if the observation of µ
always implies that Û is actually true. Consequently, the logical system does not nec-

essarily satisfy the identity axiom µU«Kµ , and while the paper [52] demonstrates that a

satisfactory and even elegant logical apparatus can still be built, the lack of this basic law



16

of logic may feel strange. In, this thesis, the view is that the proximity is additional struc-

ture, over and above the lattice operations, and that for the latter the usual axioms of logic

are still valid. Consequently, a model of the logic is given by a prime filter as it is usually.

The additional structure on the logic then gives rise to an additional structure on the space

of all models (the Priestley space), which we read as apartness information.2 The intuition

is that two states of affair (i.e., models) can be observably separated if and only if they

are “sufficiently apart.” To give an example, consider the real numbers represented in their

usual decimal representation. Mathematically, we deem �R�%^[wÜb[b[b�wew©w and ­��Zb¨wÜj[j[j�wewew
equal; constructively, the concrete presentation of a number is important, and in our exam-

ple one would find that � and ­ can not be told apart in finite time but their equality can

also not be established in finite time (if our only access to the numbers is by successively

reading digits).

Definition 3.1.1 attempts to capture the intuitive notion of apartness on a Priestley space.

We will show that the action of Priestley duality on morphisms can also be adapted to

the current setting.

Continuous order-preserving maps that reflect the apartness relation are in

one-to-one correspondence with lattice homomorphisms that preserve the prox-

imity relation.

Next, on the side of Priestley spaces, we introduce a notion for morphism which cor-

responds to the notion of approximable (weakly approximable) relations. Whereas in [54]

morphisms corresponding to approximable relations were proved to be functions that are

continuous with respect to the upper topology, now we can not expect a similar situation at

all. The reason is that the Priestley dual contains more points than the spectrum considered

in [54] and there is no reason to assume that the process acts functionally on the additional
2Indeed, there is a rather conventional way to fill in the right upper position in the table above. For this

one equips the collection of round prime filters of Ý with the topology generated by all Þ�ß3àâáRã�äÀå?æ�çkäAè ,
and all é�ßÔàêá{ã�äÀå©ëeì�íç�ä�î æ�¦1ì�è , æ�çvÝ . This yields the patch topology of a stably compact space which
is already obtainable from the Jung-Sünderhauf dual.
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elements. In keeping with the spirit of Definition 3.1.1, we instead consider relations be-

tween Priestley spaces which relate those pairs of elements that are “observably unrelated”

by the computational process. Here is the definition:

Definition 1.3.3. Let ;�<~0��e¢k07�?>�0�@ and ;�<O2e�e¢L2a*?>�2�@ be Priestley spaces with apartness re-

lations Î�0 and Îk2 , respectively, and let ï be a binary relation from <�0 to <O2 . The re-

lation ï is called separating (or a separator) if it is open in >30�!ð>�2 and if, for every

��*,­�
Q<"07*,Ð�*,Ñ�
Q<O2 and
� ÐÕñ¬I�^v¢ ò�¢ ² � Pc<O2 ,

�9Ò 0 ï�Ó 2 � � Â 0¬­�ïóÐ Â 2�ÑD�'V �=ïÀÑ[*
�yxAïA� ­6ïÀÐ�TWV �ox'ÏD
Q<"0���­3Î60¬Ï or Ï6ïÀÐ�*
�¹ï�x�� ­6ïÀÐ�TWV �ox'ÏD
Q<O2���­�ïÀÏ or ÏÔÎ�2�Ð�*

�¹ï�²zÓ�� ­6ï®ôXÓ�Ð[ñ��'V �ox'ÏD
Q<"0���­�Î�0¬Ï or �)��òõ��Ï	ïÀÐÕñ)w
The relation ï is called weakly separating (or weak separator) if it satisfies all of the above

conditions, but not necessarily �¹ï�²:Ó�� .
Some effort is required to show that we get a category whose objects are Priestley spaces

with apartness and whose morphisms are separators (weakly separators) (see Section 3.3.3),

but the expected equivalence does hold:

Let <"0 and <(2 be Priestley spaces with apartness relation. Then (weakly)

separating relations from <~0 to <(2 are in one-to-one correspondence with

(weakly) approximable relations from the dual of <�0 to the dual of <(2 .

1.3.2 Concerning the Second Aim

We show that the answer to question ö will take the following form:

For a Priestley space ;�<À�e¢v*?>A@ with apartness Î and ��*,×}Pc< we define:
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1. ÎO]â�Jf�� � 8�
R< I�8�Î�� �
and ]â�JfyÎm� � 8Q
Q< I��÷Î+8 �

, where, as before, ��ÎU×
is a shorthand for �6Î-­ for all �(
=� , ­J
R× .

2. ø,ù�ú?ûÕ�9<{�¬� � 8=
Q< I¨]â8�fyÎ���<{Y�Òi8 �
.

3. > n � � F Ö®ø,ù�ú?ûÕ�9<{�JI�F is an open upper subset of < � w
One of our primary results, then, is the following:

Theorem 1.3.4. Let ;�<À�©¢�*?>A@ be a Priestley space with apartness Î . Then ;�ø,ù�ú?û�� <{�7*?> n @
is a stably compact space. Moreover, every stably compact space can be obtained in this

way.

We also present a study about the relationship between frame homomorphisms, con-

tinuous maps, and separators. This leads to the result that the categories SCS and PSs (of

Priestley spaces with apartness and separators) are dual equivalent. Moreover, using Priest-

ley spaces with apartness, we prove some facts about the co-compact topology of a stably

compact space. We also show that a notion (of isolated set) that is crucial for proving the

theorem above is equivalent to the notion of round filter (ideal) of strong proximity lattices.

Let 
 be a continuous map from a stably compact space ü�0 to another one ü:2 . A

computational reading of the separator ï�¶ corresponding to 
 could be the following. As

explained earlier, a property ;)FO*,H�@ is related to a property ;GF n *,H n @ in the approximable

relation «³¶ if and only if the observability of the former property by an input to the function


 implies the satisfaction of the latter property by the corresponding output. Let us fix this

as a definition:

Definition 1.3.5. Let 
��Õü³0A$'& ü�2 be a continuous between stably compact spaces ü�0 and

ü�2 . Let Bkýa· and B�ý7¸ , as defined above, be their lattices of observable properties. Then we

say that a property ;)FO*,H�@A
RB�ý · implies a property ;)F n *?H n @�
RBký ¸ if 
��GH��APuF n .
The separator ï�¶ relates primes filters (models or theories of properties) of the strong

proximity lattice B�ýa· to prime filters of B�ý7¸ . Under ïA¶ two filters are related if and only if
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the first filter contains a property that implies a property in the complement of the second

filter. Therefore if ï n ¶ is the complement of ï3¶ then a pair ; Ø *,��@ belongs to ï n ¶ if and only

if the set of all properties implied by a property in
Ø

is contained in � .

Moreover, in this thesis we answer the following question:

How can the Jung-Sünderhauf duality between the category PLa, of strong

proximity lattices and approximable relations between them, and the category

SCS be extended to cover coherent spaces (the same notion of stably compact

space without requiring the topological space to be compact)?

Hence the objective here is to remove the compactness condition from the topological side

of the Jung-Sünderhauf duality. Answering the last question is very interesting because the

resulting algebraic structures will be computationally interpreted as abstract descriptors for

the lattices of observable properties of coherent spaces which include all coherent domains

in their Scott topologies.

Concerning this question, we show that removing the compactness requirement from

the notion of stably compact space is equivalent to removing the condition of having a top

element from the notion of strong proximity lattice. Removing the latter condition must be

associated by removing any use of the empty meet which is the top element. The resulting

definition is the following.

Definition 1.3.6. A binary relation l on a distributive lattice ;G�Ô�,��*,��@ with b is called a

proximity if, for every ��*�8|*?�1
=� and � P3���k� ,

�ªlvlk� l���l+�ml�*
�)�3$�lk� � lu�	T(V � � lu��*
�ªlU$D��� n �Wlc8 and �Wl �	TWV �Wlc8��~�:*
�ªl�$���� �Wlc8	������V �)��8 n *?� n 
R���|8 n lc8|*�� n l � and �Wlc8 n ��� n *
�)�3$�lk� 8	���Wlu�	��V �)��8�n *?��n�
R���|8Ql 8�ny*��1l ��n and 8�ni����n�l+��w
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� l\� and �#l¡� , respectively, stand for �ox:� 
��-��� l\� and �ox:� 
��-�A�#l}� .

A zero-strong proximity lattice is a distributive lattice ;)�����3*���@ with b together with a

proximity relation l on � .

Similar changes are made to morphisms to obtain zero-approximable and weakly zero-

approximable relations. Therefore we show that the category of coherent spaces and

continuous maps is equivalent to the category of zero-strong proximity lattices and zero-

approximable relations.

1.3.3 Concerning the Third Aim

Concerning question 4, we present direct functors between the category MLS and the cat-

egory PSws of Priestley spaces with apartness and weakly separators. These functors are

then used to prove the equivalence of these categories.

Concerning question 5, we introduce Priestley semantics (in PSws) for MLS’s concepts

and facts such as compatibility, Gentzen’s cut rule, round ideals and filters, and consistency.

Concerning question 6, we show how some domain constructions such as lifting, sum,

product, and Smyth power domain can be done in the Priestley form.

Concerning 7:

1. We introduce a full and faithful functor from the category PSws to the category SL

of directed-complete meet semilattices and Scott-continuous semilattice homomor-

phisms. This proves that the image of this functor is equivalent to PSws. Hence

bearing in mind that PSws is self-dual, the full subcategory consisting of the image

of the functor is also self dual. The self-duality of this full sub-category was first

noticed and proved in [65].

2. We prove an equivalence of categories between PSws and the Kleisli category SCS þ
of the Smyth power monad ;GN�*�Ò�*7ÿW@ where N [52, section 6] is an endofunctor N
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on SCS. For an object < 
 SCS, NQ�9<{� is the set of compact saturated subsets of <
equipped with the Scott-topology and for a morphism 
 �z< $'& ü in SCS, N=�G
��
assigns to each compact saturated subset � of < the saturation of 
����D� .

3. We prove an equivalence of categories between PSws and the category SCSc of

stably compact spaces as objects and continuous relations of the form
� PU<t!Rü��

as morphisms where ü�� is the co-compact topology on ü .

Finally we describe the way MLS can be extended to obtain an extension that provides

logical descriptions for coherent spaces.

1.4 Structure of the Thesis

The thesis consists of five chapters and three appendixes. The first chapter is an intro-

duction to the research area and the research programme behind the thesis. Chapter 2

reviews the literature related to the work presented in this thesis. Chapters 3, 4, and 5

achieve the first, the second, and the third aims of the research programme, respectively.

Appendixes A, B, and C present basic concepts from order theory, topology, and category

theory, respectively.



Chapter 2

Related Work

This chapter reviews work related to that presented in this thesis. In order to make the thesis

as self-contained as possible, concepts from order theory, topology and category theory are

introduced in Appendixes A, B, and C, respectively.

2.0.1 Organisation

The chapter is organised as follows.

1. Section 2.1 introduces Stone’s representation theorem for Boolean algebras and its

extension for bounded distributive lattices. A computational reading of Stone duali-

ties is presented as well.

2. Priestley’s representation theorem for bounded distributive lattices, as another way

of extending Stone’s representation of Boolean algebra, is reviewed in Section 2.2.

The Birkhoff representation theorem, which is a special case of Priestley duality

for finite distributive lattices is reviewed as well. Also, the relationship between

representations of bounded distributive lattices by Stone and Priestley is discussed.

3. Domain theory as a foundation for denotational semantics of programming languages

22
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is introduced briefly in Section 2.3. We discuss why domains, as defined in this

section, provide a convenient mathematical universe for the purposes of denotational

semantics. We also introduce in this section classes of domains which are of special

importance to us.

4. Locale theory, its relationship to domains theory and Stone dualities, and its role in

computer science are discussed briefly in Section 2.4. Various dualities for classes of

domains are discussed as well.

5. Samson Abramsky’s localic and logical representations of bifinite domains are pre-

sented in Section 2.5. The way domain constructions can be carried out in these

representations is briefly discussed.

6. Stably compact spaces as the primary objects of interest in this thesis are introduced

in Section 2.6. We present a literature review of the work related to stably compact

spaces. This includes the relationship between arithmetic lattices and stably compact

spaces, continuous relations between stably compact spaces, and their probabilistic

power domains.

7. Section 2.7 reviews the Jung-Sünderhauf representation theorem for stably compact

spaces by a class of bounded distributive lattices known as strong proximity lattices.

An extension to this theory is presented in this thesis.

8. Finally, Section 2.8 reviews the category MLS which provides logical descriptions

for stably compact spaces and which is an extension to Samson Abramsky’s domain

theory in logical form for bifinite domains.
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2.1 Stone Duality

This section has two goals. The first goal is purely mathematical and the second one is

purely computational. The mathematical goal is to review Stone’s representation theorems

for Boolean algebras and bounded distributive lattices. The computational goal is to present

a computer-science interpretation of Stone duality. This section is based on [20, 41, 18, 2].

2.1.1 Stone Duality, mathematically

In 1936, Marshall Stone showed that the category BoolAlg, of Boolean algebras and Boolean

algebra homomorphisms, is dual to the category StoSpc, of Stone spaces (compact totally

disconnected spaces) and continuous functions [110]. Stone’s duality maps a Stone space

< to its algebra ���:�9<{� of clopen subsets of < , and a Boolean algebra × to its space�
	���
 �G×	� of prime filters of × , equipped with the topology > generated by the following

basis set: �
� � Ã��6I��W
R× � * where Ã��Ô� � Ø 
 �
	���
 �G×	��I��W
 Ø � w

The topological space ; �
	�� 
 ��×	�7�?>A@ is called the Stone dual space of × .

Remark 2.1.1. Let ;)×W���3*��3*,b�*e^[* n @ be a Boolean algebra. For every
Ø 
 �
	�� 
 ��×	� and

�W
R× , � belongs to
Ø

if and only if � n does not belong to
Ø

. Therefore
�
	�� 
 �G×	�³Y�Ã��Ô�UÃ����

meaning that Ã�� is also closed in the Stone dual space and hence is clopen.

This duality is justified as follows.

The lemma below proves that the Stone dual space of a Boolean algebra is actually a

Stone space.

Lemma 2.1.2. Let ;)×W�,��*,��*?b¨*e^[* n @ be a Boolean algebra. Then the Stone dual space

; �
	���
 �G×6�7�?>A@ is compact, Hausdorff, and totally disconnected. Moreover, the set ���:� �
	���
 �G×	���
of clopen subsets of

�
	���
 ��×	� equals the set
� Ã��6I��W
R× �

.
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Proof. To prove the compactness of the Stone dual space , it is enough to show that every

open cover consisting of basic open sets has a finite subcover. Suppose ��P
�

is an open

cover to
�
	�� 
 �G×	� . Hence � � � Ã���Ii�(
=� �

for some � P�× . Now let � be the ideal

generated by � , i.e.

��� � Ó:�G�¨0��¯wewewa�����Õ��I��¨07*ewew©w©*,���	
=� � w
By Lemma A.17, if � is a proper ideal then � is contained in a prime ideal �¯
 	�� 	 
 �G×6� .
Therefore ��P!� . Set

Ø �+×+Y"� . By Lemma A.15,
Ø 
 �
	���
 �G×6� . Hence

Ø Ä
{Ã�� for every

�#
u� . This contradicts the fact that � is an open cover for
�
	�� 
 �G×6� . Therefore � is not

proper, i.e. ����× . This implies ^v
#� implying ^��+��0h��wewew��D��� , for some � 07*ew©wew¹*?�$��
Q� .

Hence �
	�� 
 ��×	����Ã�0¬�UÃ���·�%�&'&'& %(�*)v�UÃ��,·�+¯wewew,+�Ã��*)�*
which completes the proof of compactness.

Let
Ø 07* Ø 2D
 �
	�� 
 �G×	� be distinct elements of the Stone dual space . Then, without loss

of generality, there exists �+
 Ø 0AY Ø 2 . Hence
Ø 0Q
\Ã�� and

Ø 2{
 �
	���
 ��×	�³YDÃ�� . This

completes the proof that the Stone dual space is Hausdorff and totally disconnected as Ã��
is clopen.

We now prove that � � � �
	���
 �G×6���®� � Ã��6I��W
R× �
. One inclusion is given by Re-

mark 2.1.1. For the other inclusion, let Æ 
-�
��� �
	�� 
 �G×	��� . Then Æ �±ÿ � Ã��6I��W
Q� �
,

for some � PK× , because Æ is open. Æ is closed in
�
	�� 
 �G×	� and hence it is compact be-

cause the space is compact Hausdorff. Therefore there exists a finite subset � n Pm� such

that Æm�÷ÿ � Ã��6I��(
=� n � ��Ã�.0/ � .
Theorem 2.1.3. If × is a Boolean algebra then × and the Boolean algebra of clopen

subsets � � � �
	���
 �G×	��� of the Stone dual space ; �
	���
 ��×	�7�?>A@ are isomorphic via the map

1 ��×}$:& � � � �
	���
 �G×	���7�,�32 $:& Ã���w
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Proof. By Lemma 2.1.2 1 is well defined and onto. If ��*,­ are distinct elements of × then

there exists a prime filter
Ø 
 �
	���
 ��×	� such that � belongs to

Ø
and ­ does not belong to

Ø
(by Lemma A.16 where � �mÒ�� and �K�mÓ�­ provided that ­WÁÂ � ). Therefore 1 is one-to-

one. It is easy to check that 1 is a lattice isomorphism. Since 1 ��bÕ���54 and 1 �ª^h���+< , 1 is

also a Boolean algebra isomorphism.

Theorem 2.1.4. If < is a Stone space then < is homeomorphic to the Stone dual space of

the Boolean algebra ���z�9<{� of clopen subsets of < .

Proof. Clearly, 6 �[< $:& �
	�� 
 ��� � �9<{���7��872 $:& � ÆK
8� � �9<��JI�8Q
�Æ � *
is a well-defined map. 6 is one-to-one because < is totally disconnected. To show that 6 is

continuous, it suffices to show that the pre-image of a clopen set is clopen (the set of clopen

subsets of a Stone space is a basis for the topology). But this is true because for a clopen

set Æ of < we have6 5 0 �õÃ�9��¬� � 8=
Q< I 6 �98:�A
 Ã�9 � � � 8=
Q< IiÆK
 6 �98:� � �-Æ¬w
Now we show that 6 is onto. Note that 6 � <{� is closed (being the image of a compact

Hausdorff space under a continuous map – Lemma B.6). Hence for
Ø 
 �
	��:
 �����z�9<{����Y6 �9<{� , there exists Æ 
;���:�9<{� such that 6 � <{��Ö�Ã�9E�<4 and

Ø 
cÃ�9 . This implies 4"�6 5 0 �õÃ�9��k�ZÆ contradicting the fact that
Ø 
�Ã=9 . It follows that 6 is a homeomorphism

because both < and
�
	�� 
 ��� � � <{��� are compact Hausdorff spaces.

On the morphism level, the duality sends a Boolean algebra homomorphism 
R�Õ×	03$:&
×�2 to the function 
 5 0 � �
	�� 
 �G×J27�O$:& �
	�� 
 ��×v0�� and a continuous map >E�|<�0($z& <O2 ,
where <~0 and <(2 are Stone spaces, to the map > 5 0 �?� � � <(2,��$:& � � �9<"0�� .

In 1937, Stone extended his representation theorem for Boolean algebras to cover

bounded distributive lattices [111]. The extension proves that the category DLat of bounded
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distributive lattices and lattice homomorphisms is dual to the category SpecSpc, of spectral

spaces and perfect maps between them. The notions of object and morphism of the latter

category are defined as follows.

Definition 2.1.5. A topological space ;9<=*?>A@ is spectral if it is well-filtered, and the set

of compact-open subsets of < is closed under finite intersections and is a basis for > . A

topological space is well-filtered if for every filter base
� �kñÔI�òL
@� �

of compact saturated

sets and an open set F :

ô ñ �Jñ�PuFU��V �)��AW
B�¨�³�DCDPuFOw
Definition 2.1.6. A continuous map between spectral spaces is perfect if the pre-image of

a compact-open subset is compact.

It is easy to check that every Stone space is spectral.

The new duality still works in the same way on objects and morphisms except that it

sends a spectral space < to the algebra HFE�� <{� of compact-open subsets of < rather than

to the algebra � � �9<{� of clopen subsets.

Remark 2.1.7. A Stone space < is compact Hausdorff, therefore the set HFE�� <{� equals the

set ���z�9<{� .

2.1.2 Stone Duality, computationally

In this section, we describe a computational interpretation of Stone duality. Suppose we are

trying to develop a program
�

. Logically speaking, developing the program
�

will include

three step. The first step is to specify the properties
� µ:ñ�I�òA
F� �

that the program
�

has to

satisfy (expressed as �ox:òL
G�¨� �<H µzñ ). The second step is to actually design the program�
. The third and the final step is to prove that every property µ'ñ specified in the first step is

actually satisfied by the program
�

; for every property µ'ñ specified in the first step,
�IH µ�ñ .
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It must now be apparent that the logical relationship
�JH µ:ñ is central to program design

and development.

Stone duality can be interpreted as a tool providing two equivalent perspectives for the

logical relationship
�KH µzñ . One perspective is provided by the topological side of the

duality as follows.

1. Data types of a programming language correspond to topological spaces.

2. Programs correspond to points in the topological spaces.

3. Properties of programs correspond to open sets.

4. The logical relationship
�-H µzñ is interpreted as follows. A program (point) 8 satis-

fies a property (an open set) F if and only if 8=
RF .

The other equivalent perspective is provided by the logical (localic) side of Stone dual-

ity.

1. Data types of a programming language correspond to spaces of prime filters of lat-

tices.

2. Programs correspond to prime filters of lattices.

3. Properties of programs correspond to points of lattices.

4. The logical relationship
�5H µzñ is interpreted as follows. A program (prime filter)

Ø
satisfies a property (point) 8 if and only if 8=
 Ø

.

The localic side of Stone duality can be described using axioms and inference rules.

This fact motivates using Stone duality, and other similar dualities, in establishing logical

descriptions (in the form of logical systems) for program development. Examples of such

logical systems are Abramsky’s domain theory in logical form for Bifinite Domains [2, 4]

and MLS [50, 51, 52, 77].
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2.2 Priestley Duality

In 1970, H. Priestley observed another way of extending Stone duality for Boolean algebras

to bounded distributive lattices [89, 90]. She showed that the category DLat of bounded

distributive lattices and lattice homomorphisms is dual to the category PSpc of Priestley

spaces (also known as ordered stone spaces) and continuous order-preserving functions.

This section is based on [20, 41].

Definition 2.2.1. A Priestley space is a compact ordered space ;�<#�?>J*©¢D@ that is totally

order-disconnected, i.e. for every 8|*?�1
�< , if 8ÀÁÂ � then there exists a clopen upper set Æ
such that �1
RÆ and 8#Á
�Æ .

There are two alternative ways for presenting Priestley duality; using prime ideals or

prime filters. Mathematically, they are entirely equivalent. Computationally however, it

is preferable to work with prime filters. This is so because if we consider prime ideals

then every point of a Priestley space will correspond to the prime ideal of clopen lower

sets that do not contain the point. In the logic of observable properties, this ideal is the

set of properties that are not satisfied by the point. Whereas if we consider prime filters

then every point of a Priestley space will correspond to the prime filter of clopen upper sets

containing the point. This filter is the set of observable properties satisfied by the point.

Therefore, we present and work with Priestley duality using prime filters rather than prime

ideals.

Priestley duality sends a Priestley space < to its algebra LM�z� <{� of clopen upper subsets

of < , and a bounded distributive lattice � to its space
�
	���
 ����� of prime filters of � ordered

by inclusion and equipped with the topology > generated by the following basis set:�
� � Ã��¬YDÃ�NÔI���*?­D
R� � * where Ã��Ô� � Ø 
 �
	�� 
 �G����Ii�O
 Ø � w

For every �+
�� we let FON denotes the set
�
	�� 
 ������Y�Ã�� . Therefore the topology > has

a subbasis consisting of the sets Ã�� and their complements, the sets FP� . The topological
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space ; �
	�� 
 �G×	���ePv*?>3@ is known as the Priestly dual space of � .

In the case of finite distributive lattices, Priestley duality cuts down to Birkhoff’s repre-

sentation theorem, which establishes a correspondence between finite distributive lattices

and finite ordered sets (on the topological side). In this case, the set of prime filters
�
	��Q
 �����

corresponds to the set of join-irreducible elements Rz����� as follows:

Ø 
 �
	���
 �G����TWV �)��8=
BRz�G����� Ø ��ÒÕ8|w
This is easy to prove because the meet of a prime filter is join-irreducible by primeness

of the filter. Moreover, the the upper set of a join-irreducible element is a prime filter

because every join irreducible element is join-prime (Lemma A.7). We note however that

the inclusion order on prime filters gets reversed when we consider their corresponding

join-irreducible elements. This is so because

�oxz8|*?�1
#Rz��������8Q¢ ��TWVXÒ��1PcÒÕ8|w
Under Birkhoff duality, a finite ordered set

�
is sent to its lattice of lower sets �J� � � or-

dered by inclusion, and a finite distributive lattice ;)���e¢�@ is sent to its set of join-irreducible

elements Rz�G��� with the order induced from � .

Therefore, bounded distributive lattices (finite distributive lattices) are precisely the

lattices of clopen upper sets (of lower sets) of Priestley spaces (of finite ordered sets). There

is a trade-off between having a simple dual for a finite distributive lattice and the way this

dual is ordered. On the one hand the dual in the finite case is a subset (join-irreducible

elements) of the lattice rather than a set of subsets (prime filters) in the general case, but on

the other hand the order of the finite case is the reverse of that of general case. This can be

optimised by ordering join-irreducible elements by the dual of the order induced from the

lattice.

Consequently we will have a version of Birkhoff duality under which the image of a

finite ordered set
�

is its lattice of upper sets L�� � � ordered by inclusion and the image of
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a finite distributive lattice ;)���e¢�@ is ;�Rz������*e¢MS�@ , where

�W¢ S ­�T(V � Â ­hw
We first introduce this version of Birkhoff’s representation theorem and then extend it

to Priestley duality.

2.2.1 The Finite Case: Birkhoff’s Representation Theorem

We would like to confirm that all principle upper and lower sets, sets of the form Ò[8 and

ÓÕ8 , below are calculated with respect to the order ¢ not ¢TS .
We start with reviewing the isomorphism between join-irreducible and meet-irreducible

elements of finite distributive lattices.

Lemma 2.2.2. Let � be a finite distributive lattice. Then the set of join-irreducible elementsRz�G��� ordered by the lattice order and the set of meet-irreducible elements U��G��� ordered

by the lattice order are isomorphic via the following map:

>W�$Rz�G���3$'& U���������8�$'& � �G��Y�ÒÕ8:�7w
Proof. As we have discussed above, ;�Rz������*e¢�@ and ; �
	�� 
 ������*,V�@ are isomorphic via the

map


R��Rz������$:& �
	�� 
 ��������8=$:&XÒÕ8
whose inverse is


 n � �
	�� 
 �����3$:&WRz�G���7� Ø $:& � Ø w
Dually, ; 	�� 	 
 �����7*eP�@ and ;�U��G����*e¢D@ are isomorphic via the map

´��$U-�G���3$z& 	�� 	 
 �����7��8Q$'& Ó[8
whose inverse is

´ n � 	�� 	 
 �G���3$:& U-�G���7�X�W$'& � �zw
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Also by Lemma A.15, ; 	�� 	 
 �G���7*eP�@ and ; �
	�� 
 �G���7*,V�@ are isomorphic via the map

��� 	�� 	 
 ������$:& �
	�� 
 �G���7�X�32 $'& ��YY��w
whose inverse is

� n � �
	���
 �G���3$:& 	�� 	 
 ������� Ø 2 $:& ��Y Ø w
The map > is order-isomorphism because it equals ´6���K�L
 .

Birkhoff duality is justified by the following facts:

1. Every ordered set ; � *e¢�@ is isomorphic to ;�Rz�ZL6� � ���7*,V�@ via the following map:[]\ � � $'&WRz��L�� � ���7��872 $:& Ò[8|w
2. Every finite distributive lattice ;)��*e¢�@ is isomorphic to ;�L6��;�Rz�G����*e¢TS�@?�7*eP�@ via the

following map 1_^ �Õ�ð$:& L���;�Rz�G���7*©¢ S @?���,�`2 $:& � 8=
#Rz������Ih8=¢u� � w
Proof. For every � in � , 1�^ �G��� is a lower subset of ;�Rz�G���7*e¢�@ and therefore an up-

per subset of ;�Rz�G���7*©¢MS�@ . Hence 1�^ is well defined. We show that 1$^ is an order-

isomorphism. Clearly �(¢�­ implies 1$^ �G���AP 1Y^ �G­7� . For the other direction, suppose1_^ �����3P 1_^ ��­¹� . Then by Lemmas A.6 and A.18

�	� � 1_^ �G���A¢ � 1Y^ �G­7���÷­aw
It remains to show that 1Y^ is onto. Obviously 46� 1Y^ ��bÕ� . Let

4�Á� � �¨0�*ew©wew©*,�$a � 
G�J��;�Rz�G����*e¢D@����bL6��;�Rz�G����*e¢ S @?�
and set �#���¨0³�{wewewh���?a . We show that 1�^ �G���	� � �¨07*ewew©w¹*,�$a � . Every �[ñ is join-

irreducible and below � in the lattice order. Therefore every ��ñ belongs to 1�^ �G��� . For

the other inclusion, let 8=
 1Y^ �G��� . Then 8R¢+� 0³�¯wew©wa�Q�$a which implies 8�¢+�Õñ for

some ò , by Lemma A.7. Hence 8R
 � ��0:wewew��$a � because
� � 0:wew©w?�$a � is a lower subset

of the lattice.
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Let ;)�A07�e¢k0�@ and ;)�¬2a�e¢L2�@ be finite distributive lattices and
� 0 and

� 2 be finite ordered

sets. Then Birkhoff duality sends a lattice homomorphism 
 ���Ô0Q$:& �¬2 to the order

preserving mapc ¶v�z;�Rz�G�¬27�7*©¢ S2 @�$:& ;�Rz���A0��7*e¢ S 0 @¹�?�d2 $:&Wegfih^ · � 8Q
#Rz�G�A0?�JIh8=
�
 5 0 �9Ò��¨� � *
and an order preserving map c � � 0A$:& � 2 to the lattice homomorphism:


_jO��L�� � 2,��$:&KL�� � 0����¹Ãk2 $z& c 5 0 �õÃD��w
Remark 2.2.3. The function c ¶ above is well-defined because by Lemma A.18 the set of

prime filters of a finite distributive lattice � is�
	�� 
 �G����� � ÒÕ8 Ia8Q
#Rz�G��� � w
Moreover, the inverse image of a prime filter under a lattice homomorphism is a prime

filter.

It is not hard to show that the following diagrams commute.

�A0 
 ¼ ��2 � 0 c ¼ � 2

L���;�Rz���30���*e¢ S 0 @?�
1_^ ·

º 
_j(l ¼ L���;�Rz�G�¬27�7*©¢ S2 @?�

1Y^ ¸
º

;�Rz��L�� � 0����7*mVD@

[]\ ·
º c ¶on ¼ ;�Rz�ZL6� � 27���7*,V�@

[]\ ¸
º

Proof. 1. Let �W
R�30 . Then1_^ ¸a�G
��G������� � 8Q
#Rz�G�¬27�JIh8=¢�
��G��� �
� � 8Q
#Rz�G�¬27�JI c ¶�� 8:��¢u� �
� c 5 0¶ � � �(
FRz�G�A0��JI��1¢u� � �
� 
pj(lÕ� 1_^ ·7�������7w

The second equality is true as followsc ¶�� 8:�3¢u�	��V 8Q¢�
�� c ¶��98:���3¢�
������¬��V 8Q¢�
��G���7w
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For the other direction,

8=¢�
��G���¬�-
�� � � �1
#Rz�G�A0���Ih�1¢u� � ��� � � 
��9� �LIh�W
#Rz�G�A0?� and �1¢u� � w
Therefore by Lemma A.7 there exists �W
FRz�G��0�� such that 8Q¢�
����¨� and �W¢u� . This

implies �1
�
 5 0 � ÒÕ8:� . Therefore c ¶��98:�3¢ � implying c ¶��98:�3¢u� .

2. Let 8=
 � 0 . Thenc ¶ n �9ÒÕ8:��� egfihqsr \ ¸�t � ÃU
BL�� � 2���I[Ãm
�
 5 0j �9Ò:�9Òi8:��� �
� egfihqsr \ ¸�t � ÃU
BL�� � 2���I�
_jz� Ãk�3
®� Ò:�9Ò[8:��� �
� egfihqsr \ ¸�t � ÃU
BL�� � 2���IaÒÕ8=P�
pjz�õÃD� �
� egfihqsr \ ¸�t � ÃU
BL�� � 2���Ia8=
{
pj��õÃD� �
� egfihqsr \ ¸�t � ÃU
BL�� � 2���Ia8=
 c 5 0 �õÃD� �
� egfihqsr \ ¸ t � ÃU
BL�� � 2���I c � 8:��
{Ã �
� Ò c � 8:�7w

2.2.2 The General Case

We now justify Priestley duality in its general case.

Lemma 2.2.4. Let � be a bounded distributive lattice. Then the Priestley dual space

; �
	�� 
 �G�����eP�*�>3@ is compact and totally order-disconnected. Moreover, the set LT�:� �
	�� 
 �G�����
of clopen upper subsets of

�
	�� 
 ����� equals the set
� Ã���IÕ�"
 � �

and the set � � � �
	�� 
 �G����� of

clopen subsets of
�
	���
 �G��� equals the set

� Ã���YDÃ�NÔI���*?­�
R� �
.

Proof. By Alexander’s subbasis lemma (Lemma B.7), it is sufficient to show that every

open cover to
�
	�� 
 �G��� by members of

� Ã��6I��W
R� � + � FTN�I�­D
R� �
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has a finite sub-cover. Suppose

�À� � Ã���I��(
=� � + � FTNÔI�­�
R× � *?��*,×�P��
is an open cover to

�
	���
 �G��� . Let � be the ideal generated by � and
Ø

be the filter generated

by × . By Lemma A.16, if �kÖ Ø �u4 then there exists a prime filter
Ø n such that

Ø P Ø n
and �DÖ Ø n � 4 . Hence

Ø n Ä
�Ã�� for every ��
%� and
Ø n Ä
%FTN for every ­ 
�× .

This contradicts the assumption that � is an open cover of
�
	�� 
 �G��� . Hence �DÖ Ø Á�v4 .

Fix ��
-�kÖ Ø
and suppose that � and × are nonempty (The empty cases cut down to

Lemma 2.1.2). Then there exist
� ��0�*©wewew©*?�$� � P�� and

� ­©07*ewew©w©*,­Xw � Pu× such that

­©0³�¯wewewe�Q­Xwu¢u�W¢u�¨0|��wewewh����� w
For every �\
 �
	�� 
 ����� either �~
 � or �ÀÄ
¯� . If �~
 � then � 0�� w©wew��Q���1
 � implying

�(C�
À� for some A therefore �Z
EÃ�Nyx . If �®Ä
À� then ­e0�� wew©wi�=­XwZÄ
À� implying �pC�Ä
À�
for some A therefore � 
RFO��x . Hence�
	�� 
 �������-Ã�0���Ã��,·z+�wewew(+=Ã���){+QFTN)·|+¯w©wew}+QFTNZ~�w
It is fairly easy to prove that the Priestley dual space is totally order-disconnected. The

proof of the rest of the lemma is similar to Lemma 2.1.2.

Theorem 2.2.5. Let � be a bounded distributive lattice. Then � is isomorphic to the latticeL"�:� �
	�� 
 �G����� of clopen upper subsets of the Priestley dual space ; �
	�� 
 �G���7*ePv*?>A@ of � via

the following map: 1Y^ �[�ð$:& L � � �
	�� 
 �������7�,�`2 $'& Ã���w
Theorem 2.2.6. Let < be a Priestley space. Then < is order-homeomorphic to the Priest-

ley dual space of the lattice L � �9<{� of clopen upper subsets of < via the following map:

[ Cu�[<t$z& �
	���
 �ZL � �9<{���7��8�2 $'& � ÆK
BL � �9<{�JIh8Q
�Æ � w



36

Proof. Clearly [ C is well-defined. Moreover, [ C is an order-embedding because

8=¢u� in < T(V �ox�Æ�
�L � � <{���¹�98=
RÆm�'V �W
RÆ6��TWV [ C�� 8:��P [ C����¨�7w
Now, we show that [ C is continuous by showing that the pre-images of subbasis mem-

bers are open i.e. by showing that [ 5 0C �õÃ�9�� and [ 5 0C � �
	�� 
 ��L"�:�9<�����Y�Ã�9�� are open for every

ÆK
BL"�:�9<{� . This is proved as follows:

[ 5 0C � �
	�� 
 �ZL � �9<{���³YDÃ�9���� � 8=
�< I [ Ck�98:��Ä
¯Ã�9 � � < Y [ 5 0C � Ã�9���*
and [ 5 0C �õÃ�9��¬� � 8=
Q< I [ CD�98:�3
¯Ã�9 � � � 8Q
Q< I�Æ}
 [ C��98:� � �÷Æ�w

Finally, we prove that [ C is onto. Note that [ C�� <{� is a closed (by Lemma B.6 because

< is compact Hausdorff and [ C is continuous). If
Ø 
 �
	���
 ��L"�z� <{����Y [ C��9<�� then there

exists a clopen subset Æ of the Priestley dual space
�
	�� 
 ��L"�z�9<���� such that [ C��9<��³ÖQÆm�k4

and
Ø 
+Æ (by totally ordered-disconnectedness). By Lemma 2.2.4 we can assume that

Æ �mÃ���·�Y�Ã��Õ¸ , for some
� 0�* � 2D
#L � � <{� . Hence 4�� [ 5 0C �)Æ���� � 0³Y � 2 implying

� 0ÔP� 2 . This is a contradiction because
Ø 
¯Ã=��·�Ö#� �
	�� 
 ��L"�:�9<{����Y�Ã��Õ¸��¬��Ã���·�ÖQFO�Õ¸ .

Priestley duality acts on morphisms in the same way as Stone duality.

Now it is not surprising that the category SpecSpc of spectral spaces and perfect maps

between them is equivalent to the category PSpc of Priestley spaces and order-preserving

continuous maps between them. The following definition is needed.

Definition 2.2.7. Let ;�<Q*?>A@ be a topological space.

1. A subset ��P < is saturated if it is an intersection of open sets.

2. The patch topology of ;9<=*?>A@ is the topology on < generated by the set of open sets

and complements of elements in N(C , the set of compact saturated subsets of < .
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The details of the equivalence mentioned above are as follows. For a Priestley space

;�<À��>J*e¢�@ ,
S the set >
� of open upper subsets of < is a spectral topology on < ,

S the specialisation order of ;�<Q*?>���@ is ¢ , and

S for each subset F P < , F belongs to > if and only if F is open in the patch topology

of ;�<=*�>
��@ .
For a spectral space ;)ü�*?>3@ , if > n is its patch topology and ¢ � is its specialisation order

then ;Gü�*?> n *e¢ � @ is a Priestley space. Moreover, for each subset FZP�ü , F belongs to > if

and only if F belongs to > n and is upper with respect to ¢ � .

The part of the equivalence pertaining to the morphisms relies on the following fact.

For spectral spaces < and ü�* a map 
®��< $:& ü is perfect if and only if it is continuous

with respect to the patch topologies of < and ü and order-preserving with respect to the

specialisation orders of < and ü .

2.3 Domain Theory

This section reviews basic definitions and results from domain theory with a focus on those

that are related to the work presented in this thesis. The section is based on [28, 4].

Definition 2.3.1. A poset
�

is a dcpo (directed-complete partial order) if it is closed under

suprema of directed subsets of
�

.
�

is pointed if it has a least element.

Definition 2.3.2. Let
�

be a dcpo and �KP �
. The set � is open in the Scott-topology on�

if it is upper and for every directed subset �-P �
, � � �÷
E� implies �QÖ�� Á��4 . The

Scott-topology on
�

is denoted by � \ . The Lawson topology on
�

(denoted by � \ ) is the

topology generated by the following subbasis:

� �mP � I���
F� 
 or ��� � Y�ÒÕ8 � w
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Definition 2.3.3. Let
�

and
�

be dcpo’s and 
 a map from
�

to
�

.

1. The map 
 is Scott-continuous if for every directed subset � P �
, 
��:� � ��� �� � � 
����h�JIY�v
F� �

.

2. The map 
 is strict if it preserves the least element.

It is straightforward to prove that maps between dcpo’s are Scott-continuous if and only

if they are continuous (topologically) with respect to Scott topologies on dcpo’s.

Now we define some constructions on dcpo’s. For dcpo’s
�

and
�

:

1. The lifting of
�

denoted by
���

is obtained by adding a least element to
�

.

2. The Cartesian product
� ! �

is the set
� ;)��*,­7@�I��W
 �

and ­�
 ���
ordered point-

wise.

3. The function space ] � $:& � f is the set of all Scott-continuous maps from
�

to
�

ordered point-wise.

4. The strict function space ] � $:& �E� f is the set of all strict Scott-continuous maps

from
�

to
�

ordered point-wise.

5. Suppose
�

and
�

are pointed. Then the coalesced sum ����× is the disjoint union

of � and × with identifying the least elements.

The category DCPO has dcpo’s and Scott-continuous maps between them as objects

and morphisms, respectively. The category DCPO
�

is the sub-category of DCPO whose

objects are pointed dcpo’s and whose morphisms are strict Scott-continuous maps. The

category DCPO is a very convenient mathematical environment to develop denotational

semantics of programs. The reasons behind this include the following. First it supports

the recursive definitions of programs (represented by elements of domains) and data types

(represented by domains). This was Scott’s original discovery in 1969 [4]. We quote two

theorems:
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Theorem 2.3.4. Let P be a pointed dcpo and 
 be a Scott-continuous map on
�

.

1. The map 
 has fix-points and the least of them is � � �_��� 
 � ���v� .
2. The map �o��ùp�Z� � �z] � $:& � f³$:& � ��
�2 $:& � � �_��� 
 � ����� is Scott continuous.

The category DCPO � is the sub-category of DCPO whose morphisms are the embed-

dings (Definition A.12).

Theorem 2.3.5. Let �¡� DCPO ��$:& DCPO be a continuous functor. Then there exists a

dcpo
�

such that � . � �W� � ��w
Another convenient aspect of DCPO is that it admits a highly productive type-structure [86,

chapters 2,3].

In domain theory, the computability of processes is measured via testing the continuity

of representing mathematical structures (functions as elements of function spaces between

dcpo’s). This is the reason that a convenient notion of continuity is required for dcpo’s.

Consequently an approximation notion over dcpo’s is needed in defining continuity. This

justifies the importance of the following two definitions.

Definition 2.3.6. Let
�

be a dcpo, �UP �
and 8|*?�1
 �

.

1. 8 approximates � (denoted by 8�� � ) if for every directed subset � of
�

, �~¢ � � �
implies 8=¢!� , for some ��
8� .

2. The element 8 is compact (or finite) if 8�� 8 . The set of all compact elements of
�

is denoted by H®� � � .
3. ÒÒÕ8"� �p� 
 � Ia8�� ���

and ÒÒ���� ÿ � ÒÒ���I��W
=� �
. Dually, ÓÓÕ8 and ÓÓ�� are defined.

Definition 2.3.7. Let
�

be a dcpo.

1.
�

is a continuous domain (or domain) if for every 8Q
 � *�8~�I� � ÓÓÕ8 .
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2.
�

is an algebraic domain if for every 8=
 � *�81� � � �p� 
�H®� � �JI � � 8 �
.

3.
�

is an ½ -algebraic domain if it is an algebraic domain and H®� � � is countable.

CONT * ALG and ½ ALG are the categories whose objects are continuous, algebraic

and ½ -algebraic domains, respectively, and whose morphisms are Scott-continuous maps

between objects in each category.

Although the categories DCPO and DCPO
�

are closed under the function-space con-

struction (Cartesian-closed), the subcategories CONT and ALG are not. The closure of

DCPO under function-space construction is very interesting for reasons including the fol-

lowing. Let � and × be two data structures represented by two dcpo’s
�

and
�

, respec-

tively. Now we are pretty sure that ] � $'& � f , the set of all Scott-continuous functions

from
�

to
�

, represents the set of all computable programs from � to × . Therefore every

computable program from � to × is represented by a point in the dcpo ] � $'& � f . This

would not be the case if DCPO were not Cartesian-closed.

The importance of continuous domains and the closure under the function-space con-

struction were the motivation for the research in [45, 47, 44, 43, 46, 48] in which Achim

Jung described maximal Cartesian-closed full subcategories of CONT and ALG. In the

following we present some of these subcategories.

Definition 2.3.8. Let
�

be a pointed continuous (algebraic) domain.

1.
�

is an L-domain (an aL-domain) if

�yx'��*,­a*,ÏD
 � �|��*?­�¢�Ï���V ���Q­ exists in Ó�Ï�w
2.

�
is a bounded-complete domain or bc-domain (an abc-domain) if

�ox'��*?­h*?ÏD
 � ����*,­�¢uÏ���V �D�Q­ exists in
� w

3.
�

is a continuous lattice (an algebraic lattice) if

�yx'��*,­J
 � �|�k��­ exists in
� w



41

L, BC, and LAT (aL,aBC and aLAT) are the full subcategories of DPCO
�

, whose

objects are L-domains, bc-domains and continuous lattices (aL-domains, abc-domains and

a-continuous lattices), respectively, and whose morphisms are the Scott-continuous.

Lemma 2.3.9. The categories L * BC * LAT * aL * aBC and aLAT are Cartesian-closed.

Definition 2.3.10. Let
�

be a poset and � a subset of
�

.

1.
�

has the property m if for every � PD¶,ñ�� �
, the set of upper bounds of � equals

the set Òs�3� ���)�-� where �3� ���)�-� stands for the set of minimal upper bounds of � .

2. The mub-closure of � (denoted by �Wøi���D� ) is the smallest set that contains � and the

set �3� ���)�-� for every � P�¶?ñ��d�Wøi���D� .
3.

�
has the finite mub property if it has the property m and �Wøi�G�-� is finite for every

� P�¶?ñ�� �
.

4.
�

is a Plotkin order if it is pointed and has the finite mub property.

Definition 2.3.11. Let
�

be an algebraic domain.
�

is a bifinite domain if H®� � � is a

Plotkin order. B is the full subcategory of ALG
�

, whose objects are the bifinite domains.

Remark 2.3.12. Note that the category ALG
�

is the sub-category of ALG, whose objects

are pointed algebraic domains and whose morphisms are strict Scott-continuous maps.

Definition 2.3.13. Let
�

be a pointed dcpo and 
 a Scott-continuous map on
�

. 
 is

finitely-separated from the identity map on
�

if there exists � P�¶?ñ�� �
such that:

�yxz8=
 � �¹�)�¨��
R�-��
�� 8:�A¢��%¢c8|w
Definition 2.3.14. Let

�
be a pointed dcpo.

�
is an FS-domain if the identity map � � \

on
�

is the supremum � � ñ��m� 
hñ where
� 
hñ�IÕòÔ
�� �

is a directed family of Scott-continuous

maps on
�

, each of them finitely-separated from � � \ .
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Remark 2.3.15. It is not hard to prove that FS-domains are continuous. Therefore we define

the category FS to be the full sub-category, of CONT, whose objects are FS-domains.

Lemma 2.3.16. The categories B and FS are Cartesian-closed.

Remark 2.3.17. It is a fact that a bifinite domain is an FS-domain and an algebraic FS-

domain is a bifinite domain.

L and FS (aL and B) are maximal Cartesian-closed full subcategories of CONT
�

(ALG
�

).

The following lemma which characterise compact saturated subsets of continuous do-

mains will be needed in Chapter 5.

Lemma 2.3.18. Let
�

be a continuous domain, H a compact saturated subset of
�

that is

contained in an open set F . Then there exists a finite set � such that

HtP � ��I�� � �z*?�M
�� � PcÒ�� PuF(w

Coherent Domains

Coherent domains as defined below, are the primary objects of interest in this thesis. More

precisely, we are interested in studying compact (with respect to the Scott-topology) coher-

ent domains. This will be clarified in the next section. For the moment, we just introduce

the notion of coherent domain and state some results concerning it.

Definition 2.3.19. A continuous domain is coherent if the binary intersection of compact

saturated subsets is compact.

Alternatively, on a continuous domain
�

coherence can be defined via the lattice of

Scott-open sets � \ , or via the Lawson topology � \ as follows:

�
is coherent TWV ���ox'F�0�*,FD2©*,F 
#� \ ��F¡� F�0�*?FI� FD2A��V F¡� F�0�ÖQFD2��

T(V the Lawson topology on
�

is compact w
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For an algebraic domain
�

, we can describe coherence via the set of compact elements

H®� � � as follows.
�

is coherent if and only if

1. H®� � � has property m, and

2. the set of minimal upper bounds of any finite subset of H®� � � is finite.

Remark 2.3.20. The description of coherent algebraic domains via their sets of compact

elements justifies the terminology ¢[Ä�ö bifinite domains for coherent algebraic domains.

Lemma 2.3.21. FS-domains and bifinite domains are coherent.

Some interesting facts about coherent domains are the following.

Lemma 2.3.22. Suppose
�

and
�

are continuous domains such that
�

is pointed.

1. If ] � $:& � f is continuous then
�

is coherent or
�

is L-domain.

2.
�

is an FS-domain if and only if
�

and ] � $z& � f are coherent.

2.4 Locales

This section presents basic ideas from locale theory and a computational interpretation for

the theory. The section is based on [4, 2, 41].

Definition 2.4.1. A frame is a complete lattice satisfying the infinite distributive law:

8	� � üU� � � 86����I��W
Rü � w
Frame homomorphisms are functions between frames that preserve finite infima and arbi-

trary suprema.
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The category Frm is the category of frames and frame homomorphisms. The category

Loc is the opposite of the category Frm.

The starting point of locale theory is the following observation. There is an adjunction

��ED*�� � * 1 * [ � between the category Top of topological spaces and continuous maps between

them and the category Loc. This observation and some other facts from category theory

and constructive mathematics led mathematicians (in particular topologists) to focus their

research on the category Loc instead of the category Top. Loc is an abstract category;

concretely one works with Frm.

In terms of Frm, the adjunction ��ED*�� � * 1 * [ � is detailed as follows. The functor,

E+� Top $'& Frm

sends a topological space < to its open-sets lattice E��9<�� (ordered by inclusion) and a

continuous map 
 to its inverse image 
 5 0 .
The functor, � � � Frm $z& Top

sends a frame � to its collection of completely prime filters � � ���D� equipped with the topol-

ogy whose open sets have the following form:

Ã��L� � Ø 
�� � ���D��I��W
 Ø � *,�(
R��w
The functor � � sends a frame homomorphism 
=�Õ��$:& × to the continuous map

� � �)
��A�Y� � �G×6��$:&£� � ���k��� Ø 2 $z& 
 5 0 � Ø �7w
The elements of � � �9�k� are knows as the points of � and the topology defined on � � ���D�

above is known as the point topology.

For a topological space < , the map

1 Cu�[< $z&K� � ��E��9<{���7��8�2 $:& � FZIa8R
=F � *
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is continuous, open onto its image, and commutes with continuous functions. Therefore

the set
� 1 C I�< a topological space

�
is a natural transformation from the identity functor

on Top to the functor E¯�¤� � .
For a locale � , the map

[ /R�Õ��$:& E��¥� � �9�k���7�,�¦2 $'& Ã���*
is a frame homomorphism and commutes with frame homomorphisms. Hence the collec-

tion
� [ /¯I�� is a frame

�
is a natural transformation from the identity functor on Frm to the

functor � � �"E .

Therefore the functors E and � � are dual adjoints to each other with 1 and [ as their

units.

Remark 2.4.2. Let � be a bounded distributive lattice. Then the Stone dual space of � is

homeomorphic to the space � � � 	�� 	 �G����� of the locale
	�� 	 ����� (ideals of � ) equipped with the

point topology. The locales arising as the sets of ideals of bounded distributive lattices are

called coherent locales. The points of coherent locales equipped with the point topology

are precisely the spectral spaces. Moreover, the open-set lattices of spectral spaces are

precisely the coherent locales [41]. This establishes a duality between the category CohLoc

of coherent locales and perfect maps (locales homomorphisms whose corresponding frame

homomorphism maps compact (finite) elements to compact elements), and the category

SpecSpc of spectral spaces and perfect maps between them. This duality sends a perfect

maps 
 between spectral spaces, to the locale homomorphism corresponding to the frame

homomorphism 
 5 0 . A locale homomorphism 
 is sent, under the duality, into the inverse

image 
|§ 5 0 , where 
�§ is the frame homomorphism corresponding to 
 .

To complete our survey of the relationship between coherent locales, bounded dis-

tributive lattices and spectral spaces, we should mention the following. The sublattices

of compact (finite) elements (elements approximating themselves) of coherent locales are

precisely the bounded distributive lattices.
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Moreover, the category CohLoc is dual to the category DLat, of bounded distributive

lattices and lattice homomorphisms between them. On the morphisms level, this duality

sends a coherent map 
R�Õ�U$:& × to the restriction of the corresponding frame homomor-

phism to compact elements 
¨§L��H®�G×	��$:& H®�9�k� . Suppose ��*?× are coherent locales and>1��H®�9�k�3$z& H®��×	� is a lattice homomorphism. The locales � and × are freely generated

by H®���D� and H®�G×	� , respectively. Therefore > extends uniquely to a frame homomorphism> n �³�%$:& × . Hence the duality, being discussed in this section, sends > into the locale

homomorphism corresponding to the frame homomorphism > n .
The observations reviewed in this remark are the core of the direct relationship between

Stone duality and locale theory.

Definition 2.4.3. 1. A topological space is sober if every closed irreducible set (a set

which is not the union of two of its closed proper-subsets) is the closure of a unique

point in the space.

2. A coherent space is a topological space that is sober, locally compact and such that

the collection of compact saturated subsets is closed under binary intersection.

3. A stably compact space is a compact coherent space.

4. A spectral space is a stably compact space which has a basis of compact open sets.

5. A complete lattice is spatial if its elements are separated by completely prime filters.

6. A complete lattice � is completely distributive if for every set
� �Dñ�Ihò�
#� and �Jñ�Pu� � *

�ñi�,� � �Jñ'� �
¶m© �¤ª5¬«0­ / ® �ñi�,� 
���òõ��w

7. A continuous lattice is a complete lattice in which every element is the supremum of

elements approximating it.
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8. An arithmetic lattice is a distributive continuous lattice in which

8�� � and 8�� � ��VX8�� �k� � w
Sober spaces have interesting properties including the celebrated Hofmann-Mislove

theorem [59] which states that, in a sober space < , the set ¯ �
	�� ��E�� <{��� of Scott-open filters

of the open-sets lattice E��9<{� , is isomorphic to the set NWC , of compact saturated subset of

< . This isomorphism simply maps a compact saturated set � to the set of all open sets

containing � . Conversely, a Scott open filter ° of open set in < is mapped under this

isomorphism to the intersection ±²° .

The functors E and � � establish a dual equivalence between the following categories:

the category of sober spaces and the category of spatial lattices
the category of sober locally and the category distributive continuous
compact spaces lattices
the category of coherent spaces and the category of arithmetic lattices
the category of stably compact and the category of arithmetic lattices
spaces in which ^³� ^
the category of spectral spaces and the category of algebraic arithmetic lattices
CONT and the category of completely distributive lattices
ALG and the category of algebraic completely

distributive lattices
the category of coherent and the category of arithmetic completely
domains distributive lattices
the category of coherent and the category of algebraic arithmetic completely
algebraic domains distributive lattices

Table 2.1: Stone dualities

Remark 2.4.4. In the table above, the morphisms on the topology side are always continu-

ous functions and on the lattice side are always the frame homomorphisms.

Remark 2.4.5. From Remark 2.4.2 and the table above it should be clear that the duality

between sober spaces and spatial lattices is the most general topological version of Stone

duality.
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;�<Q*?>3@ � � ����� equipped with the point topology
point completely prime filter
specialisation order the inclusion-of-sets order
open set completely prime filters containing an element 8Q
��
saturated set completely prime filters containing an upper subset of L
compact saturated set completely prime filters containing a Scott open filter of L

Table 2.2: Topological concepts on duality sides

In this thesis, we are interested in studying coherent domains which are compact in

their Scott topologies. As we have already mentioned before, coherent domains include

Cartesian-closed subcategories of continuous domains like FS-domains and bifinite do-

mains and this points to the importance of studying the coherent domains. From Table 2.1

above, it is clear that coherent domains are coherent spaces. Stably compact spaces are

compact coherent spaces. Therefore the notion of stably compact space, the primary no-

tion of interest in this thesis, is a topological generalisation of compact coherent domains

in their Scott topologies.

Now we have two perspectives for different concepts in topology; the classical perspec-

tive appearing on the topological side of the dualities described above and the perspective

arising from the lattices (localic) side, using the point topology. In other words, classical

concepts from topology correspond to lattice-theoretic concepts on the frame side of the

dualities above. This is clarified in Table 2.2, where ;�<=*?>A@ is a topological space and � is

a complete lattice.

Lattice homomorphisms between distributive lattices can be replaced with certain con-

tinuous relations to obtain the category DLatj of distributive lattices and join-approximable

relations between them. This category provides a finitary representation for the cate-

gory SpecSpc of spectral spaces and continuous maps between them. The notion of join-

approximable relation is defined as follows.
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Definition 2.4.6. Let � and H be two lattices. A binary relation × P �E!RH is join-

approximable if for every ´õ*µ´ n *µ´�07*ewew©w¹*µ´���
R� and ¶:*¬¶ n *¬¶�0�*ewew©w©*¬¶Ywc
�H :

1. ´ n ¢·´�×-¶~¢!¶ n ��V ´ n ×-¶ n .
2. �ox�^�¢ ò�¢ ���¸´�×u¶iñ:��V ´�×Z��¹ 0Qº�ñ�º?w ¶iñ9� .
3. �ox�^�¢ ò�¢ ²���´�ñ:×u¶���V � � 0Qº�ñ�º?� ´�ñ ��×u¶ .

4. ´'×Z��� 0Qº�ñ�º?w ¶iñ �¬��V �G��� PJ¶,ñ��v���¸´³�5�c� and �yx:�%
��-�©�G�¨òõ���Z×-´�ñ .
Theorem 2.4.7. The categories DLatj and SpecSpc are equivalent. The equivalence sends

a spectral space < to its lattice of compact open subsets HFE��9<�� and a distributive lattice

� to its spectrum »Q��û,øi�G��� of prime filters, equipped with the topology generated by the

following basis:

Ã��L� � Ø 
 �
	�� 
 �G����I��W
 Ø � *,�(
R��w
On the morphism level, a continuous map 
R�Õ< $:& ü between spectral spaces < and ü
is sent to the binary relation ×k¶�PuHFE��Gü6�3!=HFE��9<{� defined as follows:

Ã�×D¶kÆ q?r sTWV 
 5 0 � ÃD��P+Æ¬w
And a join-approximable relation ×}Pu�ð!RH is sent to the following continuous map:


_¼¯�½»Q��û,ø[�GH��A$:& »Q��û,ø[������� Ø 2 $:& � ´�
R�+I��G�¾¶~
 Ø ��´'×u¶ � w
Moreover, this equivalence cuts down to an equivalence between coherent algebraic

domains and lattices whose elements are joins of finite subsets of join-prime elements.

We now introduce the concept of bifinite lattice together with a result which is crucial

for Abramsky’s logical form for bifinite domains.

Definition 2.4.8. A bounded lattice � is bifinite if

1. the top element is join-prime,
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2. elements of � are finite suprema of join-prime elements, and

3. for every finite subset � of join-prime elements, there is another finite subset ° of

join-primes such that � P�° and

�yx:�UP��-�¹�)� ×\P�Æ6��� �+� � ×(w

Theorem 2.4.9. A lattice is bifinite if and only if it is isomorphic to the lattice of compact

open subsets of a bifinite domain.

2.4.1 Computational Reading of Locale Theory

In this section, we present a computational interpretation of locale theory. The idea is that

the elements of topological spaces denote programs and then the elements of the corre-

sponding lattices act as semi-observable properties of the programs. The properties are

semi-observable because the satisfaction of a property by a program can be determined

given a finite amount of information about the program but the violation of a property by a

program can not, in general, be determined in finite time.

Moreover, the Sierpinski space ¿ (thought of as ¢ equipped with the upper topology)

fits into the picture as follows. Given a topological space < , we have the following

properties of programs = open sets of topological spaces

= points of corresponding lattice.

Then the properties (open sets of < ( E��9<{� )) of elements (programs) of < correspond to

the continuous maps from < to ¿ i.e.

E�� <{��.� �9<t$:& ¿J�7w
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2.5 Abramsky’s Logical Form for Bifinite Domains

In this section, we briefly review Abramsky’s famous paper, Domain Theory in Logical

Form [2]. The section is based on [2] and [4, section 7.3]. In this paper, Abramsky pre-

sented a logical representation for bifinite domains and he showed that the logical form is

Stone dual to the domain form. Moreover, Abramsky showed how to get domain construc-

tions (like the function-space construction) done in the logical formalism. He also proved

that the results of the same domain construction on domains and their logical representa-

tions are Stone duals to each other.

We first introduce the category DPL of domains prelocales and approximable relations

between them. This category is a main pillar for Abramsky’s work.

Definition 2.5.1. A domain prelocale is a structure ;G��*¬À	*¬Á�*,��*,��*?b¨*e^[* � *�¾�@ such that,

1. � is a countable set equipped with the preorder À . b and ^ are least and greatest

elements in � , respectively. Á is the equivalence relation given by the intersection ofÀ and Â .

2. � and � are binary operations on � producing a join and a meet, respectively.

3.
�

is a unary predicate on � such that

S �ox'�1
=�k� � �����Uq?r sTWV � is � -prime.

S � �ª^a� .
� ���D� is the set of all � -prime elements in � .

4. �ox'�W
=�D�©�)��� P�¶?ñ�� � ���D�����`ÁI� � .

5. �ox|ÃUP�¶?ñ�� � ���D���©�G��ÆKP�¶?ñ�� � ���k����ÃmP�Æ and �ox�Ã P÷ÃD�©�)�¾Ä�P+Æ�� ¹ Ä!ÁI�bÄ .

6. ¾ is a unary predicate such that for every � Pk¶?ñ��v� ,
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S �ox'��*,­D
=�k�³¾��G���7*,­DÀ-�	��VX¾6��­7� .
S ���yx:� 
R�-�|¾�����������V ¾�� � �-� .
S �ox'�1
=�k�³¾��G���¬TWV �QÁÁK^ .

Definition 2.5.2. Let � and × be domain prelocales. A binary relation
� P%�U!R× is

approximable if for every ��*,� n 
=� , ­a*,­ n 
R× ,
� � 0�*©wewew©*?�$� � P � and

� ­©07*ewew©w©*,­Xw � Pu× ,

1. ���yx�^v¢ ò�¢ ����� � ­,ñ9�¬��V � � ¹ 0Qº�ñ�º?w ­,ñ .
2. ���yx�^v¢ ò�¢ ²³���[ñ � ­7����V � 0Qº�ñ�º?� �Õñ � ­ .
3. �`À-� n � ­ n À-­���V � � ­ .
4.

� /��G���7*?� � � 0Qº�ñ�º?w ­?ñ���V �G��A���� � ­�C .
One of the main results, proved by Abramsky in [2], is that the category B of bifi-

nite domains and strict Scott-continuous maps between them is equivalent to the category

DPL. The details of this equivalence are given by the following functors. The functorØ � B $:& DPL sends a bifinite domain
�

to the domain prelocale

;)HFE�� � ���ePv*��6*¬+3*�Ö3*µ4 * � * � ÒÕ��I��W
RH®� � � � *?HFE�� � ��Y � Ò�b \ � @¹*
and a strict Scott-continuous function 
M� � $z& �

between bifinite domains to the

approximable relation
� ¶�PuHFE�� � ��!=HFE�� � � defined by:

� � ¶Ô­�q?r sT(V �WP�
 5 0 �G­7�7w
The functor �K� DPL $:& B sends a domain prelocale � to the bifinite domain »Q��û,øi���D� of

prime filters
�
	�� 
 �9�k� ordered by inclusion and an approximable relation

� P �m!=× to the

strict Scott-continuous map 
YÅ defined by:


_Å������¬� � ��I �G��8=
#���³8 � � � w
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Moreover, Stone’s isomorphisms in the case of distributive lattices (Section 2.1), work

as natural transformations between the functors
Ø

and � . These natural transformations

are defined as follows:1 �$� DPL $:& Ø �Ô���,�`2 $:& � �(
�»Q��û,ø[��ÆL�JI��(
#� � *
and 6 ��� B $'& � � Ø ��8�2 $z& � Ã�
RHFE�� � �JIh8=
¯Ã � w
This is, more or less, the reason why Stone duality was considered the appropriate math-

ematical framework for studying the relationship between denotational and axiomatic se-

mantics.

Definition 2.5.3. Pre-isomorphisms are onto, order-preserving and order-reflecting maps

between domain pre-locales. A domain prelocale � is a localic representation of a bifinite

domain
�

if � is pre-isomorphic to HFE�� � � .
Lemma 2.5.4. Let � be a domain prelocale,

�
a bifinite domain and µQ�Õ�U$:& HFE�� � � a

pre-isomorphism. Then the map Ç � 6 5 0 �v�Q»Q��û,ø[�Gµ'�ª� 5 0

is a domain isomorphism from »Q��û,ø[��ÆJ� to
�

. Moreover, a pre-isomorphism from � to

HFE�� � � exists if and only if »Q��û,ø[��ÆJ� and
�

are isomorphic.

Remark 2.5.5. In Lemma 2.5.4, »Q��û,ø[�Gµ'�J��»Q��û,ø[�oÈÊÉ��QËD���J$:& »Q��û,ø[��ÆL� sends a prime filterØ
to its inverse image µ 5 0 � Ø � .

Definition 2.5.6. Let � and × be domain prelocales. Then � is sub-prelocale from ×
(denoted by �¡Ìu× ) if

1. � is a subalgebra of × with respect to ��*,��*?b and ^ .
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2. ÀO/��+�óÖBÀP¼ and
� ���D���u�EÖ � �G×	� .

Lemma 2.5.7. Let � and × be domain prelocales and � Ì × . Then the following map-

pings are embeddings:

Ñ��½»Q��û,ø[��ÆL�3$z& »Q��û,ø[�QÍv��� Ø 2 $z& Ò ¼ Ø *
and Î � »Q��û,ø[�QÍv�A$'& »Q��û,ø[��ÆL��� Ø 2 $:& Ø Ö���w

One of Abramsky’s basic goals in [2], was to have domains constructions done on the

localic side. This means the following: suppose we are given two bifinite domains
� 0 and� 2 which have localic representations ��0 and ��2 via pre-isomorphisms µ|0 and µ�2 , respec-

tively. Further suppose that
Ø

is a binary domain-construction; hence
Ø � � 0�* � 2,� denotes

the domain resulting from applying the construction
Ø

to domains
� 0 and

� 2 . The goal now

is to construct, using only ��0 and ��2 , a domain prelocale ¾����v0�*?��2,� and a pre-isomorphism

µ{��¾�����0�*?��2,�L$:& HFE�� Ø � � 07* � 2,��� . Abramsky outlined a schema for establishing various

domain constructions in the localic form. This schema guarantees that the construction

¾�����0�*?��2,� satisfies natural and desired properties like the following. If ×60 and ×�2 are

sub-prelocales of ��0 and ��2 , respectively, then ¾��G×�0,*,×�27� is a sub-prelocale of ¾����v0�*?��2,� .
Moreover, the following diagram commutes where ��*,Ñ and Ñ n are the embedding mappings

resulting from Lemma 2.5.7.

»Q��û,ø[�}Ï��QÍDÐ[*�ÍDÑ���� � ¼ »Q��û,ø[�(Ïk��ÆTÐÕ*¬ÆMÑi���

Ø � � 07* � 2��

Ç ¼
º Ø ��Ñ[*,Ñ n � ¼ Ø � � 0�* � 2��

Ç /
º

As an example, we explain the function-space construction. Suppose
�

and
�

are

bifinite domains which have localic representations � and × via pre-isomorphisms µ�0 and
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µz2 , respectively. The function space (the pre-locale) �M$:& × is constructed as follows.

The carrier set of the prelocale �m$:& × is generated by the following set:

�-� � �G�W$z& ­7�DI��(
=� and ­�
R× � w
The relations ÀP/ 5¬« ¼ and ÁO/ 5Ò« ¼ and the predicates

� / 5µ« ¼ and ¾�/ 5Ò« ¼ are defined induc-

tively as follows, where ��*,� 07*ewewew¹*,���	
=� , ­a*,­e07*©wewew©*?­µ��
=× :

Axioms:

1. ���W$:& ¹ 0Qº�ñ�º?� ­?ñ9�
Á ¹ 0Qº�ñiº?� ���W$:& ­?ñ�� .
2. ��� 0Qº�ñ�º?� �Õñ�$z& ­7�
Á ¹ 0Qº�ñiº?� ���Õñ�$:& ­¹� .
3. The prelocale �U$z& × is distributive.

Rules:

1. If
� �G��� then ���($:& � 0Qº�ñ�º?� ­?ñ��=Á � 0Qº�ñ�º?� �G�W$z& ­?ñ9� .

2. If � n À-� and ­0À�­ n then �G�W$z& ­¹�
À���� n $:& ­ n � .
3. If �yx:ò � � ���Õñ �7* � �G­?ñ�� and �ox'H P � ^[*ewew©w¹*?² � �©�G� ��P � ^i*ewewew7*?² � � ¹ aÒ�}Ó �$aPÁ-�ÕÔ � ^ � Ô

and �yx�¶"
RH=*µ´�
=����­¬a³À-­ Ô then
� � ¹ ñ��m� �G�[ñ�$'& ­?ñ���� .

4. If
� �G� n �7*?� n À-� and ¾6��­7� then ¾��G�O$'& ­7�7w

The required pre-isomorphism from ���U$:& ×6� to HFE�� � $:& � � is defined as follows:

�G�O$:& ­7�
2 $'& � 
=� � $:& � I�
 is Scott-continuous and 
��Gµ|0¹�G�����3P�µ�2h�G­7� � w
Bifinite domains were then given by Abramsky in [2, Chapter 4] a meta-language and

a logical interpretation which was established via the localic description illustrated above.

The logical interpretations were proved to be Stone duals of the to corresponding bifinite

domains.
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The meta-language has the following grammar:

� � �:� ^	Ia< I����|&��³�JI ����!
�|��I����z�P�|�JI¨���|� � I P


���|�JI rec <=wÖ�'*

where < belongs to a collection ¾�Æ of type variables.

Suppose each variable in ¾�Æ is assigned a bifinite domain via the map (environment)× \ �i¾�Æ�$:& B. Then the semantic clauses of the grammar above are as follows:Ø \ �ª^[� × \ ��� the one element dcpo �Ø \ �9<À� × \ ��� × \ � <{�7�Ø \ �����¯$:& Ç ��� × \ ��� � Ø \ ����� × \ �3$:& Ø \ � Ç � × \ ���7�
...Ø \ � rec <=wÖ��� × \ ��� FIX � ØzÙ �7* where

ØzÙ � � �¬� Ø \ ����� × \ ] <v2 $:& � fy�7w
In the last clause, FIX � Ø¸Ù � is the solution to the domain equation FIX � Ø¸Ù �Q� ØzÙ

and× \ ] <v2 $z& � f is the function (environment) from ¾�Æ to B that maps < to
�

and any other

variable ü�
Q¾�Æ to × \ ��ü6� .
Every type expression � is given a language ÚJ���|� of (computational or observational)

properties via the following inductive definition:

��V true * false 
FÚL���³�7�
µ�*?Ûc
#ÚJ���|� ��V µ	�~ÛJ*�µ	�~Û 
FÚL���|���

µ=
FÚL���³�7*?Ûc
#ÚJ� Ç � ��V �Gµ�$z&ðÛA��
#ÚJ����$:& Ç ��*
µ=
FÚL���³�7*?Ûc
#ÚJ� Ç � ��V �Gµ�!�Û3�A
8ÚL���3! Ç �7�

µR
#ÚJ���|� ��V �Gµ|� false �3
FÚL���z� Ç �7�
Ûc
#ÚJ� Ç � ��V � false �kÛA��
#ÚJ���z� Ç �7�
µR
#ÚJ���|� ��V �Gµ'� � 
FÚL�����|� � �7�
µR
#ÚJ���|� ��V Ûvµ�*¬Ü�µQ
8ÚL� P



���|�����

µ=
FÚL���¬] rec <=wÖ�|Ä�<Qf � ��V µQ
#ÚJ���|�7w
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There are many applications to Abramsky’s domain theory in logical form; for exam-

ple [40, 39, 80, 32, 14, 3, 1].

2.6 Stably Compact Spaces

Stably compact spaces are the primary objects of interest in this thesis and they have been

researched extensively [35, 34, 54, 62, 109, 49, 7]. One reason why stably compact spaces

are interesting for us is that they simply cover compact coherent domains in their Scott

topologies. Topologically, stably compact spaces are seen as a generalisation of compact

Hausdorff spaces in the ¾'¿ setting. This is a reason why mathematicians are interested

in studying stably compact spaces. As a reminder, stably compact spaces are defined as

follows:

Definition 2.6.1. A stably compact space is a topological space that is sober, compact,

locally compact and such that the collection of compact saturated subsets is closed under

binary intersection.

Stably compact spaces can be defined alternatively as follows.

Definition 2.6.2. A stably compact space is a topological space which is ¾|¿ , compact,

locally compact, well-filtered, and the collection of compact saturated subsets is closed

under binary intersections. A topological space is well-filtered if for every filter base
� ��ñ�I

ò�
#� �
of compact saturated sets and an open set F :

ô ñ �Jñ�PuFU��V �)��AW
B�¨�³�DCDPuFOw
The mathematical reason behind the equivalence of these apparently different defini-

tions of stably compact spaces is the following theorem proved in [28, Theorem II-1.21].

Theorem 2.6.3. For a locally compact ¾³¿ space < , the following statements are equiva-

lent:
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1. < is sober.

2. < is well-filtered.

3. For a Scott-open filter of open sets ° and open set � ,

�c
F°®T(V ô °cP5�Ôw
We have seen in Section 2.4 that the Stone duals of stably compact spaces are the

arithmetic lattices in which ^³� ^ (the top element approximates itself).

In this section, we review some properties and results concerning stably compact spaces.

This section is based on [28, 49, 7, 53]. Let us start with the famous Hofmann-Mislove the-

orem [59, 29].

Theorem 2.6.4. For every sober space, there is a one-to-one correspondence between the

set of Scott-open filters of open sets and the set of compact saturated sets.

This one-to-one correspondence works as follows. The intersection of the elements of

any Scott-open filter of open sets is compact saturated. And the set of all open neighbour-

hoods of a compact saturated set is a Scott-open filter.

As a corollary of the Hofmann-Mislove theorem, we get the following result.

Corollary 2.6.5. Let ;�<Q*?>3@ be a sober space and
� H1ñ1I�ò"
u� �

be a filtered family of

nonempty compact saturated subsets of < . Then ± ñ��m� HOñ is nonempty compact saturated

and for every FK
=> ,

ôñi�,� H�ñ�PuFUT(V �G�¨ò�
#����HOñ�PuFOw
This corollary makes it clear that compact saturated subsets of stably compact spaces

(which are ¾'¿ spaces) play a parallel role to that played by compact subsets of Hausdorff

( ¾:2 ) spaces. Indeed, a stably compact space ;9<=*?>A@ is Hausdorff if and only if >��±>��
where >�� is the topology (known as the co-compact topology) on < which has as a basis

the set of all complements of compact saturated subsets of < .
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For a stably compact space ;�<=*�>3@ , we already know that > is an arithmetic lattice

whose order is the inclusion of sets. What is new is that the set of compact saturated subsets

of < denoted by N(C and ordered by the reversed inclusion of sets is also an arithmetic

lattice. The order of approximation � can be characterised in > and N1C as follows:

Theorem 2.6.6. For a stably compact space < ,

S > and NOC are arithmetic lattices.

S �ox'F�0�*,FD2L
=>3�zF�0
� FD2ATWV �)� Ht
QNOC3��F�0APuHtPuFD2ew
S �ox'H~07*,HO2L
QNOC���H~0=� H(2ATWV �G� FK
=>A�:H(2LPuFKP�H~0�w
Now we consider the relationship between stably compact spaces and their co-compact

topologies. This results is crucial for the next subsection.

Lemma 2.6.7. For a stably compact space ;�<Q*?>3@ ,
S >�� is the collection of complements of compact saturated subsets of ;�<=*?>A@ .
S > is the collection of complements of compact saturated subsets of ;�<=*�>���@ .
S ;�<Q*?>���@ is stably compact and its co-compact topology is ;�<=*�>3@ .
S The specialisation order of ;�<=*�>=��@ is the inverse of the specialisation order of ;�<=*�>3@ .

The specialisation order of < is closed in ;�<Q*�¾�@3!®;�<=*�>=��@ .
2.6.1 Compact Ordered Spaces

There is a one-to-one correspondence between stably compact spaces and compact ordered

spaces [79]. The correspondence sends a compact ordered space ;9<=*?>L*e¢�@ to the space <
equipped with the upwards topology ;�<Q*?> � @ where

> � � � �ð
=> IaÒ¾�®�I� � *
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and it sends a stably compact space ;)ü�*mÝz@ to ;Gü�*,Ý 
 *©¢TÞ�@ where Ý 
 is the patch topology on

ü generated by the following subbasis:

ÝMß � üuYÔH I�H is compact saturated subset of ü � *
and ¢MÞ is the specialisation order of the topology Ý .

Definition 2.6.8. A map 
 from a stably compact space ü to a stably compact space ü n is

perfect if it is continuous and the compact saturated subsets of ü n are preserved under the

pre-image 
 5 0 .
On the morphism level, there is a one-to-one correspondence between continuous order-

preserving maps between compact ordered spaces and perfect maps, between stably com-

pact spaces. This correspondence is detailed as follows.

Lemma 2.6.9. A map 
 from a stably compact space ü to a stably compact space ü n is

perfect if and only if

1. the map 
 is continuous with respect to patch topologies on ü and ü n , and

2. the map 
 is order-preserving with respect to specialisation orders of ü and ü n .
Interestingly, stably compact spaces are closed under arbitrary products and the product

topology can be obtained as the upwards topology of the product of corresponding compact

ordered spaces.

2.6.2 Continuous Relations

In [53], topologically closed relations between stably compact spaces were studied as mor-

phisms for the category of stably compact spaces. They were seen as an extension to

continuous maps and were shown to be in one-to-one correspondence with pre-frame maps
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(maps that preserve finite meets and directed joins) [8] on the localic side of Stone duality.

We call them continuous relations1.

The motivation for studying these relations is that experiments show that in order to

generalise Abramsky’s logical form for bifinite domains [2] to continuous domains one

needs to consider a purer logic than Abramsky’s. This turns out to be translated into con-

sidering continuous relations between stably compact spaces rather than continuous maps.

This need for relations appeared already in denotational semantics like in [12, 16].

continuous relations between stably compact spaces can be treated as functions as fol-

lows.

Proposition 2.6.10. Let
�

be a continuous relation from a stably compact space < to

another one ü . Then


pÅ=�[<t$:& N(ý���8�2 $:& � �1
=ü Ia8 � � � *
is a continuous map where NWý is equipped with the Scott-topology. If 
 �¨< $:& N1ý is a

continuous map then � ¶D� � ;98|*?� @3
Q<t!=ü I��W
{
��98:� �
is a continuous relation from < to ü . Moreover, the maps 
à2 $z& � ¶ and

� 2 $:& 
_Å are

inverse to each other.

However, the continuous relations that correspond to functions can be characterised as

follows.

Proposition 2.6.11. Let
�

be a continuous relation from a stably compact space < to

another one ü such that for every 8=
�< , 
YÅ��98:� has a least element denoted by á¨�98:� . Then

á6�[<t$z& üO��8�2 $:&Wá � 8:�7*
1The notion of continuous relation is the same as that of closed relation in [53].



62

is a continuous map. If 
R�[< $'& ü is a continuous map then

� ;�8|*?�¨@�
�< !Qü Ii
�� 8:�A¢u� �
is a continuous relation from < to ü where the order on ü is the specialisation one. More-

over, the two maps presented above are inverses to each other.

Lemma 2.6.12. Let < and ü be stably compact spaces and ü�� the co-compact topology of

ü . If
� Pc< !Qüâ� is a continuous relation then the map


pÅ��[< $:& N(ý���8�2 $'& � �1
Rü Ia8 � � �
is continuous with respect to the Scott-topology on N1ý .

The details of the relationship between continuous relations between stably compact

spaces, and pre-frame maps between arithmetic lattices in which ^T� ^ are as follows.

Lemma 2.6.13. Let
� P+< !Qü be a continuous relation between stably compact spaces

;�<Q*?>�C¬@ and ;Gü�*?>�ýz@ . Then

E0ÅR�Õ>�ý=$:& >�C3�?F¡2 $z& � 8=
�< I¨�ox:�1
Rü6�³8 � ����V �W
RF � *
is a pre-frame morphism.

Lemma 2.6.14. Let 
R�Õ�30�$:& ��2 be a pre-frame map between arithmetic lattices �Ô0 and

�¬2 where ^ ^ ·=� ^ ^ · and ^ ^ ¸�� ^ ^ ¸ . Then � � �)
��AP�� � �G�¬27�3!ã� � �G�A0�� where for completely

prime filters
Ø 03
B� � ���30�� and

Ø 2L
�� � �G�¬27� ,
Ø 2�� � �G
�� Ø 0Uq?r sTWV 
 5 0 � Ø 2��3P Ø 07*

is a continuous relation.

Therefore we have the following equivalence of categories:

Theorem 2.6.15. The category SCSc, of stably compact spaces and continuous relations

between them, is dually equivalent to the category ALatp, of arithmetic lattices, in which

top elements approximate themselves and pre-frame maps between them.
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2.6.3 Probabilistic Power Domain

Suppose that
�

is a program that is modelled by a continuous map 
®� � 0k$:& � 2 from a

continuous domain
� 0 to another one

� 2 and that makes some decisions randomly. Then a

function (called a (probability) valuation) from the Scott-topology on
� 2 to ]êb¨*¬äEf is defined

and used in modelling the behaviour of the program. The idea is that every Scott-open set

F of
� 2 is assigned a weight by the valuation function, which is supposed to measure

the probability that the output of the program will belong to the open set F . This idea

originated in [94, 61].

The notion of (probability) valuation, appearing in mathematics in [83, 37, 13] and

introduced to computer science in [104, 42], is defined as follows.

Definition 2.6.16. Let ;�<Q*?>A@ be a topological space. A function å ��>\$:& ] b�*¬äEf is a

valuation if

1. å¬��4��¬�+b ,

2. �ox'F�0�*,FD2L
=>3�zF�03PuFD2���V å��GF�0ª�A¢bå��GFD2�� , and

3. �ox'F�0�*,FD2L
=>3�så��GF�0ª�¨æàå���FD2,���!å���F�0�+QFD2��¨æàå¬�GF�0�Ö�FD2���w
å is a probability valuation if additionally å��9<��v�M^ . A valuation å is continuous if for

every directed family
� FDñ¬IiF�ñ|
Q> and ò�
B� �

,

å���ßñ��m� F�ñ ���5»Ò�(� ñ��m� å���F�ñ9�7w
For many classes of topological spaces, continuous valuations can be extended to Borel

measures, as in [66, 6, 5], which are defined as follows.

Definition 2.6.17. Let ;�<Q*?>A@ be a Hausdorff space and B(� <{� be the � -algebra generated

by elements of > . A function ���ÕBO� <{�3$z& ]_$Tä÷*¬äEf is a measure (or Borel measure) if

1. �{��4����+b ,
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2. �ox:��*,×}
RBO�9<����³�óÖQ× �!46��V �{���D�zæó�{�G×6���u�{���;+Q×	� , and

3. for every increasing sequence
� �T�1Ih²�
#ç � PuBO�9<�� ,

�{�pß�_��� �³�[���5»Ò�(� �p�m� �{���{���7w

A measure � is a Radon measure if

1. it is inner regular; i.e for every �m
=B(� <{�
�{���D���I»Ò�}� � �{��H���IiH is a compact subset of � � *,�Õ²'Ð

2. for every compact subset of < , �{�GH��3¢!ä .

In [57, 49, 7], the focus is on studying valuations and measures on stably compact

spaces; integration is used to study the effect of these valuations and measures, that are

defined on stably compact spaces, on continuous maps.

In [7], the Riesz representation theorem was used to provide a direct proof for the fact

(proved in [66]) that a valuation on a stably compact space < can be uniquely extended to

a Radon measure on the � -algebra generated by the open sets of the compact ordered space

corresponding to < .

The Riesz representation theorem states that for every compact Hausdorff space < and

for every positive linear functional µ on the space
� �9<�� of all continuous maps from < to

the real line, there is a unique Radon measure � such that

�ox�
=
 � � <{����µ��G
��¬�éè²ê¿ �{� � 8Q
=< I�
��98:�Dë²á � ��Ð$áÕw
The other interesting fact that is proved in [7] is that a natural topology can be defined

on the set of continuous valuations on a stably compact space to get another stably compact

space. This can be achieved as follows.
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Theorem 2.6.18. Let ;�<=*?>A@ be a stably compact space and let BÕº�07�9<{� be the set of all

continuous valuations å , on < , in which å��9<{�L¢�^ . Let ì be the the weakest topology on

B¦º�0¹�9<�� such that for every bounded continuous (with respect to > the topology generated

by open upper sets of ]êb¨*¬äEf ) >W�[<t$:& ] b�*¬äEf , the mapping

å�$:& è ê¿ �{� � 8=
Q< I(>'�98:�¤ë�á � ��Ð$áh*
is continuous. Then ;GB3º�0��9<{��*¬ì @ is a stably compact space.

The above theorem is still true if we replace B3º�0¹�9<�� with the set B60¹� <{� of all contin-

uous valuations å , on < , in which å¬�9<{�¬�U^ .

2.7 Jung-Sünderhauf Representation Theorem

In this section, we review Jung-Sünderhauf representation theorem [54] which associates

bounded distributive lattices with certain binary relations (proximity relations) to provide

finitary representations for stably compact spaces. The resulting structure is defined as

follows:

Definition 2.7.1. A binary relation l on a bounded distributive lattice ;)�����3*��3*,b�*e^h@ is

called a proximity if, for every ��*�8|*?�1
=� and � P3����� ,

��l�lD� l��Ol��Ul�*
�G��$Ul�� � lu�6TWV � � lu��*
��l�$D��� �Wl�� TWV �Wl � ��*
��l�$D��� �Wlc8	������V �)��8 n *�� n 
=���|8 n lc8|*�� n lu� and �(lc8 n ��� n *
�G��$Ul�� 8��~�1lu�	��V �)��8 n *�� n 
=���|8=lc8 n *��1l � n and 8 n ��� n lu��w

� l\� and �#l¡� , respectively, stand for �ox:� 
��-��� l\� and �ox:� 
��-�A�#l}� .

A strong proximity lattice is a bounded distributive lattice ;)�����3*��3*,b�*e^h@ together with a

proximity relation l on � .
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The concept of strong proximity lattice has precursors in the literature in [109, 29, 108].

Semantically, for a stably compact space ;)ü�*?>3@ , we explained in Chapter 1 that its

lattice of properties

� ;)FO*,H�@JI�FK
=>L*,H is a compact saturated subset of ü and FKPuH � *
has special importance. The concept of strong proximity lattice is meant to capture these

lattices in a purely mathematical form.

The continuous maps between stably compact spaces were given finite descriptions via

approximable relations which are defined as follows.

Definition 2.7.2. Let ;)�307���3*��3*,b¨*©^[�elk0ª@ and ;G��2a���3*��3*,b�*e^[�elL2�@ be strong proximity lat-

tices and let « be a binary relation from ��0 to �¬2 . The relation « is called approximable if

for every �W
R�A07*,­�
R�¬2 , �®0APA���k�A0 and �¯2LPA���k��2 ,
�)«{$UlL27� «Q��lJ2¬��«�*
�ªlk0�$�«|� lk0���«"��«�*

�)�3$+«|� �®0¬«Q­�T(V � �®0�«�­a*
�)«{$D��� �6«Q�¯23T(V �	«�� �¯2©*
�)«{$D��� �6« � �¯23��V �)�	°±PA���k�30ª���Wlk0 � ° and �yx:²�
�°=�

�)���%
��¯27�³²�«��Rw
The relation « is called weakly approximable if it satisfies all of the above conditions but

not necessarily �)«�$D��� .
The semantics interpretation of the elements (pairs ;)F(*?H�@ ) of property-lattices is that

each pair represents a property satisfied by members of F , unsatisfied by elements in the

complement of H and undecidable for elements in H YLF . Given a continuous map (com-

putable program) 
E�:ü|0D$'& ü�2 between stably compact spaces, a property ;)F(*,H�@ of ü�0
implies a property ;)F n *,H n @ of ü�2 if and only if the output under 
 , of any input that satisfies



67

or is undecided for the property ;)FO*,H�@ , satisfies the property ;)F n *?H n @ or equivalently if

and only if 
���H��JP-F n . The approximable relations are meant to be a mathematically ab-

stracted form of binary relations between property-lattices where two properties are related

in these relations if and only if the first property implies the second one.

The basic output of [54] is the equivalence between the category PLa of strong proxim-

ity lattices and approximable relations, and the category SCS of stably compact spaces and

continuous maps between them. This equivalence is proved by making use of the already

established duality, reviewed in Section 2.4 and in [28], between the latter category and

the category of arithmetic lattices in which the top element approximates itself and frame

homomorphisms between them.

2.7.1 From Strong Proximity Lattices to Stably Compact Spaces

Definition 2.7.3. Let ;)��*��3*��3*,b�*e^[*el�@ be a strong proximity lattice and � be a non-empty

subset of � . The set � is a round ideal if it is closed under binary suprema and lower with

respect to the proximity relation i.e.

�oxz8=
R����8Q
#�	T(V �)�¨�W
#���|8=l �zw
Round filters of � are defined dually. The set of all (prime) round ideals of � is denoted by

( ú 	�� 	 
 ����� ) ú 	�� 	 �G��� . Dually ( ú �
	�� 
 ����� ) ú �
	�� �G��� denotes the set of all (prime) round filters of

� .

The following theorem presents some interesting result about round ideals of strong

proximity lattices.

Theorem 2.7.4. For a strong proximity lattice ;)��*��3*��3*,b�*e^[*el�@ , the ordered set ;�ú 	�� 	 �G���7*©PD@
is an arithmetic lattice in which

S �í� � ,
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S the meet of a subset
� �©ñÔIpA�
�� �

is
� 8#
#�mI:�)�¨�=
 ± C �]C¹��8¯l�� �

and finite meets

are the intersections,

S the join of a subset
� �¹ñOI�Að
<� �

is
� 8÷
U�%IA�)��� PJ¶?ñ�� ÿ C �]C7��8÷lî� � �

and

directed joins are the unions, and

S �`� �QTWV �)��8Q
R�����WP � �1
=�+Ih�1lc8 � P5� .

The following corollary follows from the duality between arithmetic lattices in which

^³� ^ and stably compact space.

Corollary 2.7.5. For a strong proximity lattice ;G�Ô*,��*,��*?b¨*e^[*el�@ , the point topology on� � �ªú 	�� 	 �G����� is a stably compact space whose set of open sets is isomorphic to ú 	�� 	 ����� .
The corollary explains how we get stably compact spaces from strong proximity lat-

tices. However, this way of obtaining stably compact spaces can be be smoothed as fol-

lows.

We start off with a strong proximity lattice ;G�Ô*,��*,��*?b¨*e^[*el�@ and then equip the space

ú �
	���
 �G��� (known as spectrum of � and also denoted by »Q��û,ø[�Qï�� ) with the topology (known

as canonical topology) generated by the sets of the following form:

�
�L� � Ø 
�»Q��û,ø[�Qï��JI��W
 Ø � *��W
=�Ôw
Then this topological space is homeomorphic to � � ��ú 	�� 	 ������� equipped with the point topol-

ogy. This is proved in [54, Theorem 21]. This justification makes it clear that the lattice

ú 	�� 	 �G��� is isomorphic to the lattice of open subsets of the canonical topology on »Q��û,ø[�oï³� .
Next we present some interesting correspondence between round filters of strong prox-

imity lattices and ordered sets of compact saturated subsets of stably compact spaces or-

dered by superset inclusion.

Lemma 2.7.6. For a strong proximity lattice ;)�����3*��3*,b¨*©^[*el�@ , the ordered set of of Scott-

open filters of
	�� 	 �G��� (denoted by ¯ �
	�� �oï³� ) is isomorphic to lattice ú �
	�� �G��� via the following
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mappings:

µQ�ð¯ �
	�� �oï³�3$:& ú �
	�� �G�����µ°ñ2 $z& � 8Q
R�+I � �1
R��Ih�1lc8 � 
F° � *
and

Û ��ú �
	�� �G���3$'& ¯ �
	�� �Qï��¹� Ø 2 $'& � �W
 ú 	�� 	 �����DIp�DÖ Ø Á�k4 � w
The following corollary follows from the one-to-one correspondence between the lat-

tice of compact saturated subsets of � � �ªú 	�� 	 �G����� , on the stably compact spaces side, and the

the lattice of Scott-open filters of ú 	�� 	 �G��� , on the arithmetic lattices side. This correspon-

dence is an entry in Table 2.2 of Section 2.4. This particular one-to-one correspondence

follows from Hofmann-Mislove Theorem [4, 59, 36] which states that, in a sober space

< , the set of Scott-open filters of the open-sets lattice E��9<{� is isomorphic to the set of

compact saturated subset of < .

Corollary 2.7.7. For a strong proximity lattice ;G�Ô�,��*,��*?b¨*e^[*el�@ , the ordered set of compact

saturated subsets ;�N �¬ò r�óZô õXô�r ^ t�t *,V�@ is isomorphic to the ordered set ;ªú �
	�� ������*eP�@ .

2.7.2 From Stably Compact Spaces to Strong Proximity Lattices

Definition 2.7.8. For a stably compact space ;)ü�*?>3@ , let N1ý denote the set of compact

saturated subsets of ü .

Theorem 2.7.9. For a stably compact space ;)ü�*?>A@ , the algebra ;GB�ý����3*��3*,b¨*e^[�©lD@ , where

1. BkýR� � ;)F(*,H�@A
Q>À!=N(ýóI�FKPuH �
.

2. ;GF(*,H�@³�¯;)F n *,H n @��K;)Fb+�F n *,HJ+�H n @ .
3. ;GF(*,H�@³�¯;)F n *,H n @��K;)F Ö�F n *,HZÖ�H n @ .
4. bv�K;�4 *µ4�@ and ^J�K;)ü�*,ü6@ .
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5. ;GF(*,H�@Alm;)F n *,H n @ q?r sT(V H PuF n w
is a strong proximity lattice. Moreover, the topological space ;)ü�*?>3@ is homeomorphic to

the canonical topology on the space »Q��û,ø[��B�� . Therefore the spectra of strong proximity

lattices are exactly the stably compact space.

2.7.3 Morphisms

Lemma 2.7.10. S Given an approximable relation
� P��L03!=�¬2 ,


_ÅR��ú 	�� 	 �G�¬2��3$:& ú 	�� 	 �G�A0����X�32 $:& � 8=
R�A0DI��G�¨�1
R�¬27�|8 � � � *
is a frame homomorphism.

S For a frame homomorphism 
¯�'ú 	�� 	 �G��27�J$:& ú 	�� 	 ���A0�� , where �30 and ��2 are strong

proximity lattice, the binary relation
� ¶�Pu�A0�!Q��2 defined as :

� � ¶h­ q?r sT(V �W
R
�� � 8Q
R�+Ia8=l�­ � �7*
is an approximable relation.

Moreover, the maps 
�2 $:& � ¶ and
� 2 $:& 
_Å are inverses of each other.

Bearing in mind the one-to-one correspondence between frame homomorphisms and

continuous maps between stably compact spaces, the one-to-one correspondence between

the latter and approximable relations follows from the lemma above.

2.8 Multi Lingual Sequent Calculus

In this section, we review the category MLS (Multi Lingual Sequent) [50, 51, 52, 77]

which was presented to provide logical descriptions for stably compact spaces in a way

that generalises Abramsky’s domain theory logical form for bifinite domains.

The elements of this category are defined as follows.
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Definition 2.8.1. 1. Let ;G�����3*��3*¬ö	*¬��@ and ;)×W���3*��3*¬ö	*¬�v@ be two algebras of type

;o¢�*¬¢�*,b¨*?bÕ@ . A binary relation « from finite subsets of � to these of × is a consequence

relation if for every µ�*�Ûc
=��*X÷�*X÷ n PJ¶?ñ��v��*�µ n *�Û n 
R× and ø"*µø n PJ¶?ñ���× ,

�G���v�¯�ox�ùmPJ¶,ñ���×6� � � � «#ù6w
�G��öv�ã÷=«Bø�TWV ö	*µ÷R«�ø .

�G������µ|*?ÛL*µ÷=«BøKTWV µ	��ÛJ*X÷=«�ø"w
�G������µ|*µ÷R«ãø and ÛJ*X÷=«Bø�T(V µ	��ÛJ*µ÷Q«Bø"w
� � �v�ã÷=«Bø�TWV ÷R«ãø~*µ� .

� � öv�¯�ox�ùmPJ¶,ñ����D��ù+« � ö � w
� � ���ã÷=«Bø"*�µ n and ÷R«�ø~*�Û n TWV ÷=«Bø"*�µ	�~ÛJw
� � ���ã÷=«Bø"*�µ n *?Û n T(V ÷Q«Bø"*�µ n ��Û n w
(W) ÷R«Bø���V ÷ n *µ÷R«ãø"*µø n w

2. A consequence relation ú on an algebra ;G�����3*��3*¬�	*¬ö�@ is closed under ��û�� � � if

�Òû�� � � ÷Fú²ø"*�µ and µ|*¬ùéú�üó��V ø"*¬ù5ú²ø"*XüJw
3. A consequence relation ú on an algebra ;G�����3*��3*¬�	*¬ö�@ has interpolants if

�Qï1$àýÒ� � � µ|*µ÷#ú²ø��'V �G��µ�nz
R�k��µ�ú µ�n and µ�no*µ÷Fú�ø"w
�Qþð$àýÒ� � � ÷Fú²ø"*�µ"�'V �G��µ n 
R�k�¸÷#ú²ø"*�µ n and µ n ú µ|w

4. A coherent sequent calculus is an algebra ;G�����3*��3*¬ö�*µ��@ together with a conse-

quence relation ú on � such that ú is closed under �Òû�� � � and has interpolants.

5. A consequent relation « from a coherent sequent calculus ;G�����3*��3*¬ö�*µ��*¬úM/�@ to a

coherent sequent calculus ;)×(���3*��3*¬ö�*µ��*¬ú³¼�@ is compatible if

ú0/���«=�+«=�÷«Q�Êú"¼¬*
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where the composition above is defined as follows,÷R«ãø10ÿÿÿ÷R«�ø`�
ù�0�«'n üÿÿÿùMwó« n ü ��û�� � $¡û�ùp�M�'�÷��)«=�v« n ��ü

where �ox�
�
 � ñ ø6ñ9�¹�yxâ>"
 � C ù0C7��
�Öã>=Á�k4 .

Coherent sequent calculi and compatible consequence relations are, respectively, the

objects and morphisms of the category MLS. The composition in MLS is �Òû�� � $¡û�ùp�M�'� .
Compatible consequence relations can be characterised as follows.

Lemma 2.8.2. Let « be a consequence relation from a coherent sequent calculus � to

another one × . Then « is compatible if and only if

�Qï"$íýÒ� � n � µ|*µ÷=«ãø���V �G��µ�nz
=�D��µ�ú0/�µ�n and µ�ny*X÷R«�ø"�
�oþc$íýÒ� � n � ÷Q«Bø"*�µ"��V �G��µ n 
R×	�¸÷R«�ø"*�µ n and µ n ú{¼Qµ��
�Qï1$¡û�� � � ÷Bú"/�µ and µ|*¬ù÷«�üó�'V ÷¬*¬ù÷«�ü��,�Õ²'Ð
�Qþð$¡û�� � � ÷Q«Bø"*�µ and µ�ú{¼Büó��V ÷=«Bø"*XüJw

The composition rules ��û�� � � and �Òû�� � $Iû�ùp�M�'� are related as follows.

Lemma 2.8.3. Let ;G�����3*��3*¬ö	*¬��*µúJ@ be a coherent sequent calculus such that ú has in-

terpolants. Then

ú �Êú �kú TWV the relation ú is closed under �Òû�� � �7w
Definition 2.8.4. Let � and × be coherent sequent calculi, « a compatible consequence

relation from � to × , < P � and ü�Pu× . Then

1. <®]Ü«'fz� � µQ
=× I��G�ð÷ P�¶?ñ���<{�z÷R«=µ �
.

2. ] «'fyüm� � µR
Q�}I��G�ðøZP�¶?ñ���ü���µ"«Bø �
.
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Definition 2.8.5. Let � be a coherent sequent calculus, ú a compatible consequence rela-

tion on � and �1P � . The set � is a round ideal of � if �	�K] ú3fi� . Round filters are defined

dually. The set of all round ideals (filters) of � is denoted by ú 	�� 	 ���D� ( ú �
	�� �9�k� ). The set of

all prime round ideals (filters) of � is denoted by ú 	�� 	 
 �9�k� ( ú �
	���
 ���k� ).
Remark 2.8.6. Let ;G�����3*��3*¬ö	*¬��*µúJ@ be a coherent sequent calculus. For every < P\� ,

<ó] «'f is a round filter and ] «'f�< is a round ideal.

Logically, round filters represent theories. The consistency of a theory in logic means

that it is a proper subset of the whole language. Therefore a theory is consistent if and only

if its representing round filter is contained in a prime round filter (model).

Suppose � and × are coherent sequent calculi and « is a compatible consequence

relation from � to × . Suppose < is a set of formulas that are satisfied in � and ü is

a set of formulas that are not satisfied in × . If « respects the latter information about

satisfaction and dissatisfaction of formulas i.e it does not link any finite subset of < to any

finite subset of ü then the pair < and ü is consistent with respect to « (or «¬$ consistent).

Formally the definition is as follows.

Definition 2.8.7. Let ;G�����3*��3*¬ö	*¬�	*¬ú"/�@ and ;G×W���3*��3*¬ö	*¬��*µú{¼�@ be coherent sequent cal-

culi and « a compatible consequent relation from � to × . Let < PU� and ü Pm× . Then

the pair ;�<Q*,ü	@ is «�$ consistent if for every ÷ PD¶?ñ��k< and øZP�¶?ñ��vü , ;�÷¬*µøO@kÁ
�« .

The following lemma links consistency to round ideals and filters.

Lemma 2.8.8. Let ;G�����3*��3*¬ö�*µ��*¬ú"/'@ and ;)×W�,��*,��*µö�*¬�	*¬ú{¼�@ be coherent sequent cal-

culi and « a compatible consequent relation from � to × . Let < PU� and ü Pm× . Then

the following statements are equivalent:

1. ;9<=*,ü�@ is «¬$ consistent.

2. ;9<=*h]Öú{¼'foü	@ is «�$ consistent.
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3. ;9<ó] ú0/�f)*,ü6@ is «�$ consistent.

4. ;9<ó]Ü«'fG*,ü�@ is ú{¼¬$ consistent.

5. ;9<=*h] «'fyü�@ is ú"/�$ consistent.

6. <®]Ü«'f�Ö¯] ú"¼³foüm�é4 .

7. <®] ú0/zf�Ö ]Ü«'foü �!4 .

8. �G�¦�1
#ú 	�� 	 
 �G×6���A]Öú"¼³foü�Pb� and ;�<Q*X��@ is «�$ consistent.

9. �G�¦�1
 �
	���
 ���D���|<®] ú0/zf�P Ø
and ; Ø *,ü6@ is «�$ consistent.

2.8.1 MLS and Strong Proximity Lattices

Strong proximity lattices were the basis for establishing the category MLS. Therefore this

category and the category PLwa of strong proximity lattices and weakly approximable

relations between them are equivalent. The equivalent sends a strong proximity lattice

;)�����3*��3*,b¨*©^[*el�@ to the coherent sequent calculus ;G�Ô�,��*,��*?b¨*e^[*�«�Ù�@ where

÷Q«�Ù7ø q?r sT(V � ÷¯l � ø"*
and a weakly approximable relation relation � from a strong proximity lattice � to a strong

proximity lattice H is sent to the compatible consequence relation «�� defined as:

÷Q«��ãø q?r sT(V � ÷~� � ø"w
The equivalence mentioned above sends a coherent sequent calculus ;G�����3*��3*¬ö	*¬��*µúJ@

to ��Ä�� where � is the least congruence such that ��Ä�� is a bounded distributive lattice.

The lattice ��Ä�� is equipped with the following proximity relation:

]
	af³l��=]�
�f q?r sTWV 	Pú�
�w
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It also sends a compatible consequence relation « to the weakly approximable relation ���
defined by:

]
	hf¨����] 
zf q?r sT(V 	k«�
�w
The relation � has the following interesting property: if 
:0���
 n0 *ewewew¹*�
?����
?� and

	h0���	 n 0 *©wewew©*�	Òw���	¬w then


�0�*ew©wew©*�
?� ú�	h0'wewew�	¬wóTWV�
 n0 *ewew©w©*�
 n� ú�	 n0 w©wew�	 nw w

2.8.2 MLS and Stably Compact Spaces

The stably compact spaces and continuous relations2 of the form
� P <t!Rüâ� , where

< and ü are stably compact spaces and ü|� is the space ü topologised with the topology

generated by the complements of compact saturated subsets of ü , is a category whose

composition is the usual relation compositions. This category is equivalent to the category

MLS. This equivalence is detailed as follows. If � is a coherent sequent calculus then the

set »Q��û,ø[��ÆL� of all prime round filters on � topologised with the topology generated by the

sets of the form �
�L� � Ø 
�»Q��û,ø[��ÆJ�JI�µ=
 Ø � *�µQ
R��*
is a stably compact space.

Suppose « is a compatible consequence relation from � to × . Then the relation� �6Pé»Q��û,ø[��ÆL�3!�»Q��û,ø[�QÍ���� defined as

Ø·� � Ø n q�r9sTWV Ø ] «'f³P Ø n
is continuous.

If < is a stably compact space then the algebra ;��DC����3*��3*¬�	*¬ö	�¬úL@ , where

1. �LCE� � ;)F(*?H�@A
=>�Có!QN�C�I�FKPuH �
;

2The notion of continuous relation is the same as that of closed relation in [53].
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2. ;GF(*,H�@³�¯;)F n *,H n @��K;)Fb+�F n *,HJ+�H n @ ;
3. ;GF(*,H�@³�¯;)F n *,H n @��K;)F Ö�F n *,HZÖ�H n @ ;
4. ��� ;�4 *µ4�@ and ö��K;9<=*�<{@ ;
5. ÷Bú�C;ø q?r sT(V ± � H I¨�)� F��©��F(*¬¶ ��
F÷ � P+ÿ � F\I �G� H��©��F(*¬¶ �A
#ø �

,

is a coherent sequent calculus.

Let � and × be two coherent sequent calculi and
� P�»Q��û,ø[��ÆL�3! »Q��û,ø[�QÍ���� be a con-

tinuous relation. Then ú{/=�O«¨ÅQ�Õú"¼ , where «zÅ is the consequence relation from � to ×
defined as

÷R«¨Å�ø q?r sT(V ���yx Ø 
�»Q��û,ø[��ÆJ���6� ÷¯
 Ø ��V � øZ
 ô � �K
 »Q��û,øÕ�oÍ��LI �·þ"! � �7*
is a compatible consequence relation from � to × .



Chapter 3

Strong Proximity Lattices in Priestley

Form

3.1 Overview

This chapter extends the celebrated Priestley’s representation theorem for bounded dis-

tributive lattices to represent the wider class of strong proximity lattices introduced in

Section 2.7. We begin by studying the problem in the finite case, extending Birkhoff’s

representation theorem for finite distributive lattices to represent finite strong proximity

lattices.

3.1.1 The Finite Case

Recall from section 2.2.1 that Birkhoff’s representation theorem associates with a finite

distributive lattice � the set Rz����� of join-irreducible elements, ordered by the reverse ¢PS of

the inherited lattice order ¢ . If the finite lattice is also equipped with a proximity (Defini-

tion 2.7.1), then our proposal is to equip Rz�G��� with an apartness relation defined as follows:

77
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Definition 3.1.1. A binary relation Î on an ordered set ; � *e¢D@ is an apartness if, for every

��*,Ïh*,Ð�*,Ñv
 �
,

�9Ò�ÎDÓ�� � Â ÏÔÎ-Ð Â Ñ���V �6Î-Ñ[*
�)Î�x�� �	Î-ÏÔTWV �yx'­J
Q<{���6Î-­ or ­ÔÎ-Ïh*

�)ÎDÓÕÓ�� �	Î��9Ó�Ï�Ö~Ó�Ð��¬��V �ox'­�
=<{�|�	Î-­a*¬­�Î�Ï or ­ÔÎ-Ð�*
�9ÒÕÒ�Î�� �9Ò�Ï¬Ö"Ò�Ð��¬ÎU����V �ox'­�
=<{�|Ð	Î-­a*¬Ï�Î�­ or ­3Î-��w

where �+Î-× is a shorthand for �	Î-­ for all �W
=� , ­�
R× .

Remark 3.1.2. 1. For any ordered set ; � *©¢D@ , Á¢ is an apartness.

2. Î is an apartness on ; � �e¢D@ if and only if Î 5 0 is an apartness on ; � � Â @ .
In Section 3.2, we will show that finite ordered sets with apartness represent finite prox-

imity lattices. The translations between the two structures are as follows. The apartness onRz�G��� is defined by

8�Î�Ù1� q?r sTWVX8=l²>'���¨�7*
where >'���¨� is the meet-irreducible element corresponding to � (see Lemma 2.2.2 for detail

of this correspondence). Vice versa, the dual of a finite ordered set ; � *e¢�@ equipped with

an apartness Î is its lattice of upper sets ordered by inclusion P and equipped with the

proximity,

��l�Ú�× q?r sTWV �+Î�� <{Yi×	��w
We will further show that the action of Birkhoff duality on morphisms can also be

adapted to the current setting as follows.

Order-preserving maps between finite ordered sets which reflect the apart-

ness relation are in one-to-one correspondence with lattice homomorphisms

between finite strong proximity lattices that preserve the proximity relation.



79

3.1.2 The General Case

In the general case we need to link the apartness relation with the topology of the Priestley

space:

Definition 3.1.3. A binary relation Î on a Priestley space ;�<À�e¢v*?>A@ is an apartness if

1. Î is open in ;�<À�?>A@¬!®;�<À�?>A@ .
2. Î is an apartness on the ordered set ;�<=*e¢�@ .

Remark 3.1.4. 1. For any Priestley space ;�<#�e¢�*�>3@ , Á¢ is an apartness (because the or-

der is required to be closed for ordered spaces).

2. Î is an apartness on ;�<À�e¢v*?>A@ if and only if Î 5 0 is an apartness on ;�<À� Â *?>A@ .
3. Intuitively, it is helpful to assume that an element can not be apart from itself but

actually we mathematically do not need this assumption.

4. In case we axiomatise indistinguishability rather than apartness, that is < 2 YvÎ rather

than Î , then �GÎ�x�� will express the transitivity of this relation. Axiom � Ò�Î�Ó�� , how-

ever, will not have a simple formulation. This is discussed in greater detail in Sec-

tion 3.4.

5. On the real line, axioms �)ÎkÓÕÓ�� and �9ÒÕÒ�Îv� are the same as �)ÎJx�� .
We will prove that:

The dual of a strong proximity lattice � is the corresponding Priestley space of

prime filters ordered by inclusion and equipped with the apartness,

Ø Î�Ù"� q?r sT(V �G��8=
 Ø �©�G���¯Ä
R���|8Ql �:w
Vice versa, the dual of a Priestley space ;�<#�e¢�*�>3@ equipped with apartness Î
is the lattice of clopen upper sets equipped with the proximity,

��l�Ú�× q?r sTWV �+Î�� <{Yi×	��w
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Up to isomorphism, the correspondence is one-to-one.

Also, the action of Priestley duality on morphisms can be adapted to the new setting as

follows.

Continuous order-preserving maps that reflect the apartness relation are in

one-to-one correspondence with lattice homomorphisms that preserve the prox-

imity relation.

Mathematically, Priestley maps are a good choice for establishing the duality, but com-

putationally this is not necessarily true. Priestley maps are, in a way, not general enough;

their manifestation on semantic domains are (order-preserving) Lawson continuous func-

tions [41]. This does not cover the computable maps which typically are only Scott-

continuous. This fact creates a situation similar to one that happens very often in domain

theory where more than one kind of mapping is defined on a fixed class of spaces, for

example, embedding-projection pairs, Scott-continuous function, strict Scott-continuous

function, stable function, etc.

In order to capture more computable functions, two more general notions of morphism

were introduced by Jung and Sünderhauf in [54, 52] on the side of strong proximity lat-

tices; approximable relations and weakly approximable relations (Definition 2.7.2). This

technique dates back to Scott’s morphisms for information systems [104]. In this chapter,

we study the transformation of these morphisms under our duality.

First note that we can not expect to obtain functions on the side of Priestley spaces with

apartness. This is so because the Priestley dual contains more points than the spectrum

defined in [54] and there is no guarantee that the process acts functionally on the additional

elements. In keeping with the spirit of approximable relations, we alternatively consider

relations, rather than functions. These relations between Priestley spaces are meant to relate

those pairs of elements (models or theories of properties) that are “observably unrelated”

by the computational process. We will discuss the computational intuition in Section 3.1.3.
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Here is the definition:

Definition 3.1.5. Let ;�<~0��e¢k07�?>�0�@ and ;�<O2e�e¢L2a*?>�2�@ be Priestley spaces with apartness re-

lations Î�0 and Îk2 , respectively, and let ï be a binary relation from <�0 to <O2 . The re-

lation ï is called separating (or a separator) if it is open in >30�!ð>�2 and if, for every

��*,­�
Q<"07*,Ð�*,Ñ�
Q<O2 and
� ÐÕñ¬I�^v¢ ò�¢ ² � Pc<O2 ,

�9Ò 0 ï�Ó 2 � � Â 0¬­�ïóÐ Â 2�ÑD�'V �=ïÀÑ[*
�yxAïA� ­6ïÀÐ�TWV �ox'ÏD
Q<"0���­3Î60¬Ï or Ï6ïÀÐ�*
�¹ï�x�� ­6ïÀÐ�TWV �ox'ÏD
Q<O2���­�ïÀÏ or ÏÔÎ�2�Ð�*

�¹ï�²zÓ�� ­6ï ô Ó�Ð[ñ��'V �ox'ÏD
Q<"0���­�Î�0¬Ï or �)��òõ��Ï	ïÀÐÕñ)w
The relation ï is called weakly separating (or a weak separator) if it satisfies all of the

above conditions, but not necessarily �7ï�²zÓ�� .
Some effort will be required to show Priestley spaces equipped with apartness relations

and (weak) separators between them are indeed the objects and morphisms of a category,

(see Section 3.3.3), but once this is established, it can be shown that the desired equivalence

does hold:

Let <"0 and <O2 be Priestley spaces equipped with apartness relations. Then

(weakly) separating relations from <�0 to <O2 are in one-to-one correspondence

with (weakly) approximable relations from the dual of <Q0 to the dual of <(2 .
Remark 3.1.6. From a representation point of view the various dualities can be classified

as follows:

¾:¿ ¾'2
strong proximity lattices Jung & Sünderhauf, [54] this chapter

distributive lattices Stone, [112] Priestley, [89, 90]

Boolean algebras Stone, [110, 111]
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It should be mentioned that there is a rather conventional way to fill in the right upper

position in the table above. For this one equips the collection of round prime filters of �
with the topology generated by all Ã�#��4� � Ø Ia8Q
 Ø �

, and all F$#v�4� � Ø Ii�¨�RÁ
 Ø wê8=l � �
,

8=
=� . This yields the patch topology of a stably compact space which is already obtainable

from the Jung-Sünderhauf dual.

3.1.3 Computational Motivation

Dealing with relations, rather than functions, puts no constraints on the direction of mor-

phisms; so we can turn around the direction and we will get an equivalence of categories

rather than a duality. The relationship between proximity homomorphisms and approx-

imable relations is analogous to that between Dijkstra’s weakest preconditions [85] and

Hoare logic: A homomorphism ´ from ��2 to �A0 specifies the weakest precondition ´|�)µ:�
necessary for µ to hold at the end of the computation. On the other side, an approximable

relation « from �A0 to �¬2 relates propositions µ�*�Û where the observation of µ , before the

computation, guarantees Û to be satisfied afterwards.

Before we embark on the mathematical details of our duality, let us consider a compu-

tational motivation for it.

1. Let ;�<=*?>A@ be a stably compact space (e.g., a compact coherent domain together with

its Scott topology) and NOC be the set of compact saturated subsets of < . Then

BDCE� � ;)FO*,H�@JI�FK
=>L*,H%
=N�C and FKPuH � *
is the lattice of observable properties of < , where a property ;)F(*?H�@ is

(a) satisfied by elements in F ,

(b) unsatisfied by elements in <ZY�H , and

(c) unobservable for elements in H�Y[F .
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Note that F P�H guarantees that no contradiction can arise concerning the satis-

faction of properties in B�C by elements of the space < . From this we can say that

strong proximity lattices are abstract algebraic descriptions for lattices of observable

properties of stably compact spaces.

For a stably compact space < , models (or theorems) of properties are prime filters

of elements of BkC . Hence these models are precisely the points of the Priestley

dual space of BkC as a bounded distributive lattice. Therefore by answering the main

in this chapter (describing the Priestley dual of strong proximity lattices) we are

actually establishing purely topological descriptions (Priestley spaces with apartness)

for models of observable properties of stably compact spaces.

On the morphism level, we have the following computational interpretation. Suppose


ð�z< $'& ü is a continuous map between stably compact spaces < and ü . Then

the approximable relation «|¶ , corresponding to 
 , relates a property ;)FO*,H�@ of <
to a property ;)F n *,H n @ of ü if and only if 
��GH���P�F n . The last condition means

that if the property ;)F(*,H�@ is satisfied or unobservable for the input of the function

(program) 
 then the output 
��98:� must satisfy the property ;GF n *,H n @ . In other words

two properties are related under the relation «�¶ if and only if the satisfaction and non-

observability of the first property, by the input of the program, implies the satisfaction

of the second property by the corresponding output. We say that the property ;GF(*,H�@ ,
of < , implies the property ;)F n *,H n @ , of ü , if the former property is related to the latter

one under «|¶ .

Let ï n ¶ be the complement of the separator ï3¶ corresponding to 
 . Then, as we will

see in detail in the next chapter, a model
Ø 0 is related to a model

Ø 2 in ï n ¶ if and only

if
Ø 2 contains the set of all properties implied by any property in

Ø 0 .
2. As we have explained above, in [52] the argument was made that the proximity l

relates two logical propositions (properties) µ and Û if the observation of µ always
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implies that Û is actually true. Consequently, the logical systems, MLS, (corre-

sponding to strong proximity lattices) do not necessarily satisfy the identity axiom

µ"«=µ . The lack of this basic law of logic may feel weird. Still the paper [52] presents

a satisfactory and even elegant logical apparatus for strong proximity lattices. In this

thesis, the view is that the proximity relation is additional structure, over and above

the lattice operations, and that for the latter the usual axioms of logic are still valid.

Consequently, a model of the logic is given by a prime filter, as it is usually. The

additional structure on the logic then gives rise to additional structure on the space

of all models (the Priestley dual space), which we read as apartness information. The

intuition is that two states of affair (i.e., models) can be observably separated if and

only if they are “sufficiently apart.” To give an example, consider the real numbers

presented in their usual decimal expansion. Mathematically, we deem �(�K^[w4bib[b�wewew
and ­Ô�-b¨w4jij[j�wewew equal; constructively, the concrete presentation of a number is im-

portant, and in our example one would find that � and ­ can not be told apart in finite

time but their equality can also not be established in finite time (if our only access to

the numbers is by successively reading digits). This indeed agrees with what we have

explained in the first part of this subsection as the relation ï n ¶ is the complement of

ï�¶ .

3.2 An Extension of Birkhoff’s Representation Theorem

3.2.1 From Finite Ordered Sets with Apartness to Finite Strong Prox-

imity Lattices

We define the dual for a finite ordered set with apartness as follows:

Definition 3.2.1. Let ; � *e¢�@ be a finite ordered set equipped with apartness Î . Then

Ë�ú?ù�%�� � �¬� ;�L�� � �7�µ+�*,Ö�*X4 * � �©l�Ú:@¹*
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where L6� � � is the collection of upper sets of
�

and lkÚ is the binary relation defined onL�� � � as:

��lJÚQ× q?r sTWV �÷Î�� � YÔ×	�7w
Remark 3.2.2. Î��ZÁ¢���V l�Ú��mP�w
Lemma 3.2.3. Let ; � *©¢D@ be a finite ordered set equipped with apartness Î . Then the

relation l�Ú of Ë�ú?ù�%�� � � satisfies the condition ��l�lD� .
Proof. Suppose � l�Ú �

and /t� � Y �
. Hence �¡Î / . Fix � 
 � . Set FO��� � 8 
� I��WÎ 8 �

. By �9Ò�ÎDÓ���FT� is a lower set with �"Î FT� and �9<�Y[FO�¹��ÎK/ by �)Î�x�� and the

fact that �1ÎK/ . Set ×\� ÿ �µ�m/ � � YiFT�¹� . Therefore × 
 L6� � � , �mÎZ� � Yi×	� and ×\Î / .

Hence �mlJÚ�× and ×\lJÚ �
. Therefore l�Ú{P�lJÚ��OlJÚ .

For the other inclusion, suppose ��lDÚQ×W*|×}l�Ú �
and /\� � Y �

. Then �+Î�� � Y�×	�
and × Î-/ . For any �W
=� and ÐO
�/ :

�ox'­�
 � ��­OÄ
=× or ­J
R× �'V �ox'­D
 � �|�	Î-­ or ­ÔÎ-Ð���V �6Î-Ð�* by �)ÎJx��7w
Therefore ��Î�/ which implies �ml�Ú �

. This proves lDÚ��OlJÚ�P�l�Ú .

Remark 3.2.4. In the proof of Lemma 3.2.3 we only need �9Ò�ÎkÓ�� and �)ÎDx�� . Furthermore to

prove �)ÎJx�� , given the lemma, we only need �9Ò�ÎkÓ�� .
Lemma 3.2.5. Let ; � *©¢D@ be a finite ordered set equipped with apartness Î . Then the

relation l�Ú of Ë�ú?ù�%�� � � satisfies ��l�$D��� .
Proof. Suppose �ml�Ú=Ã;+=Æ ,

� �u<{Y�Ã and /\��<�YÕÆ . Hence �÷Î�� � ÖQ/"� implying

�ox'�W
=�k�¹�yx'ÏD
 � �©�ox'Ð(
R/"���	Î��9Ó�Ï�Ö~Ó�Ð��7w
Fix Ï1
 �

and Ð¯
 / . Set FO�J� � ­W
 � Iz­	Î Ï � and F$&	� � ­W
 � Iz­6Î Ð �
. By

�9Ò�ÎDÓ�� , FO� and F'& are upper subsets of
�

. Clearly FP��Î±Ï and F$&1Î�Ð . Moreover, by

�)ÎDÓÕÓ�� , �÷Î�� <{Y ��FO�|+�F$&7��� .
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Set Ã n � ± �o�}� FT� and Æ n � ± &X�(& F$& . Hence Ã n and Æ n are upper subsets of
�

satisfying:

S Ã n Î �
, hence Ã n lJÚ=Ã ,

S Æ n Î�/ , hence Æ n lJÚQÆ , and

S �+Î+<{Y � Ã n +QÆ n � , hence �Ul�ÚRÃ n +QÆ n .

Remark 3.2.6. In the proof of Lemma 3.2.5 we only need �9Ò�Î�Ó�� and �)ÎDÓÕÓ�� . Furthermore

to prove �GÎ�Ó[Ó�� , given �ªl�$���� , we only need �9Ò�ÎDÓ�� .
The following lemma is proved dually to Lemma 3.2.5.

Lemma 3.2.7. Let ; � *©¢D@ be a finite ordered set equipped with apartness Î . Then the

relation l�Ú of Ë�ú?ù�%�� � � satisfies �G��$Ul�� .
Theorem 3.2.8. Let ; � *e¢�@ be a finite ordered set equipped with apartness Î . ThenË�ú?ù�%�� � �¬� ;�L�� � �7�¬+3*�Ö3*µ4 * � �elJÚ�@ is a finite strong proximity lattice.

Proof. Clearly ;�L�� � �7�µ+�*,Ö�*X4 * � @ is a finite distributive lattice. Lemma 3.2.3 proves that

lJÚ satisfies �ªlvlk� . �)�3$�lk� and ��l�$D��� are proved as follows. For any �%
²L�� � � and� �Jñ�I�^v¢ ò�¢ ² � P²L�� � � ,
ß ñ �Jñ�lJÚ��+T(V ß �Jñ'Î � Y��÷T(V �ox:òõ���Lñ'Î � Y��+T(V �ox:òõ���Lñ|l�Ú���* and

�Ul�Ú ô ñ �Jñ'TWV ��Î � Y ô �Lñ'� ß ñ � � Y��Jñ ��TWV �yx:òõ���+Î�� � Y��Jñ ��T(V �ox:òõ����l�Ú��Jñ w
Lemmas 3.2.5 and 3.2.7 prove ��l�$D��� and �G��$Ul�� , respectively.
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3.2.2 From Finite Strong Proximity Lattices to Finite Ordered Sets

with Apartness

We remind the reader of the following. For a lattice � , the sets of join-irreducible and

meet-irreducible elements of � are denoted by Rz�G��� and U������ , respectively.

Recall from Lemma 2.2.2 that the map >À�³8à2 $:& � ����Y�ÒÕ8:� is an order-isomorphism

from Rz����� to U��G��� . It is characterised by the property

8ÀÁ¢u�	TWV �W¢²>'�98:�
which holds for all 8=
BRz�G���7*,�(
R� .

Definition 3.2.9. Let ;)�����3*��3*,b�*e^[�el�@ be a finite strong proximity lattice. Then

Ë�úÒ�)ûµ»��G�����K;�Rz������*e¢ S *,Î6Ù:@7*
where ¢³S�� Â

, the order inherited from � , and Î�Ù is the binary relation defined on Rz�����
as:

8�Î�Ù1�±q?r sTWVX8=l²>'���¨�7w
Remark 3.2.10.

8"Î6ÙW��TWVX8=l²>'�9� ��T(V 8Q¢²>��9� ��TWVX8ÀÁ¢ ��T(V 8ÀÁÂ S �z*
that is, if the proximity relation is trivial then so is the apartness.

Lemma 3.2.11. Let ;)�����3*��3*,b�*e^[�el�@ be a finite strong proximity lattice. Then the relation

Î�Ù of Ë�ú¬�)ûµ»������ satisfies � Ò�Î�Ó�� .
Proof. Let ��*,Ï�*?Ð�*?Ñ6
 Rz�����*S be such that � Â SvÏ and Ð Â SvÑ . Then �"¢-Ï and Ð"¢-Ñ in � .

Therefore by �G�3$ml�� and �ªl�$���� ,
�W¢uÏÔÎ�Ù"ÐO¢uÑD��V �W¢uÏDl²>'�GÐ���¢²>'�GÑh�¬�'V �Wl²>'�GÑh�¬�'V �	Î�Ù"Ñ[w
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Figure 3.1: A pictorial description of Lemma 3.2.12.

Lemma 3.2.12. Let ;G�Ô�,��*,��*?b¨*e^[�el�@ be a finite strong proximity lattice. Then for every

��*,­�
R� ,

�Wlu­�T(V � 8Q
#Rz�G���DIa8=¢u� � Î�Ù � �W
#Rz�G����I��RÁ¢u­ � w
Proof. By Lemma A.18,

� � 8Q
#Rz�G���DIa8=¢u� � �÷�(lu­�� � � �1
#U-�G����I�­�¢ � �

TWV � 8=
BRz�G���kIa8Q¢u� � l � �1
#U-�G����I�­�¢ � � * by �G�3$ml�� and �ªl�$����7w
So it remains to show that

� �1
#U-�G����I�­�¢ � � �·>'� � 8=
#Rz������Ia8#Á¢+­ � ��*
but this is immediate from the equivalence

8#Á¢u­ÔTWV ­�¢²>'�98:�
mentioned above.

Figure 3.1 gives a pictorial illustration of Lemma 3.2.12. The idea is that the element

� approximates the element ­ if and only if the join-irreducible elements in the area � are

apart from the join-irreducible elements in the areas × and
�

.

Lemma 3.2.13. Let ;)�����3*��3*,b�*e^[�el�@ be a finite strong proximity lattice. Then the relation

Î�Ù of Ë�ú¬�)ûµ»������ satisfies �GÎDx�� .
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Proof. For any ��*,Ï�
#Rz����� ,
�6Î6Ù"Ï TWV �Wl²>'�GÏ¹�

TWV �)�`´�
R�����(l·´ and ´�l²>'�GÏ¹�7* by ��l�lD�
TWV �)�`´�
R�����6Î6Ù � ­�
#Rz������I�­	Á¢·´ � and

� ­L
FRz�G����I�­�¢!´ � Î�Ù~Ï
TWV �yx'­D
#Rz���������	Î�Ù1­ or ­�Î6Ù1Ïhw

The second last equivalence is true by Lemma 3.2.12 and the right-to-left direction of the

last equivalence is satisfied by setting ´³�I� � ­�
FRz�G����I�­�Î�Ù~Ï �
.

Lemma 3.2.14. Let ;)�����3*��3*,b�*e^[�el�@ be a finite strong proximity lattice. Then the relation

Î�Ù of Ë�ú¬�)ûµ»������ satisfies �GÎ�ÓÕÓ�� .
Proof. Let ��*,Ïh*,Ð�
;Rz����� . We notice that Ó�ÏAÖRÓ�Ð in Rz�G��� with respect to ¢TS is the same

as Ò�ÏAÖRÒ�Ð in Rz����� with respect to ¢ , the order inherited from the lattice. Suppose �=ÎOÙ
�9Ò�Ï�Ö~Ò�Ð�� .

For any �W
#U������ with >���Ï©�³��>'�GÐ��A¢ � let 8R
#Rz����� be such that �	�·>'�98:� . Then:

>'��Ï©����>���Ð���¢b>�� 8:�±TWV 8ÀÁ¢²>'�GÏ¹���ã>'�GÐ��
TWV 8ÀÁ¢²>'�GÏ¹� and 8ÀÁ¢²>'�GÐ��
TWV Ï�¢ 8 and Ð(¢c8|w

So �	Î�ÙW8 , i.e. �Wl²>'� 8:�¬�+� . Apply ��l�$D��� and get �Wl²>'�GÏ¹���ã>'�GÐ�� .
Hence

��Î6Ù��9Ò�Ï�Ö�Ò�Ð��±��V �Wl²>'��Ï©�³��>���Ð��
��V �G�68�no*?��n�
R���|8�n:l²>���Ï©��*���n�l²>'�GÐ�� and �(l 8�n�����no* by �ªl�$����
��V � ­�
BRz�G���kI�­J¢c8 n � l²>'�GÏ¹�7* � ­�
#Rz������I�­�¢u� n � l²>'�GÐ�� and

�	Î�Ù � ­�
FRz�G����I�­6Á¢ 8 n ��� n � * by Lemma ö¨w�¢�w ^(¢�w
��V �ox'­D
#Rz�G�������	Î�Ù~­a*¬­�Î�Ù"Ïh* or ­ÔÎ6Ù1Ð�w
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The following lemma is proved dually to Lemma 3.2.14.

Lemma 3.2.15. Let ;)�����3*��3*,b�*e^[�el�@ be a finite strong proximity lattice. Then the relation

Î�Ù of Ë�ú¬�)ûµ»������ satisfies � ÒÕÒ�Î�� .
Theorem 3.2.16. Let ;)�����3*��3*,b¨*e^i�elD@ be a finite strong proximity lattice. Then the relation

Î�Ù of Ë�ú¬�)ûµ»������ is an apartness on the finite ordered set ;�Rz�G����*e¢TS�@ .
Proof. Conditions �9Ò�ÎkÓ�� , �GÎ�x�� , �)ÎDÓÕÓ�� and � ÒÕÒ�Î�� are satisfied by Lemmas 3.2.11, 3.2.13,

3.2.14, and 3.2.15, respectively.

3.2.3 The Representation Theorem

Objects

We show that the translations of the previous two sub-sections are (essentially) inverses

of each other. Since our theory is based on Birkhoff duality, only the behaviour of the

proximity and the apartness relations need to be examined.

Definition 3.2.17. A lattice homomorphism (isomorphism) between strong proximity lat-

tices is said to be a proximity homomorphism (proximity isomorphism) if it preserves (pre-

serves in both directions) the proximity relation (relations).

Theorem 3.2.18. Let ;)�����3*��3*,b¨*e^[�©lD@ be a finite strong proximity lattice. Then the map:1_^ ���ð$:& Ë�ú?ù�%��oË�úÒ�)ûµ»��G��������8�2 $:& � �W
#Rz������I��W¢ 8 � *
is a proximity isomorphism.

Proof. By Birkhoff’s theorem, 1$^ is an order-isomorphism. For every 8|*?�1
R� :

8=l � T(V � �W
BRz�G����I��W¢c8 � Î�Ù � ­�
BRz�G����I�­6Á¢u� � * by Lemma ö¨w�¢�w�^(¢
T(V � �W
BRz�G����I��W¢c8 � lJÚ87 � ­�
#Rz������I�­D¢ � �
T(V 1_^ � 8:��lJÚ 7 1_^ ���¨�7w
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Definition 3.2.19. Let
� 0 and

� 2 be finite ordered sets equipped with apartness relations

Î�0 and Î�2 , respectively. A map 
R� � 03$z& � 2 is said to be:

S an apartness map from
� 0 to

� 2 if it is order-preserving, and for every ��*?­�
 � 0 ,

��G���¬Îk2�
���­¹����V �	Î�0�­a*

S an apartness isomorphism from
� 0 to

� 2 if it is an order-isomorphism and for every

��*,­�
 � 0 ,
�	Î�0¬­3TWV 
��G���¬Î�23
��G­7��w

Theorem 3.2.20. Let ; � *©¢D@ be a finite ordered set equipped with apartness Î . Then the

map: []\ � � $:& Ë�ú¬�)ûµ»��oËAú?ù�%�� � ������8�2 $:&XÒÕ8|*
is an apartness-isomorphism.

Proof. By Birkhoff’s theorem, [µ\ is an order-isomorphism. For every Ïh*,Ð(
 �
:

ÏÔÎ-Ð TWV Ò�ÏÔÎ+Ó�Ð�* by �9Ò�Î�Ó��
TWV Ò�ÏDl�Ú � YhÓ�Ð
TWV Ò�ÏÔÎ6Ù:9(Ò�Ð�* because >'�9ÒÕÐ���� � Y�Ó�Ð
TWV []\ �GÏ¹��Î6Ù:9 []\ �GÐ���w

Lemma 3.2.21. Let ;G�Ô�,��*,��*?b¨*e^[�el�@ be a finite strong proximity lattice and ; � �e¢�@ be a

finite ordered set equipped with apartness Î .

1. If ¢ is the lattice order and ¢ n is the order of Rz�G����S then

l�� ¢�TWV Î6Ù"�ZÁ¢ n w
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2. The relation l�Ú of Ë�ú?ù�%�� � � satisfies the following:

Î��\Á¢÷T(V lJÚ�� ¢�w
Proof. 1. The left-to-right direction follows from Remark 3.2.10. For the other direc-

tion, suppose that Î6Ù~�¡Á¢ n . Then by Remark 3.2.2 lDÚ87(�mP . For every ��*,­�
R� ,

�Wlu­ T(V 1_^ �����3lJÚ 7 1Y^ �G­7�7* by Theorem ö¨w�¢�w�^ad
T(V � 8Q
#Rz�G����Ih8=¢u� � P � 8Q
#U�������Ia8Q¢u­ �
T(V � � 8=
BRz�G����I�8Q¢u� � ¢ � � 8=
BRz�G���kIa8Q¢u­ � * by Lemma ��wÜ`
T(V �W¢u­a* by Lemma ��w�^ad�w

2. The left-to-right direction follows from Remark 3.2.10. For the other direction, sup-

pose that l�Ú1��¢ . Then by Remark 3.2.2 Î	Ù 9 ��ÁV . For any ��*,­�
 �
,

�	Î-­ T(V [*\ �G����Î6Ù:9 []\ �G­7��* by Theorem ö¨w�¢�w�¢ib
T(V Ò��QÁVcÒ�­
T(V �QÁ¢u­hw

Remark 3.2.22. As we have proved that the trivial cases of apartness relations ( Î��ZÁ¢ ) and

proximity relations ( l÷�U¢ ) translates into each other, it is obvious that our representation

theorem is a proper extension of that of Birkhoff.

Remark 3.2.23. Suppose the cardinality of � is greater than ^ and ¢ ^ denotes the set of

all lattice-homomorphisms from � to ¢ ordered point-wise. Then Rz�����XS is isomorphic

to ¢ ^ [20]. A join irreducible element 8 of � corresponds to the characteristic function 
;#
of ÒÕ8 . For the binary relation Î	Ù (Definition 3.2.9) on Rz�����*S , we note that for 8|*��1
#Rz�G��� :

8"Î6Ù1� TWV 8Rl²>'���¨�
TWV �)�	��*,­�
=����� Â 8|*¬­6ÁÂ � and �Wlu­
TWV �)�	��*,­�
=����
<#��������U^[*�
>=[��­7���+b and �(lu­hw
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Therefore the ordered set ¢ ^ equipped with the apartness defined as follows:


�Î6Ù"
 n q�r9sTWV �)�6��*,­�
=����
��G���¬� ^[*�
 n ��­7���+b and �(lu­
is apartness isomorphic to Ë�úÒ�)ûµ»��G��� .

By Lemma 3.2.12, for every 8|*?�1
=� :

8=l �	TWV � 
R
 ¢ ^ Ii
��98:�¬� ^ � Î�Ù � 
=
 ¢ ^ I�
����¨�¬�+b � w

Morphisms

Lemma 3.2.24. Let ;)�30�*e¢k07�elk0�@ and ;)�¬2a*e¢L2e�elL27@ be finite strong proximity lattices and� 0 and
� 2 be finite ordered sets equipped with apartness relations ÎO0 and Î�2 , respectively.

Then

1. For a proximity homomorphism 
=����03$:& ��2 , the map

Ë�ú¬�)ûµ»��G
��A� Ë�úÒ�)ûµ»��G�¬27�3$z& Ë�ú¬�)ûµ»����30ª�7�?�d2 $:&Wegfih^ · � 8Q
#Rz�G�A0��JIh8=
�
 5 0 �9Ò��¨� � *
is an apartness map.

2. For an apartness map c � � 0A$'& � 2 , the function

Ë�ú?ù�%�� c �3�½Ë�ú?ù�%�� � 27�A$:& Ë�ú?ù�%�� � 0ª�7�¹Ãk2 $:& c 5 0 �õÃD��*
is a proximity homomorphism.

Proof. 1. Ë�úÒ�)ûµ»��)
�� is well defined order preserving map by Section 2.2. Suppose ��*,­�
Ë�ú¬�)ûµ»�����27� . We first notice that

(i) 
�� � ���A0�Y�ÒðËAú¬�)ûµ»��)
��¹�G­7���A¢ � �G�¬27Y�Ò�­7� . This is true because


�� � ���A0�Y�ÒðË�úÒ�)ûµ»��)
��¹�G­7���¬� � 
����A0�Y�Ò Ë�úÒ�)ûµ»��)
��¹�G­7����*
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and


����30ªY�ÒðËAú¬�)ûµ»��)
��¹�G­7���AP��¬2�Y�Ò�­hw
This inclusion is proved as follows. If ÏD
���0�Y�Ò Ë�ú¬�)ûµ»��G
��©��­¹� then, by definition

of Ë�ú¬�)ûµ»��)
'� , 
�� � 8Q
#Rz���30?�JIh8=¢uÏ � �APu�¬27Y�Ò�­ . Therefore

� 
�� � 8�
#Rz�G�A0���Ia8R¢uÏ � �A
R�¬27Y�Ò�­aw
But

� 
�� � 8�
#Rz�G�A0?�JIa8R¢uÏ � �¬�-
�� � � 8Q
#Rz�G�A0���Ia8=¢uÏ � ���÷
���Ï©��w
Now we have:

Ë�ú¬�)ûµ»��G
��©�����¬Î�Ù�·�ËAú¬�)ûµ»��)
��¹�G­7����V Ë�ú¬�)ûµ»��G
��©�����Alk0 � ���30ªY�ÒðËAú¬�)ûµ»��)
��¹�G­7���
��V 
��oË�úÒ�)ûµ»��)
��¹�G�����AlL2A
�� � �G�A0�Y�ÒðË�ú¬�)ûµ»��G
��©��­7�����
��V �W¢�
��QË�ú¬�)ûµ»��)
'�©�G�����AlJ2A
�� � ���30�YhÒðËAú¬�)ûµ»��)
��¹�G­7�����

¢ � �G�¬2�Y�Ò�­7�
��V �WlL2 � ���¬27Y�Ò�­7�
��V �	Î�Ù�¸�­hw

2. By Section 2.2, ËAú?ù�%�� c � is a lattice homomorphism from L�� � 2�� to L6� � 0�� . For every

��*,×\
�L6� � 2�� :
�UlJÚ�¸�× ��V �+Î�2D� � 2,Y[×	�

��V c 5 0 ���D�¬Î60 c 5 0 � � 2�Y[×	�
��V c 5 0 ���D�¬Î60 � 0�Y c 5 0 �G×	�
��V c 5 0 ���D�Al�Ú · c 5 0 ��×	�
��V Ë�ú,ù�%�� c �©���D�3l�Ú:·
Ë�ú?ù�%�� c �©��×	�7w
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Remark 3.2.25. Let ;)�30����3*��3*,b¨*e^i�el�0ª@ and ;)��2a�,��*,��*?b¨*e^[�elL2�@ be finite strong proximity

lattices and ; � 0�*e¢�@ and ; � 2e*e¢�@ be finite ordered sets equipped with apartness relations Î�0
and Î�2 , respectively. Let 
��[��03$:& �¬2 and c � � 0A$'& � 2 be a proximity homomorphism

and an apartness map, respectively. Then the following is true by Birkhoff’s representation

theorem (Section 2.2).

S The following diagrams commute.

�A0 
 ¼ �¬2

Ë�ú?ù�%��QË�ú¬�)ûµ»��G�A0����

1_^ ·
º Ë�ú?ù�%��QË�ú¬�)ûµ»��)
'��� ¼ Ë�ú?ù�%��oËAú¬�)ûµ»��G�¬27���

1Y^ ¸
º

� 0 c ¼ � 2

Ë�ú¬�)ûµ»��oËAú?ù�%�� � 0����

[]\ ·
º Ë�ú¬�)ûµ»��QË�ú?ù�%�� c ��� ¼ Ë�ú¬�)ûµ»��oË�ú,ù�%�� � 2����

[]\ ¸
º

S The map 
ã2 $z& Ë�ú¬�)ûµ»��)
'� establishes a one-to-one correspondence between proximity-

homomorphisms from �30 to �¬2 and apartness mappings from Ë�ú¬�)ûµ»�����27� to Ë�ú¬�)ûµ»����30�� .
The map c 2 $:& Ë�ú?ù�%�� c � establishes a one-to-one correspondence between apart-

ness mappings from
� 2 to

� 0 and proximity-homomorphisms from ËAú?ù�%�� � 0ª� toË�ú?ù�%�� � 2�� .
S The mapping 
 is one-to-one TWV Ë�ú¬�)ûµ»��G
�� is onto.

S The mapping 
 is onto T(V Ë�úÒ�)ûµ»��)
�� is an order-embedding.

We let FOSa be the category whose objects are finite ordered sets equipped with apart-

ness relations, and whose morphisms are apartness maps. FPL is the category of finite

strong proximity lattices and proximity homomorphisms. Theorems 3.2.18 and 3.2.20 and
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Figure 3.2: An ordered set together with its corresponding distributive lattice.

Lemma 3.2.24 show that Birkhoff duality between finite distributive lattices and finite or-

dered sets can be restricted to the (non-full) sub-categories FOSa and FPL. All in all:

Theorem 3.2.26. The functors Ë�ú¬�)ûµ» and Ë�ú,ù�% establish a dual equivalence between the

categories FOSa and FPL.

3.2.4 Examples

1. The binary relation Î �XÁ¢�Y � � 8|*,bÕ� � defined on the ordered set
�

in Figure 3.2 is

an apartness. The lattice � in the same diagram together with the binary relation

lð�-¢�Y � �G��*,��� � is the finite strong proximity lattice corresponding to ; � *e¢v��Î�@ .
2. Let

�
be the chain

� b¨*©wewew©*µ¶ �
. Its corresponding finite distributive lattice, under

Birkhoff duality, is
� �Êö , the chain

�
with a new top element added. In the following

table, the left-hand side column shows some apartness relations on
�

and the right-

hand side column shows their corresponding proximity relations on
� �bö .
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Î on
� l�Ú on

� �böë ¢Â ²�l�Ú~� q?r sT(V ²��+b or ²"$ ^�¢ �
Ò�ÏD!QÓÕÏ3$c^ , for some bUTcÏD
 � ²�l�Ú~� q?r sT(V ²��+b¨*�� �éö or ²R¢�Ï�¢ �

3. Suppose ; � �©¢D@ is a bounded finite ordered set and
�

is a disjoint union ÓÕ8WV+{Ò�� for

some 8|*?��
 �
. Then Î¡� Ò��W!QÓÕ8 is an apartness relation on

�
. The relation lkÚ

on ËAú?ù�%�� � � can be characterised as follows:

�mlJÚ�× q?r sT(V �+�k4 *�× � �
or �UPcÒ��1Pu×Ww

Remark 3.2.27. The third case of example two is a special case of the this example.

4. Suppose ; � 0��e¢k0�@ and ; � 2e�e¢L27@ are bounded disjoint ordered sets. It is straightfor-

ward, but may be tedious, to prove that Î¡�Z� � 0A! � 2��¨+ � � 2L! � 0�� is an apartness

relation on the disjoint union ; � 0XV+ � 2e�e¢�@ . Note that generally ÎZY}Á¢ and clearly

L�� � 0[V+ � 27�¬� � �à+�× I���
#L�� � 0�� and ×}
�L6� � 27� � w
Now suppose

� 0 and
� 2 are finite sets. We study the relation lDÚ defined on L�� � 0[V+� 2�� . We have

�;+�×}lJÚ � +�/ T(V �9�à+Q×	��Î�� � 0¨+ � 2���Y�� � +Q/1�
T(V �9�à+Q×	��Î�� � 0�Y � Ö � 2�Y[/"�
T(V �9�÷�k4 or

� � � 0�� and �G× �é4 or /¡� � 2���w
5. Figure 3.3 shows an apartness map :c �z; � �e¢k07��Î�0��\Á¢�0�Y � ;]\�*�	�@ � @Ô$:& ; � �©¢J2e�,Î�2A��ÒÕ�"!�ÓÕ8:@

and the associated proximity homomorphism


=�z;:Ë�ú,ù�%�� � �7�©l�Ú:·�@�$:& ;:Ë�ú?ù�%�� � ���el�Ú�¸?@¹w
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4f
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4k c l
4q

) J�S + fj- ¼h
Figure 3.3: An apartness map and its corresponding proximity homomorphism

Note that the ordered sets ; � *©¢v0�@ and ; � *e¢L2�@ , equipped with apartness relations

Î�0 and Î�2 , respectively, and their corresponding finite strong proximity lattices are

explained in detail in examples 1 and 3 above.

3.3 An Extension of Priestley’s Representation Theorem

In this section we extend our duality from the finite to the infinite case, that is, from Birkhoff

duality to Priestley duality. Recall from Section 3.1.2 that this involves two changes in our

methodology: firstly, we need to equip the dual of the lattice with a topology, and secondly,
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we need to work with prime filters of proximity lattices, rather than join-irreducible ele-

ments. There is a small advantage from the second change; the order on prime filters is just

inclusion, rather than the reverse of the lattice order.

3.3.1 From Priestley Spaces with Apartness to Strong Proximity Lat-

tices

We remind the reader that we denote the sets of clopen lower and upper sets of a Priestley

space < by � � �9<{� and L � � <{� , respectively. We begin with two preparatory technical

results.

Lemma 3.3.1. Let ;�<#�e¢�*�>3@ be a Priestley space. For closed lower subsets ��*?× P <
and FK
R> , if �EÖ�×}PuF , then there exist Æ³07*�Æ�2Ô
@� � �9<{� such that �UP�Æ�07*,×�P�Æ�2 and

Æ'0³ÖQÆ�2LPuF .

Proof. In a Priestley space every closed lower subset is the intersection of clopen lower

subsets containing it. Therefore

�óÖQ× � ô � Ã 
�� � �9<{�JIh�UP!Ã � Ö ô � Ã n 
G� � � <{�JI�×}P!Ã n �
� ô � Ã Ö#Ã n I�Ã{*¬Ã n 
G� � �9<{��*?�UP!Ã and ×}P!Ã n � w

By the compactness of � <{YiF�� and the closeness of sets Ã Ö#Ã n , there exists a finite set

� Ã=ñ�ÖBÃ nñ I_ÃRñõ*µÃ nñ 
�� � �9<{��*��UP!ÃRñ)*,×}P!Ã nñ and ^�¢ ò�¢ ² �

such that ± 0Qº�ñ�º?� ��ÃRñ?ÖTÃ nñ �3PuF , so we can set Æ³0¬�5± 0Qº�ñ�º?� Ã=ñ and Æ�2A�é± 0Qº�ñ�º?� Ã nñ .
Lemma 3.3.2. Let ;9<À�e¢v*?>3@ be a Priestley space. For closed lower subsets �60�*ewewew¹*?�³��P
< and F±
u> , if ± ñ �JñDP¡F , then there exist Æ³0,*ewewew¹*�Æ¾�{
I�=�:�9<�� such that for every ò
�Jñ�P�Æ ñ and ± ñ Æ�ñ�PuF .

Lemma 3.3.3. The proof follows the same lines as that of the previous lemma.
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Lemma 3.3.4. Let ;�<À�e¢v*?>A@ be a Priestley space equipped with apartness Î . For closed

subsets ��*?× P%< , if � Ît× then there exist ÃX
IL{�:�9<{� and Æ 
 �=�:�9<�� such that

�UP÷Ã , ×\P�Æ and Ã÷Î�Æ .

Proof. By � Ò�Î�Ó�� , Ò��XÎXÓ�× . Recall that ÒÕ� and ÓÕ× are closed subsets of < because

> is a Priestly topology. We first show that there exist open sets F	0 and Fk2 such that

Ò��MPZF�0�*�Ó�×tP¡FD2 and F�0vÎ FD2 . Fix 8c
cÒ�� . Then for every �À
 Ó�× , by openness

of Î , there exist F�0v=�*DFD2o={
�> such that 8-
 F�0v=�*�� 
mFD2o= and F�0v=QÎ±FD2o= . The set� FD2o={I³�E
uÓ�× �
is an open cover of Ó�× , and so a finite sub-cover

� F�2o=:®	I¬^R¢Zò6¢Z² �
exists. Set F�0v#À�W± ñ F�0v=:® and FD2o#À� ÿ ñ FD2o=:® . Then F�0v# and FD2o# are open sets with

8�
¯F�0v#[*�Ó�×ZP+FD2o# and F�0v#vÎUFD2o# . Now, the set
� F�0v#WI�8�
RÒ�� �

is an open cover of Ò��
and so a finite sub-cover

� F�0v#¬®AI�^�¢�ò�¢�� �
exists. Set F�0���ÿ ñ F�0v#¬® and FD23�I± ñ FD2o#¬® .

Then F�0 and FD2 are open sets with Ò���PuF�0 , Ó�×\PuFD2 and F�0¬Î�FD2 .
Now as �9<=*©¢�*?>A� is a Priestley space, Ò�� � ± � Ã 
�L"�:�9<{�#IAÓ�� P Ã � PtF�0 ,

and because <{Y[Fk2 is a compact subset of < , there exists a finite set of clopen upper sets� Ã�ñ�
BL"�:�9<{�JI�^v¢ ò�¢ ² �
such that Ó��tP ± ñ Ã�ñ6P%F�0 . Set Ã � ± ñ Ã�ñ . Then Ã is a

clopen upper subset of < with Ò���P-ÃUPuF60 . Similarly there exists a clopen-lower subset

Æ of < with Ó�×}P�Æ�PuFD2 . Therefore Ã+Î�Æ , which completes the proof.

Remark 3.3.5. Singletons are closed subsets in a Priestley space. Therefore, as a special

case of Lemma 3.3.4 we have that for every ��*,­�
=< , if �	Î-­ then there exists Ãm
�LT�z�9<��
and ÆK
G� � � <{� such that �W
¯Ã , ­�
�Æ and Ã÷Î�Æ .

Remark 3.3.6. Our proof of Lemma 3.3.4 uses only the openness of Î and �9Ò�ÎDÓ�� . Con-

versely, considering Remark 3.3.5, the lemma implies � Ò�Î�Ó�� and the openness of Î .

We define the dual for a Priestley space with apartness as follows:

Definition 3.3.7. Let ;�<#�e¢�*�>3@ be a Priestley space equipped with apartness Î . Then

Ë�ú?ù�%�� <{��� ;�L � � <{�7�¬+3*�Ö3*µ4 *�<À�elJÚ�@¹*
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where l�Ú is the binary relation defined on L³�:�9<�� as:

��l�Ú�× q?r sTWV �+Î�� <{Yi×	��w
Remark 3.3.8. Note that if < carries the trivial apartness Á¢ then the lattice LT�:�9<�� will be

equipped with the trivial proximity lDÚ��KP . In fact, the converse is also true: if lDÚR�}P
then ÎU�¡Á¢ .

Lemma 3.3.9. Let ;�<#�e¢�*�>3@ be a Priestley space equipped with apartness Î . Then the

relation l�Ú of Ë�ú?ù�%�� <{� satisfies �ªlvlk� .
Proof. Suppose ��l�Ú �

and /M��<{Y �
. So �mÎK/ . Fix ��
#� and set FO�D� � 8#
{< I

�1Î�8 �
. Then FT��
{> by openness of Î , �1Î FO� and � <{YiFT�¹��Î / by �)ÎJx�� and the fact

that �6Î-/ .

Now by Lemma 3.3.4, there exists a clopen upper subset × � of < such that �9<{Y[FT�¹��P
×M� and ×M�uÎ / . Therefore �KÎ � <{Yi×M�e� . Using Lemma 3.3.4 again, there exists

Ã��k
BL � �9<�� such that �÷
}Ã�� and Ã���Î �9<{Y[×M�©� . The set
� Ã��ðI��÷
\Ã �

is an open

cover of � which is compact as it is closed. Hence a finite sub-cover
� Ã
��® � 0Qº�ñ�º?� exists.

Set Ã+�-ÿ 0Qº�ñiº?� Ã��*® and × �-ÿ 0Qº�ñ�º?� ×M��® . Therefore Ã and × are clopen upper subsets of

< with �UP÷Ã÷Î��9<{Y�×	� and ×¡ÎK/ which implies �}lDÚ{× and × l�Ú �
. This proves

lJÚ{P�lJÚ��elJÚ .

For the other inclusion, suppose ��lDÚQ×W*³×}lJÚ �
and /\��<EY �

. Then �+Î��9<EY�×	�
and ×%Î\/ . Pick any ��
ð� and Ð�
ð/ , then any ­(
E< is either in × or in <MYk× , so

�ÀÎ±­ or ­~Î Ð from which �ÀÎ±Ð follows by �GÎDx�� . Therefore �%Î�/ which implies

�Ul�Ú �
.

Remark 3.3.10. In the proof of Lemma 3.3.9 we need the openness of Î , � Ò�Î�Ó�� and �)ÎDx�� .
Furthermore, to prove �)ÎJx�� , given the lemma, we need the openness of Î and �9Ò�ÎkÓ�� .
Lemma 3.3.11. Let ;�<#�e¢�*�>3@ be a Priestley space equipped with apartness Î . Then the

relation l�Ú of Ë�ú?ù�%�� <{� satisfies �ªl�$���� and �)�3$�lD� .
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Proof. Suppose �ml�Ú=Ã;+=Æ ,
� �u<{Y�Ã and /\��<�YÕÆ . Then ��Î � Ö�/ implies

�ox'�W
=�k�¹�yx'ÏD
 � �©�ox'Ð(
R/"���	Î��9Ó�Ï�Ö~Ó�Ð��7w
Fix Ïk
 �

and Ð"
�/ . Set FO��� � 8R
R< Ii8�ÎUÏ �
and F$&Ô� � 8�
R< I�8�ÎUÐ �

. By �9Ò�ÎDÓ��
and openness of Î , FO� and F$& are open upper subsets of < . Clearly FP�3Î Ï and F'&�Î Ð .

Moreover, by �)ÎkÓ[Ó�� , �+Î�� <{Y��GFO��+�F$&7��� .
By Lemma 3.3.4 and Lemma 3.3.1,

��Î\� <{YiFT���³Ö �9<{Y[F$&7� hence �G��Æs�,*�Æw&J
@� � �9<{���A�9<�Y[FT���AP+Æs�?*
�9<�YiF$&7�3P�Æu& and �÷Î��GÆs�'ÖQÆw&¹�

and � <{Y[Æs�ª��Î-Ï and � <{YÕÆu&7��Î-Ð
hence �G�¾Ã8�,*¬ÃX&�
G� � � <{���|ÏD
8ÃF�,*,Ð(
FÃ[&h*

�9<�Y[Æs�ª��ÎIÃF� and � <{YÕÆu&7��ÎIÃX&aw
The sets

� ÃF�=I�Ï¯
 ���
and

� Ã[&ÀI�Ð�
 / �
are open covers of compact subsets

�
and / , respectively. Therefore finite subcovers

� Ã���®{IJÏ�ñ�
 �
and ^�¢ ò{¢ ² �

and� ÃX&�®�I�ÐÕñ|
=/ and ^�¢ ò�¢ � �
exist.

Set Ã n � ± ñ <{Y[Æ¾��® and Æ n � ± ñ <{YiÆu&:® . Then Ã n and Æ n are clopen upper subsets

satisfying Ã n Î � P÷ÿ ñ ÃF��® which implies Ã n lJÚ{Ã . Equally, Æ n Î�/%P+ÿ ñ Ã[&:® implies

Æ n lJÚQÆ . Finally �+Î+<{Y�� Ã n +QÆ n � implies �Ul�Ú=Ã n +�Æ n .
The argument for �)�3$�lk� is dual to this.

Remark 3.3.12. In the proof of ��lm$���� in Lemma 3.3.9, out of the conditions on Î , we

need the openness of Î , � Ò�ÎkÓ�� and �)ÎDÓÕÓ�� . Furthermore to prove �GÎkÓÕÓ�� , given that l�Ú
satisfies �GÎ�ÓÕÓ�� , we need the openness of Î and �9Ò�ÎDÓ�� .
Theorem 3.3.13. Let ;�<À�©¢�*?>A@ be a Priestley space equipped with apartness Î . ThenË�ú?ù�%�� <{�¬�K;�L � � <{�7�¬+3*�Ö3*µ4 * � �elJÚ�@ is a strong proximity lattice.
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Proof. Clearly ;��
�:�9<��7�¬+3*�Ö3*µ4 *�<�@ is a bounded distributive lattice. Lemma 3.3.9 proves

that l�Ú satisfies �ªlvlk� . �G�3$�lk� and �ªl�$���� only require Boolean manipulation similar to

the finite case. Conditions ��l�$D��� and �)�3$�lk� are proved by Lemma 3.3.11.

3.3.2 From Strong Proximity Lattices to Priestley Spaces with Apart-

ness

We remind the reader of the following. For a lattice � , the set of prime filters of � is denoted

by
�
	�� 
 �G��� . This is ordered by inclusion and equipped with the Priestley topology > ^

generated by the collections Ãx#�� � Ø 
 �
	���
 �����kI[8{
 Ø �
and F�#v� � Ø 
 �
	���
 �G����I[8cÄ
Ø �

. Obviously, F$#�� �
	�� 
 ������Y3Ãx# and so each Ãx# is a clopen upper, and each F'# a clopen

lower set.

Definition 3.3.14. Let ;G�Ô�,��*,��*?b¨*e^[�el�@ be a strong proximity lattice. We set

Ë�úÒ�)ûµ»��G�����K; �
	���
 �G�����eP�*�> ^ �,Î6Ù:@7*
where Î6Ù is the binary relation defined on

�
	�� 
 �G��� as follows:

Ø Î�Ù"� q?r sT(V �G��8=
 Ø �©�G���¯Ä
R���|8Ql �:w
Remark 3.3.15. In the finite case, the definition of apartness relation on

�
	�� 
 �G��� given in

Definition 3.3.14 cuts down to that of apartness relation on Rz�G��� given in Definition 3.2.9.

This can be proved as follows.

Recall from Section 2.2 that for a finite distributive lattice � the set of prime filters�
	�� 
 �G��� corresponds to that of join-irreducible elements Rz�G��� as follows:

Ø 
 �
	�� 
 �G����TWV �)� �W
BRz�G����� Ø ��Ò���w
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Suppose
Ø *,� 
 �
	�� 
 �G��� . Then

Ø ��Ò�� and �U� Ò�­ for some ��*?­�
#Rz�G��� . Therefore

Ø Î�Ù~� TWV �)��8=
 Ø �¹�)���¯Ä
R���³8=l �
TWV �)��8 Â ���¹�)���RÁÂ ­7�³8=lu�
TWV �)��8 Â ���¹�)���1
=��Y�Ò�­7�³8=lu�
TWV �Wl � �G��Y�Ò�­7���!>'�G­7�,* by ��l�$D���7*h��l�$D���
TWV �	Î�Ù"­aw

Remark 3.3.16. l�� ¢ ��V Î	Ù"�¡ÁP .

We will now show that Î6Ù does indeed validate the requirements for an apartness. The

following preparatory result extends the definition to the basic clopen sets Ã�# and F�# .
Lemma 3.3.17. Let ;G�Ô�,��*,��*?b¨*e^[�el�@ be a strong proximity lattice and 8|*?�W
R� . Then

8Ql ��TWV Ãy#kÎ�Ù"F�=�w
Proof. �G��V � is clear. For the other direction, suppose 8|*?�÷
�� such that 8 Ál±� . Setz � � �=
 Ø �G���	I��=
í� and �yxm{k
@����8uÁl|{ � .

z Á�u4 because Ó��R
 z
. � z *eP�� is a poset. If� �¹ñ � is a non-empty chain in � z *eP�� then clearly ÿ ñ �¹ñ�
 z

. Therefore by Zorn’s Lemma
z

has a maximal element � . We claim that � is prime. Suppose ��*?­�
#�{YO� but ���=­�
à� .�$����Ó � ���#Ï®I�Ï�
 � �
is an ideal properly containing � . Because � is maximal in

z
,�$�	Á
 z

. So there exists Ï��k
�� such that 8=lu�3�1ÏÒ� . Similarly, there exists ÏÒN�
�� such that

8=lu­���Ï¬N . Now, by [54, Lemma 7], we note the following:

8=lu�D��Ï¬� and 8=l�­���ÏÒN ��V 8Qlm�G���QÏÒ�©�³��Ï¬N and 8=lm�G­��QÏÒN��³��ÏÒ�
TWV 8Qlm�����D�QÏ¬�¹����ÏÒNõ�³�#����­¬��Ï¬N��³�QÏ¬�e�
TWV 8Qlm�G���Q­7�³�#�GÏ¬����Ï¬Nª�7w

This gives a contradiction, because �¯
 z
and �G�D��­¹�|�¯�GÏm����ÏÒNª�A
�� .
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Recall that °��G��� is the collection of filters in � . Set }�� � Ø 
F°��G���ÔIh8Q
 Ø
and �yx'�1
Ø �©�yx'­J
@�|���QÁlu­ � . }�Á�k4 because ÒÕ8=
X} . �~}�*eP�� is a poset. If

� Ø ñ � is a non-empty chain

in �~}�*eP�� then clearly +�ñ Ø ñ�
�} . Hence by Zorn’s Lemma } has a maximal element
Ø

. We

claim that
Ø

is prime. Suppose ��*?­�
R��Y Ø
but �Ô�1­D
 Ø

. Then
Ø �Ô��Ò � �Ô�1Ï�I�ÏD
 Ø �

is

a filter properly containing
Ø

. Because
Ø

is maximal in } ,
Ø �OÁ
t} . So there exists ÏÒ�v
 Ø

and Ð?��
é� such that �	� ÏÒ�=l Ð$� . Similarly, there exists ÏÒN�
 Ø
and Ð$NO
é� such that

�D��ÏÒN�luÐ$N . By [54, Lemma 7], we note the following:

�D��ÏÒ�DluÐ$� and ­��QÏÒN�luÐ$N ��V ���k��Ï¬�e�³��ÏÒN�luÐ$�¬�QÐ$N
and �G­¬��ÏÒNª�³��Ï¬�kluÐ$N:��Ð$�

T(V ���G�k��ÏÒ�©�³�QÏ¬N��³� ���G­¬�QÏ¬N��³��ÏÒ�©�3luÐ?���QÐ$N
T(V ���k��­7�|� ��ÏÒ����ÏÒN��3luÐ$�¬��Ð?N�w

The last statement is a contradiction, because ���6� ­7���c�GÏm�3� Ï¬N��(
 Ø
, Ð?��� Ð$N6
k� andØ 
X} . Hence

Ø
is a prime filter. Set �U�+�RYT� . Then

Ø
and � are prime filters with

8Q
 Ø *��¯Ä
=�O* and
Ø ÁÎ6Ù1�

which completes the proof.

Lemma 3.3.18. Let ;)�����3*��3*,b¨*e^i�elD@ be a strong proximity lattice. Then the relation ÎOÙ
of Ë�úÒ�)ûµ»��G��� is open in > ^ !Q> ^ and satisfies �9Ò�ÎkÓ�� .
Proof. Clearly Î6Ù satisfies � Ò�ÎkÓ�� . Now suppose

Ø Î	Ù1� . Then there exist 8|*?�W
R� such

that 8Qlu� , 8=
 Ø
and �¯Ä
R� . Therefore

� Ø 
 �
	�� 
 �G����Ih8=
 Ø � Î6Ù � �K
 �
	�� 
 �G����Ih�¯Ä
G� � w
But these sets are open in the Priestley space which proves the openness of Î(Ù .

Remark 3.3.19. Let ;)�����3*��3*,b¨*e^[�©lD@ be a strong proximity lattice. Then the relation ÎOÙ
of ËAú¬�)ûµ»��G��� satisfies Lemma 3.3.4 by Remark 3.3.6 and Lemma 3.3.18.
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Lemma 3.3.20. Let ;)�����3*��3*,b¨*e^i�elD@ be a strong proximity lattice. Then the relation ÎOÙ
of Ë�úÒ�)ûµ»��G��� satisfies �)ÎJx�� .
Proof. For any

Ø *,� 
 �
	�� 
 ����� ,
Ø Î�Ù"� T(V �G�6�W
 Ø �©�)�6ÏJ
R��Y����|�WluÏ

T(V �G�6­�
R�����Wlu­ and ­DluÏ�* by �ªlvlk�
T(V Ã��ÔÎ�Ù"FTN and Ã�N�Î�Ù"FT� by Lemma ö�w4ö¨w ^<�
T(V �ox���
 �
	�� 
 ������� Ø Î�Ù�� or ��Î�Ù"��w

The right-to-left direction of the last equivalence is proved as follows. Set FX� � � 
�
	���
 �G����I���Î�Ù1� �
. Then F is an open set with

Ø Î	ÙR� �
	���
 �G����Y[F6� and FUÎ6Ù1� . Finally

apply Lemma 3.3.4 to get a clopen lower set � around
�
	�� 
 �����ÕY�F with

Ø Î6ÙW� and hence�
	���
 �G����Y��÷Î�Ù1� . By the compactness of
�
	���
 �G����Y¬F the set � can be chosen to be of the

form FTN .
Lemma 3.3.21. Let ;)�����3*��3*,b¨*e^i�elD@ be a strong proximity lattice. Then the relation ÎOÙ
of Ë�úÒ�)ûµ»��G��� satisfies �)ÎDÓÕÓ�� and � ÒÕÒ�Î�� .
Proof. Let

Ø *,�O*�� 
 �
	�� 
 ����� be such that
Ø Î6Ù#�9Ó,�¡Ö�Ó���� . Recall that Ó,� and Ó�� are

closed subsets of > ^ . Recalling Remark 3.3.19, we can apply Lemma 3.3.4 and 3.3.1 to

get ��*�8|*?�1
R� such that
Ø 
¯Ã�� , Ó,��PuF�# , Ó��KPuF�= and

Ã��LÎ�Ù1F�#�ÖQF�=L�+F�#Ò%>=�w
Hence, by Lemma 3.3.17, �Wlc8��~� . Now we have

�Olu86��� hence �)��8 n *?� n 
R���|8 n lc8|*�� n l � and �Wlc8 n ��� n * by �ªl�$����
hence Ãx#µ�zÎ�Ù~F�#i*�Ãy=*��Î6Ù"F�= and Ã��LÎ6Ù1F�#µ��%>=�� by Lemma ö¨wÜö¨w ^<�
hence �yx'H 
 �
	���
 �G������H Î�Ù���*,H%Î6Ù"� or

Ø Î�Ù"H=w
The argument for �9ÒÕÒ�Îv� is dual.
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Lemmas 3.3.18, 3.3.20, and 3.3.21 prove:

Theorem 3.3.22. Let ;)�����3*��3*,b�*e^[�el�@ be a strong proximity lattice. Then the relation ÎOÙ
of Ë�úÒ�)ûµ»��G��� is an apartness on the Priestley space ; �
	�� 
 �G���7�ePv*?> ^ @ .
3.3.3 One duality and two equivalences

Objects

This subsection shows that the translations of the previous two sub-sections are inverses of

each other. Our representation theorem relies on the Priestley duality, therefore only the

behaviour of proximity and apartness need to be studied.

Theorem 3.3.23. Let ;)�����3*��3*,b¨*e^[�©lD@ be a strong proximity lattice. Then the map1_^ ���ð$:& Ë�ú?ù�%��QË�ú¬�)ûµ»��G�����7��8�2 $'& Ãy#Õ*
is a proximity isomorphism.

Proof. By Priestley duality, 1�^ is a lattice isomorphism. For every 8|*��1
R� ,

8Ql � TWV Ãy#DÎ�Ù~F�=�� �
	�� 
 �G����Y�Ãy=�* by Lemma ö¨wÜö¨w ^<�
TWV Ãy#�lJÚ 7 Ãy=
TWV 1Y^ �98:�3lJÚ 7 1Y^ ���¨�7w

Definition 3.3.24. Let <�0 and <(2 be Priestley spaces equipped with apartness relations Î�0
and Îk2 , respectively. A map 
=�[<�0A$:& <O2 is said to be:

S an apartness map from <�0 to <(2 if it is continuous, order-preserving, and for every

��*,­�
�<~0 ,

��G���¬Îk2�
���­¹����V �	Î�0�­a*
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S an apartness homeomorphism from <�0 to <O2 if it is an order-isomorphism that is

also a homeomorphism, and for every ��*,­�
�<�0 ,
�	Î�0¬­3TWV 
��G���¬Î�23
��G­7��w

Theorem 3.3.25. Let ;9<À�e¢v*?>3@ be a Priestley space equipped with apartness Î . Then the

map [ C��i< $:& Ë�úÒ�)ûµ»��QË�ú?ù�%�� <{������872 $'& � Ãm
BL � � <{��Ia8=
¯Ã � *
is an apartness homeomorphism.

Proof. By Priestley duality, [ C is an order-isomorphism and a homeomorphism from <
onto

�
	���
 �ZL � �9<{��� . For every 8|*?�1
Q< , we have

8"Î÷� TWV �)�zÃm
BL � �9<����©�G��ÆK
G� � �9<{���³8Q
¯Ã�*?�1
�Æ and Ã+ÎUÆ
TWV �)�zÃm
BL � �9<����©�G��ÆK
G� � �9<{���³8Q
¯Ã�*?�1
�Æ and ÃUlJÚ�<{YiÆ
TWV � ÃU
#L � �9<{�JIh8Q
¯Ã � Î�Ù:9 � Ãm
BL � �9<��DIh�W
¯Ã �
TWV [ C�� 8:��Î�Ù:9 [ Ck���¨�7w

The first equivalence is true by Lemma 3.3.4.

Lemma 3.3.26. Let ;G�Ô�,��*,��*?b¨*e^[�el�@ be a strong proximity lattice and ;�<À�e¢v*?>A@ be a

Priestley space equipped with apartness Î .

1. The relation Î6Ù of Ë�ú¬�)ûµ»������ satisfies the following:

l��U¢ T(V Î�Ù"�ZÁ¢�w

2. The relation l�Ú of Ë�ú?ù�%��9<{� satisfies the following:

Î��\Á¢ T(V lJÚ�� ¢�w
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Proof. 1. The left-to-right direction follows from Remark 3.3.16. For the other direc-

tion, suppose that Î6Ù~�¡Á¢ . Then by Remark 3.3.16 lDÚ 7 ��P . For any 8|*?�1
R� ,

8=l � T(V 1_^ � 8:�Al�Ú 7 1_^ �9� ��* by Theorem ö¨wÜö¨w�¢iö
T(V � Ø 
 �
	���
 �����DIa8Q
 Ø � P � Ø 
 �
	���
 ������Ih�1
 Ø �
T(V 8Q¢u�:w

The last equivalence is true by Lemma A.16 after identifying � and � of the lemma

with Ó�� and Ò[8 , respectively.

2. The left-to-right direction follows from Remark 3.3.16. For the other direction, sup-

pose that l�Ú1��¢ . Then by Remark 3.3.16 Î	Ù 9 �ZÁP . For any 8|*?�W
R� ,

8~Î÷� TWV [ Ck� 8:�3l�Ú 7 [ CD���¨�7* by Theorem ö¨wÜö¨w�¢ig
TWV � ÃU
BL � �9<��DIa8Q
¯Ã � ÁP � ÃU
BL � � <{��Ih�1
¯Ã �
TWV 8ÀÁ¢ �z* by the Priestley’s separation condition w

Remark 3.3.27. Since we have shown that the trivial apartness relations ( Î � Á¢ ) and

proximity relations ( l�� ¢ ) get translated into each other, it is clear that our representation

theorem is a proper extension of that of Priestley.

Morphisms

Morphism I: Apartness Maps and Proximity Homomorphisms

Lemma 3.3.28. Let <�0 and <(2 be Priestley spaces equipped with apartness relations ÎO0
and Î�2 , respectively, and ;)�307���3*��3*,b¨*e^[�©l�0�@ and ;)�¬2a���3*��3*,b¨*e^i�elJ2?@ be strong proximity

lattices.
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1. For a proximity homomorphism 
=����03$:& ��2 , the map

Ë�ú¬�)ûµ»��G
��3�½Ë�úÒ�)ûµ»��G�¬27�3$:& Ë�ú¬�)ûµ»����30���� Ø 2 $:& 
 5 0 � Ø �7*
is an apartness map.

2. For an apartness map c �i<�03$z& <O2 , the function

Ë�ú,ù�%�� c ��� ËAú?ù�%��9<O27�A$:& Ë�ú?ù�%��9<"0��7�¹Ã·2 $:& c 5 0 � ÃD�7*
is a proximity homomorphism.

Proof. 1. Ë�úÒ�)ûµ»��)
�� is a well defined continuous order preserving map by [20, Theorem

11.31]. For every
Ø *,� 
 �
	�� 
 �G�¬27� ,

ËAú¬�)ûµ»��)
��¹� Ø �¬Î6Ù�·�Ë�úÒ�)ûµ»��)
��¹�G���±��V �G�	�(
�Ë�ú¬�)ûµ»��G
��©� Ø ���
�G�	­�Ä
�Ë�ú¬�)ûµ»��)
'�©�G�����|�Wlk0¬­

��V 
��G���3lJ2A
��G­7�
��V Ø Î�Ù ¸ �O* because 
�������
 Ø

and 
��G­7�vÄ
R��w
2. Ë�ú?ù�%�� c � is a lattice homomorphism by [20, Theorem 11.31]. We prove that it pre-

serves the proximity relation. For every Ã�07*¹Ã�2J
�L{���9<O27� ,
Ã�0Al�Ú ¸ Ã�2X��V Ã�0�Îk2�<O27Y�Ã�2

��V c 5 0 �õÃ�0���Î�0 c 5 0 �9<O2�YDÃ�27�
��V c 5 0 �õÃ�0���Î�0�<"0³Y c 5 0 �õÃ�27�
��V c 5 0 �õÃ�0��3lJÚ:· c 5 0 �õÃ�2��
��V Ë�ú,ù�%�� c �©�õÃ�0��AlJÚ:· Ë�ú?ù�%�� c �¹�õÃ�2��7w
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We define PS to be the category whose objects are Priestley spaces equipped with apart-

ness relations, and whose morphisms are apartness maps. We also define PL to be the the

category of strong proximity lattices and proximity homomorphisms. Therefore theorems

3.3.23 and 3.3.25 and Lemma 3.3.28 show that the classical Priestley duality between dis-

tributive lattices and Priestley spaces can be restricted to the (non-full) sub-categories PL

and PS. To summarise:

Theorem 3.3.29. The functors Ë�ú¬�)ûµ» and Ë�ú,ù�% establish a dual equivalence between the

categories PS and PL.

Remark 3.3.30. All the information about ËAú¬�)ûµ»��)
�� and Ë�ú?ù�%�� c � stated in Remark 3.2.25

is still valid for the general case by Priestley’s representation theorem [20, Theorem 11.31].

Morphism II: Approximable Relations and Separators

As explained in the introduction, to cover all Scott-continuous maps (representing com-

putable programs), between stably compact spaces, Jung and Sünderhauf introduced wider

classes of morphisms for lattices; strong proximity lattices were equipped with approx-

imable and weakly approximable relations (Definition 2.7.2). PLa ( PLwa) is the cate-

gory whose objects are strong proximity lattices and whose morphisms are approximable

(weakly approximable) relations. In this category, the composition is given by relational

product.

The counterpart of PLa (PLwa) is the category PSs (PSws) of Priestley spaces equipped

with apartness relations as objects, and separating (weakly separating) relations (Defini-

tion 3.1.5) as morphisms. To fill all the mathematical gaps, in the following, the first ob-

jective is to introduce the translation between separating and approximable relations. The

other objective is to present identities and a definition of composition, and then show that

the laws for a category are satisfied for PSs and PSws.
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Definition 3.3.31. Let <�0 and <(2 be Priestley spaces equipped with apartness relations Î�0
and Îk2 , respectively, and let ïcP <�0A!Q<O2 be a separating relation. For �m
GË�ú?ù�%��9<�0����L"�:�9<"0�� and ×�
�Ë�ú?ù�%�� <(27�¬�!L"�z� <O27� ,

�+«��	× q?r sT(V �}ï��9<O2�Y[×6�7w
Definition 3.3.32. Let ;)�307���3*��3*,b¨*©^[�elk0ª@ and ;)��2©���3*��3*,b¨*e^[�©lJ2�@ be strong proximity lat-

tices and let « be an approximable relation from ��0 to �¬2 . For
Ø 
GË�úÒ�)ûµ»��G�A0���� �
	�� 
 ���A0��

and � 
�Ë�úÒ�)ûµ»��G�¬27��� �
	�� 
 �G�¬2�� ,
Ø ï��k� q�r9sTWV �)��8Q
 Ø �¹�)���{Ä
�����8~«��zw

The following facts are proved similarly to their counterparts earlier in this chapter.

Lemma 3.3.33. Let <�0 and <(2 be Priestley spaces equipped with apartness relations ÎO0
and Îk2 , respectively, and let ïKP�<�03!�<O2 be a separating relation. For closed subsets

�KP÷<"0 and × P÷<O2 , if � ïE× then there exist Ã�
8L³�:� <"0�� and ÆZ
ñ�
�:� <(2,� such that

�UP÷Ã , ×\P�Æ and Ã¡ï®Æ .

Lemma 3.3.34. Let ;)�30����3*��3*,b�*e^[�elk0�@ and ;)��2©���3*��3*,b¨*e^[�©lJ2�@ be strong proximity lattices

and let « be an approximable relation from �Ô0 to �¬2 . Then

�yx'�W
R�A0��¹�yx'­�
R�¬27���	«Q­�T(V Ã���ï��kFTN?w
Theorem 3.3.35. Let <�0 and <O2 be Priestley spaces equipped with apartness relations ÎO0
and Î�2 , respectively, and let ï P <�0A!Q<O2 be a separating relation. Then the relation

«�� satisfies �G«¯$�lJ27� , ��l�0�$�«|� , �G��$+«|� , �)«¯$���� and �G«{$���� . So it is an approximable

relation between Ë�ú?ù�%��9<~0�� and Ë�ú?ù�%�� <(27� .
Theorem 3.3.36. Let ;)��0,���3*��3*,b¨*e^[�©l�0�@ and ;)�¬2a���3*��3*,b¨*e^i�elJ2?@ be strong proximity lat-

tices and let « be an approximable relation from �Ô0 to �¬2 . Then the relation ï�� satisfies

�9Ò 0 ï�Ó 2 � , �oxAïA� , �7ï�x�� and �7ï�²zÓ�� . Therefore it is a separating relation between Ë�ú¬�)ûµ»����Ô0��
and ËAú¬�)ûµ»��G��27� .
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Lemma 3.3.37. Let ;)�30����3*��3*,b�*e^[�elk0�@ and ;)��2©���3*��3*,b¨*e^[�©lJ2�@ be strong proximity lattices

and let « be an approximable relation from ��0 to ��2 . Let <~0 and <O2 be Priestley spaces

equipped with apartness relations Î	0 and Îk2 , respectively, and let ï%P%<�0A!Q<O2 be a

separating relation. Then

S 8#ï#��TWV [ C�·7�98:�kï���� [ C³¸e���¨� .
S �	«�­�TWV 1Y^ · �G���¬«��;� 1Y^ ¸ �G­7� .

Proposition 3.3.38. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î . Then Î is a

separating relation from < to < .

Proof. � Ò 0 ï�Ó 2 � , �yxAï�� and �7ï¬x�� are clearly satisfied. �¹ï�²zÓ�� is proved by induction on ²
as follows. The cases where ²=��b¨*e^ or ¢ are clear. For the induction hypothesis, suppose

�¹ï�²:Ó�� is true for ²E�¡� and � Â ¢ . We now prove that �¹ï�²:Ó�� is true for ²ð�¡�JæU^ .

Suppose that for some ­�
®< and
� Ð�0:wewew¹*,Ð�w Å 0 � P < , ­vÎJ± 0Qº�ñ�º?w Å 0 Ó ñ ÐÕñ . We note the

following

ô0Qº�ñ�º?w Å 0 Ó�Ð[ñ'� ô0Qº�ñ�º?w Ó�ÐÕñ�Ö~Ó�Ð$w Å 0
�éß � Ó {�I>{A
 ô0Qº�ñ�º?w Ó�Ð[ñ � Ö"Ó�Ð$w Å 0
� ß � Ó {�Ö�Ó�Ð�w Å 0JI<{3
 ô0Qº�ñiº?w Ó�Ð[ñ �

Therefore

­�Î ô0Qº�ñ�º?w Å 0 Ó ñ ÐÕñ:T(V �oxm{3
 ô0Qº�ñ�º?w Ó�ÐÕñ ��­�Î�� Ó {³Ö~Ó�Ð�w Å 0���w
Now let ÏD
�< be such that ­6ÁÎ�Ï and Ï	ÁÎ-Ð?w Å 0 . Then by �GÎkÓÕÓ�� , �yxm{A
 ± 0Qº�ñ�º?w Ó�Ð[ñ9��Ï�Î

{ and by the induction hypothesis there exists ^�¢ñAW¢ � such that Ï�Î-ÐYC which completes

the proof.
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Definition 3.3.39. Let <�0�*�<(2 , and <�� be Priestley spaces equipped with apartness rela-

tions Î�07*�Î�2 , and Î�� , respectively. Let ï�P\<~0A!Q<O2 and ï n P�<(2J!�<�� be separating

relations. The composition ï®��ï n Pu<"0A!Q<�� is defined as follows:

�yx1$®Ï��h� Î � �=ï®�~ï n Ï q?r sT(V �ox'­�
Q<O27���QïÀ­ or ­6ï n Ïhw
The following technical lemma is needed to show that the composition of two separators

satisfies �7ï�²zÓ�� :
Lemma 3.3.40. Let <~0 , and <(2 be Priestley spaces equipped with apartness relations ÎO0 ,
and Î�2 , respectively. Let ï P <~0�!�<(2 be a separating relation. For every �¯
®<�0 and� �Jñ�I�^v¢ ò�¢ ² � P5�=�:� <O2�� ,

�Qï ô ñ �Lñ��'V �yxz8Q
Q<"0����	Î�0�8 or �)�¨ò �|8#ï®�Lñ w
Proof. Suppose by way of contradiction that 8u
 <�0 and Ð[ñ�
u�Jñ such that �uÁÎ60k8 and

�yx:ò ��8UÁïmÐ[ñ . On the other hand, we note that � ïu±EÓ�Ð[ñLPJ±ð�Lñ . Then by �¹ï�²:Ó�� there

exists ò such that 8®ïÀÐÕñ , which is a contradiction.

Lemma 3.3.41. Let <�0,*�<O2 , and <�� be Priestley spaces equipped with apartness relations

Î�07*�Î�2 , and Î�� , respectively. Let ïKPK<~0A!Q<O2 and ï n PK<O2J!�<�� be separating rela-

tions. Then the composition of ï and ï n is again a separating relation.

Proof. Suppose 8ðïu�{ï n � and set F�� � {J
 <(2	I {�ï n � �
. Then F is an open subset of

<O2 with 8ðï��9<O2�Y[F6� . By Lemma 3.3.33, there exist Ã�
8L � � <"0�� and ÆZ
à� � � <(27� such

that 8�
#Ã , <(2�Y[F�P÷Æ and Ã ïEÆ . Therefore �9<(2�YÕÆ��vï n � . By applying Lemma 3.3.33

again, there exists Ã 
<�
�:�9<���� such that �c
 Ã and �9<(27YiÆ6�Rï n Ã . Hence Ã ï}Æ
and �9<O2�YÕÆ6�	ï n Ã implying Ã%ï+�¯ï n Ã . This proves that ï+�¯ï n is open and satisfies

�9Ò 0 ï�Ó 2 � .
�yxAïA� is proved as follows. Let 8�ïU�®ï n � and

� 
E<~0 such that 8�ÁÎ60 � . We claim

that
� ï �=ï n � . Let {J
�<O2 such that

� Áï�{ . Therefore, by �yxAïA��8EÁï�{ , and so {�ï n � , by

definition of composition. Hence
� ï®��ï n � . �¹ï�x�� is proved similarly.
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�¹ï�²:Ó�� is proved as follows. In the following let Fkñ:� � {A
�<(2�I<{kï n ÐÕñ � .

­6ï®��ï n ô ÓÕÐÕñZ��V �yx�á	
Q<O2���­6ï@á or á"ï n ô Ó�Ð[ñ
��V �yx�áh*�{A
Q<O27��­6ï@áh*Xá�Îk2�{ or �)�¨ò ��{Dï n ÐÕñG* by �7ï�²zÓ��
��V �yxm{A
Q<O27��­6ï�{ or �)�¨ò ��{kï n Ð[ñ)* by �7ï�x��
��V ­6ï ô ñ �9<O2�Y[F�ñ � and �ox:òõ��FDñ�ï n ÐÕñ
��V �yx'ÏD
Q<"0��|­ÔÎ60�Ï or �G�¨òõ��Ï	ïu� <(27Y�F�ñ9�

and F�ñ�ï�n�Ð[ñ * Lemma ö�w4ö¨w��Õb
��V �yx'ÏD
Q<"0��|­ÔÎ60�Ï or �G�¨òõ��Ï	ï®��ï n Ð[ñ

Lemma 3.3.42. PSs and PSws are categories.

Proof. For associativity of composition we compute:

8Q�¹ï®�~ï�n_���~ï�n n�� T(V �ox�á6
=<����|8#ï®��ï¬n½á or á~ï�n n��
T(V �ox�á6
=<����©�ox���
Q<O2��|8#ïñ�[*
�Wï¬n½á or á"ï�n n��
T(V �ox���
Q<O2��|8#ïñ� or �Wï n ��ï n n �
T(V 8#ï®�	�¹ï n ��ï n n �|�zw

Identities are given by the internal apartness relations which is a valid choice by Lemma 3.3.38.

They satisfy Î60��~ï®� ï and ï®��Î�2 � ï by definition.

Theorem 3.3.43. The categories PSs (PSws) and PLa (PLwa) are equivalent to each

other.
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� J D� J B� J D
º
�

Ç �

� J B

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 +P� B n D�� n � B n D�� -

+ q n q -
Figure 3.4: The lattice B

3.3.4 Examples

The Unit Interval

Consider the strong proximity lattice:

B-� � ���~��*e^©fG*h]Ö¶:*e^©fy�LI�b�¢!¶~¢���¢U^ � *
where

������*©^©f)*a] ¶:*©^©f �Alm���~� n *e^¹f)*h]Ö¶ n *e^©fy� q?r sTWV � n T·¶:w
It represents the unit interval (with the Scott topology) as a stably compact space under the

Jung-Sünderhauf duality. Figure 3.4 gives a pictorial description of the lattice B .

For a given á6
®]êb¨*e^¹f , we define a horizontal line ´¾´�� and a vertical line � ´�� of the lattice

B as follows:

´¾´��A� � ����áh*e^©fG*h] ¶z*e^©fy�JI�bO¢!¶1¢·á � *N� ´���� � ������*©^©f)*a] áh*e^©fy�LI(á	¢���¢U^ � w
The following facts describe the Priestley space ;�<À�?>L*e¢v*�Î�Ù¨@ which represents B .

1. < is the set of prime filters of B which can be described concretely as follows:

< � � Ø 0� * Ø 2� *,� 0� *,� 2� I�b	¢·á6¢�^ � *
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� J D� J B� J D

� J B

��� �P  ¿]& ¡»G¢ 0¿]& ¡

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 +P� B n D�� n � B n D�� -

+ q n q -
� J D� J B� J D

¼v£ 2¿]& ¡

� J B

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

4 +P� B n D�� n � B n D�� -

+ q n q -
Figure 3.5: The prime filters

Ø 0¿]& ¡ and � 2¿]& ¡ of the lattice B
where Ø 0� �uÒ�´¾´��e* Ø 2� �uÒ�´¾´���YL´¾´��e*¬� 0� ��Ò � ´�� and � 2� �uÒ�� ´���Y¤� ´��ew
A pictorial descriptions of

Ø 0¿]& ¡ and � 2¿]& ¡ is given in Figure 3.5.

For a computational interpretation, assume some concrete representation of real num-

bers as finite and infinite streams of digits. A stream that begins with b¨w4g and then

stops explicitly (indicating that all following digits are zero) corresponds to value

� 2¿]& ¡ in that it validates all tests 8[Tub¨w4g³æ [ with [ ëub . On the other hand, a stream

that begins with b¨w¥� and then produces j ’s forever, corresponds to � 0¿]& ¡ in that the test

8�T+b¨w g does not produce “false” in finite time. No test can distinguish between the

two streams by looking at a finite initial segment of digits; the most we have is a test

( 8IT b¨w4g ) which terminates for one and never answers for the other.

2. ¢ð�-P . Figure 3.6 shows the space < .

3. The following collection is a sub-basis for > ,

ì'��>A��� � Ó Ø 2� *�Ó�� 2� *�Ò Ø 0� and Ò�� 0� I�b�¢bá6¢�^ � w
4. �ox:�j�e*��j�o�³
�<{���r�3Î�ÙW�j�o�zT(V á3ë;á n .
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Figure 3.6: The space <
Proof. 1. It is clear that < P �
	�� 
 �GBv� . For the other direction, let

Ø 
 �
	�� 
 �GBv� . IfØ � BvY � ��ª �
or

Ø � � ö'ª �
then

Ø
is clearly in < . Therefore we assume thatØ

does not have any of these forms. We also assume that
Ø Á
 � Ø 2� *,� 0� *,� 2� I:b¯¢á=¢Z^ �

. we claim that
Ø � Ø 0� for some bR¢�á=¢ ^ . Suppose ������0�*©^©f)*a] ¶�0�*e^¹f ��
Ø *h���~�[0�*e^©fG*h]Ö¶Õ2¹*e^©fy�kÁ
 Ø
and ¶Õ2{ë·¶�0 . As

Ø Á
 � � 0� *,� 2� I�b	¢·á6¢U^ �
, there must exist

���~�h2e*e^©fG*h]Ö¶ �©*e^©fy��
 Ø
and ���~�[0�*e^©fG*h]Ö¶ �©*e^©fy�OÁ
 Ø

such that ¶[2 Â ¶;�`ë-¶�0 and ��2«T¬�[0 .
Hence

�����Õ07*e^¹f)*h]Ö¶�0,*e^¹f �³�¯���~�h2a*e^©fG*h]Ö¶;�©*e^©fy�¬�K���~�[0�*e^©fG*h]Ö¶ �©*e^©fy�DÁ
 Ø
which is a contradiction. Therefore

���~�[0�*e^©fG*h]Ö¶¨0?*e^©fy�A
 Ø ��V ´¾´�­�·AP Ø w
So

Ø 
 � Ø 2� * Ø 0� Iab(¢éáO¢ ^ �
but

Ø Á
 � Ø 2� IhbW¢ká(¢m^ �
. Hence

Ø � Ø 0� for some

b	¢bá	¢�^ .

2. By definition, ¢c�-P .

3. For ���~��*e^©fG*h] ¶z*e^©fy��
RB ,

(a) < r�r ­¯®â0±°²®
³ a�®â0±° t���Ò Ø 0­ +�Ó�� 0a ,
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(b) < Y3< rir ­´®â0±°²®
³ a�®â0±° t ��Ó Ø 2­ +"Ó�� 2a , and

(c) < r ³ ¿�®â0±°²®
³ ¿�®â0±° t �u< and < r¶µ ® µ t �k4 .

Hence the set
� Ó Ø 2­ + Ó�� 2a *�Ò Ø 0­ + Ò�� 0a I bð¢v¶÷¢ áó¢ ^ �

is sub-basis for > and

therefore the
� Ó Ø 2� *�Ó�� 2� *�Ò Ø 0� *�Ò�� 0� I�b	¢·á6¢�^ �

is a also a sub-basis for > .

4. Let �j�e*��j�o�³
=< be such that �j�AÎ��r�o� . Then there exist 8³0��K�����Õ0,*e^©fG*h��¶�0�*e^¹f �A
R�r�
and 8z2A�K���~�h2e*e^©fG*h��¶[2¹*e^©fy�A
�B�Y�� n� such that 8³0�lrª~8�2 and we have

8�0Aljª�8�23�'V ]Ö¶¨0,*e^©fy�APm�~�h2a*e^©fz��V ¶�0Dë���2ew
But we have ¶¨0A¢bá because 8³03
=�j� and �h2 Â á n because 8z2�Ä
=� n� . So we get

á Â ¶¨0¤ë��h2 Â á n ��V á`ë�á n w
Let �r�e*?�r� � 
�< be such that áGëJá n . Let 8�0	�t����á n æ � r � 5 � � t· *e^©fG*h]'á n æ � r � 5 � � t· *e^©fy�
and 8�2J�Z����á n æ � 5 � �· *©^©f)*a] á n æ � 5 � �· *e^©fy� . Then 8�0J
 �r� and 8z2v
#BvYi�r�o� . Moreover,

8�0Aljª�8�2 because ]'á n æ � r � 5 � � t· *©^©f �APm��á n æ � 5 � �· *e^©f . Therefore �j�3Î÷�r� � .
ç êç ê denotes the the chain ç with ä adjoined as a top element. We define a topology > onç ê as follows:

Ã�
R> q?r sTWV ä Ä
¯Ã or ��ä 
¯Ã and ç ê Y�Ã is finite �7w
;�ç ê *?>A@ is a Priestley space and its lattice of clopen upper sets is isomorphic to the chain

;�ç¡�\^[* Â @ [20]. In the following table, the left-hand side column shows examples of

apartness relations, on ;�ç ê *�>3@ . Their corresponding proximity relations on ç5�¡^ are

shown in the right-hand side column of the table.
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Î on ç l�Ú on çñ�÷^ë Â
Â Y���ä÷*¬ä � Â + � �9²�*?²Õæu^h�JI�²R
Fç �
Ò�ÏD!QÓÕÏA$ ^ , for some b¸T ÏD
Bç ²�l�Ú~� q?r sT(V ²��+b¨*�� �m^ or ² Â Ï Â �

The Cantor ’middle third’ Set

The Cantor ’middle third’ set
�

considered as a subset of ] b�*e^©f and ordered by the natural

order of reals is a Priestley space [20] and its lattice of clopen upper sets is isomorphic

to the chain × � � 4 * ��� + Ø Å , where
Ø ÅU� � Ø I Ø

is a removed interval
�
, ordered as

follows: Ø 0A¢ Ø 2 q�r9sTWV Ø 0APcÒ Ø 2ew
The following table shows two apartness relations on

�
and their corresponding proximity

relations.

Î on
� lJÚ on ×ë ¢

�9Ò?áÔÖ � ��!À� Ó?áÔÖ � �7*]á6
 Ø 
 Ø Å Ø 03l Ø 2 q�r9sTWV Ø 0¬�é4 * Ø 23� �
or

Ø 0A¢ Ø ¢ Ø 2
The Algebraic Chain

Let
�

be an algebraic chain and > be the interval topology on
�

. Then ; � �?>A@ is a Priestley

space and its lattice of clopen upper sets is

× � � 4 * �	� + � Ò½¶RI_¶ is finite
� w

Fix a finite element 
=
 �
. Then the binary relation

Î�¶D�uÒ�
�!#�9Ó�
�Y[
'�7w
is an apartness on

�
and its corresponding proximity relation on × is defined as follows:

ÃUlJÚw¹DÃLn q�r9sTWV Ã+�k4 *7ÃJn � �
, or �õÃ+��Ò?¶:*¹ÃLn�� Ò½¶�n and ¶ Â 
 Â ¶�np��w
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Ordinals

Let < be the set of all ordinals less than or equal to an ordinal � ;i.e.

<�� � z I z ¢!� � *
and > be the order topology on �|� i.e the topology which has a sub-basis consisting of open

intervals: � z I z ¢gº �
and

� z I�º ¢ z ¢!� � *�º ¢!�³w
Then ;9<À�?>A@ is a Priestly space [11, chapter 1] and its lattice of clopen upper sets is

× � � 4 *�Ó½� � + � Ó½�:Y�Ó�ºóI�º ¢!� � w
Fix an ordinal 
R
Q< . Then the binary relation

Î�»v� �9Ó½�zY�Ó;
'�Ô!#�9Ó 
'�7w
is an apartness on < and its corresponding proximity relation on × is defined as follows:

Ã�l�Ú½¼�ÃLn#q?r sT(V Ã+�k4 *¹ÃLn �uÓ½� , or �õÃ���Ó½�:YhÓ,\�*¹ÃLn¨��Ó½�:YhÓ,\�n and \ Â 
 Â \�n_�7w
Remark 3.3.44. Let º be an ordinal which is not a limit ordinal and > be the order topology

on º . Fix an ordinal 
XT�º . Then Î'» is an apartness on the Priestley space ;~º��e¢v*?>3@ . This

so because ºR�é�`æ�^ for some ordinal � and the order type of º is
� \ðI�\iT�º � �uÓ½� .

The Power Set

Suppose � is a set and ;¯¾�������*eP�@ is equipped with the topology > that have the following

subbasis: � Ò � � � *(¾�������YhÒ � � � I_��
8� � w
Then ;¯¾�������*ePv�?>3@ is a Priestley space [20]. Fix ��
8� . Then the binary relation :

ÎÀ¿��uÒ � � � !®�Á¾�������Y�Ò � � � �
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is an apartness on ¾������ .
Clopen upper subsets of ¾������ are precisely the sets of the form

ÃxÂ�� � ��Pk�uI � ��07*ew©wew¹*µ�,� � P � and ;o��0�*ew©wew¹*µ�,�[@3
 Ã0Qº�ñ�º?� Ø ñ � *
where

Ø � � Ø ñ�PJ¶?ñ��ã� I�^"¢ òD¢ ² �
. Therefore l�ÚÅÄ is defined on clopen upper sets as

follows:

ÃUl�Ú Ä ÃLn q?r sTWV Ã÷�k4 *¹ÃLn¨�!L � �¯¾��������7* or �õÃ+�-Ã�Â�*¹ÃLn��-Ã�Âð��*
Ø ñ'� � � � for some ò and �"Ä
 ß ÃLnÂ w

3.4 Indistinguishability vs. Apartness

We noted in Lemma 3.3.26 that the proximity relation on a strong proximity lattice is the

lattice order ( l+�m¢ ) if and only if the corresponding apartness relation on the representing

Priestley space is the complement of the space’s order ( Î��ZÁ¢ ). This observation suggests

representing the negation of the proximity relation (rather than the proximity relation itself

as we have been doing so far). In other words, representing the negation of the proximity

relation looks promising in terms of obtaining a simpler binary relation on the other side of

the duality (the side of Priestley spaces). The important question now is the following:

How would the primary definitions of interest (apartness relations on ordered

sets and Priestley spaces and (weak) separators) look like provided that we

represent the negation of the proximity relation rather than the proximity rela-

tion itself?

In the following, we introduce the answer to this question.

Definition 3.4.1. A binary relation Î on an ordered set ; � *e¢�@ is co-apartness if, for every

��*�{�*�8|*?�W
 �
,
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1. ¢���Î���¢�P�Î .

2. Î���Î��÷Î .

3. �G�:{3
 � �|�	ÎÆ{�Î÷8|*?�6��V �G�:{ n 
 � ���6ÎÆ{ n ¢c8|*�� .

4. �G�:{3
 � ��8|*?��ÎÇ{¬Î�����V �G�:{ n 
 � �³8|*�� Â { n Î-� .

where �+Î-× is a shorthand for �	Î-­ for all �W
=� , ­�
R× .

Remark 3.4.2. 1. For any ordered set ; � *©¢D@ , ¢ is a co-apartness.

2. Î is a co-apartness on ; � �©¢D@ if and only if Î 5 0 is a co-apartness on ; � � Â @ .
Definition 3.4.3. A binary relation Î on a Priestley space ;�<À�e¢v*?>A@ is co-apartness if

1. Î is closed in ;9<À�?>A@�!#;�<À�?>A@ .
2. Î is an apartness on the ordered set ;�<=*e¢�@ .

Definition 3.4.4. Let ;9<�0,�e¢�07��>�0G@ and ;�<O2e�e¢L2a*?>�2�@ be Priestley spaces equipped with co-

apartness relations Î60 and Î�2 , respectively, and let ï be a binary relation from <�0 to <O2 .
The relation ï is co-separating (or co-separator) if it is closed in >30�!�>�2 and if, for every

�W
Q<"0 and
� ÐÕñ¬I�^�¢ ò�¢ ² � Pc<(2 ,

1. ¢k0���ï®�O¢L2JP}ï .

2. ï®�÷Î60¬��ï .

3. ï®�¡ï®��Îk2 ,
4. �G�:{3
Q<"0��|�	Î60�{kïÀÐ¨0�*ew©wew©*,Ð��v�'V �G�:{ n 
Q<O2����=ï�{ n ¢uÐ 0,*ewewew¹*,Ð�� .

The relation ï is weakly co-separating if it is closed and satisfies all of the above condi-

tions, but not necessarily the last one.
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From the proofs established using apartness relations, in this chapter, two facts should

be clear now:

1. Priestley spaces equipped with co-apartness relations and co-separators (weak co-

separators) between them are indeed the objects and morphisms, respectively, of a

category. We let this category denoted by CPSs (CPSws).

2. The whole theory established in this chapter can be represented using the categories

CPSs and CPSws rather than PSs and PSws. The results that we would get using

the former categories are analogous to that we have proved in this chapter using the

latter categories.

We prefer to work with the categories PSs and PSws rather than with CPSs and CPSws

for two reasons:

1. Binary relations that are very similar to apartness relations occur naturally in con-

structive mathematics. Therefore our terminology suggests that apartness relations

on Priestley spaces are related to, for example, Giuseppe Sambin’s pre-topologies,

[95, 96, 9]; this is indeed the case as follows. Let ;�<À�e¢v*?>A@ be a Priestley space

equipped with apartness Î . A lower set F in < is said to be isolated if

FU� � 8=
Q< Ia<{Y[FUÎ+8 � w
The set of all open lower isolated subsets of < is denoted by ��»aù Ô �9<{� .
Theorem 3.4.5. Let ;�<#�e¢�*�>3@ be a Priestley space equipped with apartness Î . Then��»aù Ô �9<{� is closed under finite intersections. Therefore ;*��»aù Ô �9<{����Ö3*�<{@ is a commu-

tative monoid. The relation È on ��»aù Ô � <{� , defined by

F�0�È®FD2 q?r sT(V F�0�Î��9<{Y[FD2,�7*
satisfies the requirements for a precover in the sense of [96].
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2. Experiments show that working with apartness relation is mathematically more con-

venient; proofs established using apartness relations are more tidy than proofs estab-

lished using the co-apartness relations.



Chapter 4

Stably Compact Spaces in Priestley

Form

4.1 Introduction

In [54], the category PLa, of strong proximity lattices and approximable relations between

them, was proved to be equivalent to the category SCS, of stably compact spaces and

continuous maps between them. In the previous chapter, we have extended Priestley duality

to cover the class of strong proximity lattices; this was done via equipping the Priestley

spaces with an apartness relation. It was shown that the category PSs, of Priestley spaces

with apartness and separating relations between them, is dual to the category PLa.

The facts mentioned above imply immediately that the category PSs is dual to the cat-

egory SCS. But is there a direct translation between these two categories? In other words:

What is the direct relationship between Priestley spaces equipped with apart-

ness and stably compact spaces ?

The answer, which we will develop in this chapter, will take the following form:

For a Priestley space ;�<À�e¢v*?>A@ with apartness Î and ��*,×}Pc< we define:

126
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1. ÎO]â�Jf�� � 8�
R< I�8�Î�� �
and ]â�JfyÎm� � 8Q
Q< I��÷Î+8 �

, where, as before, ��ÎU×
is a shorthand for �6Î-­ for all �(
=� , ­J
R× .

2. ø,ù�ú?ûÕ�9<{�¬� � 8=
Q< I¨]â8�fyÎ���<{Y�Òi8 �
.

3. > n � � F Ö®ø,ù�ú?ûÕ�9<{�JI�F is an open upper subset of < � w
One of our primary results, then, is the following:

Theorem 4.1.1. Let ;�<À�©¢�*?>A@ be a Priestley space with apartness Î . Then ;�ø,ù�ú?û�� <{�7*?> n @
is a stably compact space. Moreover, every stably compact space can be obtained in this

way.

The second objective of this chapter is to extend the Jung-Sünderhauf representation

theorem for stably compact spaces to cover coherent spaces. In other words, we will re-

move the compactness requirement on the topological side of Jung-Sünderhauf duality.

4.1.1 Organisation

The chapter is organised as follows. Section 4.2 presents some preparatory results that are

necessary for the following sections. Sections 4.2 and 4.3 investigate the direct relationship

between Priestley spaces equipped with apartness relations and stably compact spaces. The

relationship between frame homomorphisms, continuous maps and separators is studied in

Section 4.4. This leads to the result that the categories SCS and PSs are dual equivalent.

Section 4.5 uses Priestley spaces with apartness to prove some facts about the co-compact

topology of a stably compact space. In section 4.6, we link the notions of isolated set and

round filter. In Section 4.7, we extend Jung-Sünderhauf duality for stably compact spaces

to cover coherent spaces.
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4.2 Preparatory Results

Definition 4.2.1. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î and let � be a subset

of < . Then

1. ÎO]â�Jf�� � 8 
 < I¬8UÎX� �
and ]ê�Lf Î � � 8Q
Q< Ih�+Î+8 �

, where �tÎX× is a

shorthand for �	Î-­ for all �(
=� , ­�
=× .

2. An upper set Ã\P-< is said to be isolated if Ã � ÎW] <{Y�ÃLf . A lower set /�PU< is

said to be isolated if / �\] <{Y[/(fyÎ . The set of all upper isolated open subsets of <
is denoted by ��»aù�É�� <{� and the set of all lower isolated open subsets of < is denoted

by ��»aù Ô �9<�� .
3. ø,ù�ú?ûÕ�9<{�¬� � 8=
Q< I¨]â8�fyÎ���<{Y�Òi8 � � � 8Q
Q< I�<ZY3Ò[8 is isolated

�
.

Remark 4.2.2. For every 8Q
Eø,ù�ú?û�� <{�7*�8ÀÁÎ+8 .

The following lemma follows from condition �)ÎJx�� in the definition of apartness relation

(Definition 3.1.1).

Lemma 4.2.3. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î , �(
Q< and Æ�*?×\Pc< .

Then

�	Î�Æ and <{YÕÆUÎ-× ��V �	Î�×Ww

An Example

Consider the unit interval example shown in detail in Section 3.3.4. Let b"¢Iá1¢K^ . Then

�+�uÒ�� 0� and ×j�A�-ÿ �o�ËÊ�� Ò�� 0�o� are open upper subsets of < . We note that � is not isolated

because � 2� 
 <{Yi� and � 0� ÁÎ � 2� which means that �XÁ� ÎO]â<{Yi�Lf . On the other hand,

×j� is isolated because, clearly, ×��L� Î(]â<�Y[×j��f . Moreover,
� ×��6IÕb1¢5áW¢ ^ �

is the set of

isolated upper proper subsets of < .

Lemma 4.2.4. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î . Then
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1. For a closed subset
�

of < , Î(] � f|
@��»aùÌÉ��9<�� .
2. For every upper isolated open set � , ���Uÿ � � ÎO]ÜÆ�f¬I�Æ�
�� � �9<{� and �T+=ÆU��< �

.

Proof. 1. By Lemma 3.3.4, ÎO] � f is a union of clopen upper sets and hence is an open

upper set. We have

8~Î � T(V �yx:�¨��8~Î÷� or �	Î �
by �)ÎDx��

T(V �yx:�=ÁÎ � �³8~Î÷�
T(V �yx:�W
®�9<{YiÎW] � fy�|8"Î÷�
T(V 8~Î�� <{Y[Î(] � f ��w

This completes the proof of ^ .

2. The equality in (2) follows from Lemma 3.3.4 together with the fact that � is isolated

as follows. From ����ÎW] <{Y_�Õf we get for all 8®
ñ� , 8¯Î}<�Y_� . Both
� 8 �

and <{Y_�
are closed, so we can apply Lemma 3.3.4 to obtain Ã�
!L � � <{� and Æ 
-� � �9<��
such that 8 
ÀÃ�*�<{Y_��P�Æ and Ã�ÎKÆ . In other words, �T+QÆ��÷< and 8¯
#ÎO]ÜÆ�f .
For the directness of the union, let Æ�ñ�
·�=�:�9<{��*e^1¢ òk¢<¢�* such that Æ�ñ½+��Q� < .

Then clearly Æ�0|Ö�Æ�2L
@�=�:�9<�� , �GÆ�0�Ö=Æ�2��¨+��6��< and ÎW] Æ�0õfG*�ÎW] Æ�2�f|P�Î(] Æ'0|Ö=Æ�2�f .

Corollary 4.2.5. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î . Then

�oxz8R
Q<{��ÎW] 8�f|
@��»aù�É��9<��7w
Theorem 4.2.6. Let ;9<À�e¢v*?>3@ be a Priestley space with apartness Î . Then ;���»aù;É��9<��7�eP�@
forms an arithmetic lattice in which ^à� ^ . The following statements are true for all��*m��
@��»aù�É��9<�� and

� �ma � a��,ÓcPI��»aù�É��9<{� :
1. ¹ a��}Ó �maJ�÷Î(] ÿ a��}Ó �9<{Yp�maa�õf . Finite infima are intersections.
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2. � a��}Ó �maJ�÷Î(] ± a��}Ó �9<{Yp�maa�õf . Directed suprema are unions.

3. �`� �QTWV �)�	ÆK
G� � � <{���z�	ÎUÆ and Æ·+ ����<=w
Proof. 1. Let � denotes the r.h.s. of ^ . By Lemma 4.2.4(1), � belongs to ��»aù;É�� <{� . It is

clear that � is contained in all �,a . For the converse, let � be an isolated open upper

set contained in all �,a . Then �#� ÎW] <{Y_�Õf and <{YY�;V�ÿ a �9<{YY��aa� . Since <{YY� is

closed, also <{YY�GV ÿ a � <{YY�ma©� . Hence �#P\ÎO] ÿ a � <{Y_��aa��f . If the H is finite, then

<{Yp�7V�ÿ a �9<{Y_��aa�
ÎW] ßa��}Ó �9<{Y_��aa�õf:�÷ÎW]¬ßa��,Ó <{YY�ma�f:� ôa��,Ó ÎW] <{Y_��a¹f:� ôa��}Ó ��a�w

2. Let × denotes the r.h.s. of ¢ . Again by Lemma 4.2.4(1), × belongs to ��»aù�É�� <{� . It

is clear that × is the least upper bound of
� �}a � a��}Ó . If

� �ma � a��}Ó is directed, then we

show that ×}P+ÿ a��,Ó �ma as follows:

8=
R× ��V 8"Î ôa��,Ó <{YY�ma
��V �G�	ÆK
G� � �9<{���|8"Î�Æ and ôa��,Ó � <{YY�ma©�3P�Æ�* by Lemma ö¨wÜö¨w��
��V �G�3¶~
=H��|8=
B�makP ßa��,Ó �maiw

The last implication is true because ÿ a��,Ó �ma is an open cover to the compact set

<{YiÆ . Hence by directness of
� �,a � a��}Ó , <�YÕÆ is contained in �,a for some ¶ð
+H .

Therefore 8"Î��9<{Y_�mae� implying 8=
#�ma .
3. The implication from left to right in ��öÕ� follows immediately from Lemma 4.2.4(2).

For the converse assume the right hand side, and let �uP ÿ � a �$a in ��»aù<É��9<{� . Since

<{YiÆ is compact, for some ¶ , Æ!+8� aQ�%< , or <{Y½�$a{P Æ . From this it follows

that �$a1�%ÎO]â<�Y½�$a¹f³V Î(]ÜÆkf and the latter is a superset of � by assumption. With

this characterisation, the continuity of ��»aù;É�� <{� now follows from Lemma 4.2.4(2).
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< � < follows by setting Æ �K4 in ö . The way-below relation on ��»aù�É��9<{� is

multiplicative:

�`� ��* Ø ��V �)�	Æ'07*�Æ�2L
�� � �9<{����Æ'0¨+8�=� <=*�Æ�2�+ Ø ��<Q*X��Î�Æ'0�+=Æ�2
��V Æ�0�+=Æ�2L
G� � �9<{��*��GÆ�0¨+QÆ�27�¨+ �Q�(Ö Ø �¬�u< and �	Î�Æ�0�+=Æ�2
��V �d� �(Ö Ø w

Finally we prove that ��»aù�É�� <{� is distributive.

8=
B�k�#�Q�(� Ø �¬�·�kÖ#�Q�(� Ø �±��V 8"Î\� <{Y_��� and 8~Î�� <{Y �:� + Ø ���
��V 8"Î\� <{Y ���kÖ#�Q�g+ Ø �����
��V 8"Î\� <{Y �����kÖ8�|�¨+ ���kÖ Ø �����
��V 8"Î\���9<{Y¨���k�8�|�³Ö � <{Y����D� Ø �����
��V 8Q
ó����� �|�³�#���k� Ø ��w

The other inclusion is always true.

The following corollary follows from Table 2.1 that is given in Section 2.4.

Corollary 4.2.7. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then the point

topology � � ����»aù�É�� <{��� on ��»aù�É�� <{� is a stably compact space whose lattice of open subsets

is isomorphic to ��»aù�É�� <{� .
In the following, ¯ �
	�� ����»aù�É��9<{��� denotes the set of Scott-open filters in ��»aùÌÉ�� <{� .

Lemma 4.2.8. Let ;�<À�©¢�*?>A@ be a Priestley space with apartness Î , 8 
 < ,
�

a closed

subset of < , and °c
G¯ �
	�� ����»aù�É�� <{��� . If ��� � 8=
Q< IiÎO]â8�f�
F° �
then

1. ÎO] 8�f�
#°®TWV �)��Æw#�
G�=�:� <{����8R
�ÆÅ#[*�ÆÅ#vPu� and Î(] Æw#ef|
F° , and

2.
� P���T(V ÎO] � f|
F°Dw
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Proof. 1. The left-to-right direction is obvious. For the other direction we have

ÎO]â8�f�
F° �'V �)�	ÆK
@� � � <{����ÎW] 8�f +=ÆU��< and ÎW] Æ�f|
#°D* by Lemma �¨w�¢�w�����¢[�
�'V �9<�YÕÆ���Î+8 and Î(]ÜÆkf|
F°
�'V �)�	ÆÅ#�
G� � �9<{���³8Q
�ÆÅ#Õ*Ô�9<�Y[Æ6�¬ÎUÆw#i*�ÎO]ÜÆvf|
#°
�'V �yx8�W
�Æw#h��Î(]ÜÆvf�P÷ÎO] Æw#ef|P�ÎO]���fG* and Î(] Ævf³
8° by Lemma � w�¢�w4ö
�'V ÆÅ#�PÆÍk��°Ô� and ÎW] Æw#¹f|
F°Dw

2. The right-to-left direction is proved as follows. For every Ïó
 �
, ÎW] � fWP Î(] Ï,f

implying Î(]êÏ,f|
F° . Therefore for every ÏD
 �
, Ï�
=� .

The other direction is proved as follows. By the first part of the lemma for every

Ï�
 �
, there exists a clopen lower set Æâ� such that Ï�
®Æs�ÔP�� and ÎW] Æs�Gf¬
í° . The

set
� Æs�kI�Ï�
 �	�

is an open cover to the compact set
�

. Therefore a finite subcover� Æ¾��®�I�^�¢ ò�¢ ² �
exists. Now it is easy to check that

ô ñ �)ÎO]ÜÆ¾��®yf ���÷Î(] ß ñ Æ¾��®yf|P�Î(] � f and ô ñ �)Î(]ÜÆ¾��®yf �A
F°Dw
Therefore ÎO] � f|
F° .

Lemma 4.2.9. Let ;9<À�e¢v*?>3@ be a Priestley space with apartness Î . Then ��»aù Ô �9<{� .�¯ �
	�� ����»aù�É��9<���� via the mappings:

Íu�ð¯ �
	�� �:��»aù�É��9<{���A$'& ��»aù Ô �9<{���µ°í2 $:& � 8Q
Q< I�ÎW] 8�f|
F° � * and

Î �¾��»aù Ô �9<��A$'& ¯ �
	�� ����»aù<É��9<����7� Ø 2 $:& � �1
G��»aù<É��9<{��I Ø +����u< � w
Proof. We show that Í is well-defined. Ík��°Ô� is open lower because it is a union of clopen

lower sets by Lemma 4.2.8(1). It remains to show that ] <{Y Ík��°Ô�õf Î+��Ík��°Ô� . This is proved
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as follows.

ÎO]â8�f|
#° ��V �G�	Æ�
�� � �9<{���A�9<�Y[Æ6�¬Î+8 and Î(]ÜÆ�f³
F°D* by Lemma � w�¢�w¥����¢[�
T(V �G�	Æ�
�� � �9<{���A�9<�Y[Æ6�¬Î+8|*�Æ�PÏÍk��°Ô��* by Lemma � w�¢�wÜd���¢i�
��V <{YÌÍk��°Ô��Î+8|w

The other direction of the first implication is also true as follows. By �GÎ�x��
�ox:�1
=<{�³��Î�ÆU��V ��Î+8|* because � <{YÕÆ���Î+8|w

Therefore ÎO]ÜÆ�fAPKÎ(] 8�f . Hence Î(]â8�fA
à° because ÎW] Æ�f�
;° . The other direction of the

last implication is also true by Lemma 3.3.4.

Clearly
Î � Ø � is an upper set and closed under finite intersections. We show that

Î � Ø �
is Scott-open. Let

� �XC � Cµ�<Ð be a directed family in ��»aù�É��9<{� such that � �C¬�>Ð �XC 
 Î � Ø � .
Then by the directness of

� �µC � C¬�>Ð and compactness of <{Y Ø
we have

ßCµ�<Ð �]C�
 Î � Ø �¬��V <�Y Ø P<ßC¬�>Ð �XC���V �)�3¶ �³<{Y Ø Pb��aL��V ��ak
 Î � Ø �7w
Clearly Í and

Î
are monotone. We now show that they are inverses of each other. We

have Î �rÍk��°Ô��� � �W
@��»aù�É��9<��JI(�O+IÍk��°Ô����< � �é°Dw
This is true because by Lemma 4.2.8(2)

�O+ÑÍk��°Ô���u< TWVX<{YY�(PÏÍk��°Ô��T(V �6�-Î(] <{YY�Õf|
F°Dw
We also have

Í¯� Î � Ø �¬� � 8Q
Q< I�ÎW] 8�f½+ Ø ��< � � Ø w
This is true because

8Q
 Ø T(V �9<�Y Ø �¬Î÷8"TWV �9<{Y Ø �AP�ÎW] 8�f:TWV ÎW] 8�f + Ø �u<=w
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The following corollary follows from Table 2.2, given in Section 2.4, of correspon-

dences between concepts on the topological and localic sides of Stone duality. In the fol-

lowing, for a topological space < , let N(C denote the set of compact saturated subsets of

< .

Corollary 4.2.10. Let ;�<À�©¢�*?>A@ be a Priestley space with apartness Î . Then ;*��»aù Ô �9<��7*eP�@
and ;GN �¬ò r�Ò�Ó �¯Ô r C�titª*,V�@ are isomorphic.

The following lemma is the first step towards smoothing the way in which we get stably

compact spaces from Priestley spaces equipped with apartness relations.

Lemma 4.2.11. Let ;9<À�e¢v*?>3@ be a Priestley space with apartness Î . Then ø,ù�ú?ûÕ�9<{� is

isomorphic to � � �:��»aù�É��9<{��� .
Proof. By definition of ø,ù�ú?û�� <{� (Definition 4.2(3)), it is enough to show that the maps of

Lemma 4.2.9 are well defined when restricted to lower isolated sets of the form <{Y�ÒÕ8 ,

where 8=
Eø,ù�ú?û��9<{� , and completely prime Scott-open filters. Suppose 8Q
Eø,ù�ú?û�� <{� .
Î � <{Y�Ò[8:��� � �(
@��»aù�É��9<{�JI¨�9<�Y�ÒÕ8:�z+ã��� < � � � �W
í��»aù<É��9<��DIa8Q
#� � w

Let
� �¹ñ � ñ��m�LPI��»aù�É�� <{� such that � ñ��,� � �7ñ � 
 Î �9<{Y�Ò[8:� . Then

8=
 �ñ��m� � �¹ñ � T(V 8"Î+<{Y
ßñ��m� �7ñ�T(V <{Y
ßñ��m� �¹ñ�Pm] 8�f ÎU�u<�Y�ÒÕ8~TWVX8=
 ßñ��m� �¹ñ)w
Hence

Î � Ø � is completely prime.

Suppose ° is a completely prime element in ¯ �
	�� ����»aù�É�� <{��� . Set
� �Z<{Y Ík��°Ô� . We

first show that
� Á� 4 . Suppose < �ÕÍk��°Ô� . Then by Lemma 4.2.8(2), ÎW] <=fJ
é° . For

every �1
@��»aù<É��9<��
<{Y_�1Pc<���V Î(] <=f|P�Î(]â<{Yp��f:�!�zw

Therefore every �1
G��»aùÌÉ�� <{� belongs to ° because ÎO] <=f does. Hence °®�-��»aùÌÉ��9<�� which

is a contradiction because ° is a proper subset of ��»aù;É�� <{� as a completely prime filter.
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Therefore
� Á�k4 . We show that

� ��ÒÕ8 for some 8=
Q< . For the sake of contradiction we

assume that
�

has more than one minimal element. Let � be the set of minimal elements

in
�

. For two different elements ��*,­ of � , there exists a clopen upper set Ã=� containing

� but not ­ . The set
� Ã��óI��u
U� �

is an open cover of
�

which is compact because it

is closed. Then a finite sub-cover
� Ã��*® � 0Qº�ñ�º?� exists. Therefore

� P ÿ 0Qº�ñ�º?� Ã���® . Hence± 0Qº�ñiº?� <{Y�Ã���®�PÏÍk��°Ô� . This implies, by Lemma 4.2.8(2), ÎO]�± 0Qº�ñ�º?� <{Y�Ã��*® f|
F° . But we

have, By �GÎkÓÕÓ�� ,
Î(] ô0Qº�ñ�º?� <{Y�Ã��*® f|P�ÎW] <{Y ß0Qº�ñ�º?� Î(]â<�Y�Ã���® f�f:�+ÎW] ô0Qº�ñ�º?� <{YÕÎO] <{Y�Ã��*® f f:� �0Qº�ñ�º?� Î(]â<{YÕÃ���®9f)w

Therefore � 0Qº�ñiº?� Î(] <{Y�Ã���®9f|
#° . Hence there exists ò such that Î(] <{Y�Ã���® f|
F° . Therefore

<{Y�Ã���®¬P�Ík��°Ô� and
� P�Ã���® . The last implication is a contradiction because Ã=��® does not

contain one of the minimal elements of
�

. Hence Ík��°Ô����<{Y�ÒÕ8 for some 8=
Q< .

Remark 4.2.12. As the definitions of ��»aù;É�� <{� and ��»aù Ô �9<{� are dual to each other and by

Remark 3.1.4.2, every result obtained above about ��»aùÌÉ��9<�� has a dual fact concerning��»aù Ô �9<{� .
Definition 4.2.13. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then > n is the

topology on ø,ù�ú?û�� <{� defined by

> n � � ø,ù�ú?û[�9<��³Ö���Ih� is an open upper set in < � w
Lemma 4.2.14. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then the topology > n
defined above on ø,ù�ú?ûÕ�9<{� can be equivalently defined as follows

> n � � ø,ù�ú,ûÕ�9<���Ö Ø I Ø 
@��»aù�É�� <{� � w
Proof. Let � be an open upper subset of < and set

Ø �-ÎO]â<�Yi�Jf . Then by Lemma 4.2.4(1)Ø 
@��»aù�É�� <{� . Let 8=
Eø,ù�ú?û��9<{� . Then

8=
Q�÷T(V ÒÕ8QP �+TWVX<{Yi�UPc<{Y�ÒÕ8~� ]â8�fyÎUTWVX8~Î+<{Yi�+TWVX8=
 Ø w
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Theorem 4.2.15. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then ;�ø,ù�ú?û�� <{�7*?> n @
is homeomorphic to the point topology on � � �:��»aùÌÉ��9<���� .
Proof. As proved in Lemma 4.2.11, ø,ù�ú,ûÕ�9<�� is isomorphic to � � ����»aù;É��9<���� via the map-

pings:

ø¡�Y� � ����»aù�É��9<{���A$:& ø,ù�ú?ûÕ�9<{���µ°í2 $:& eÕf�h � 8=
Q< I�ÎW] 8�f|
F° � * and

ùm�'ø,ù�ú?ûÕ�9<{�A$:&K� � �:��»aù�É��9<{���7��872 $:& � �W
G��»aù�É�� <{�JIa8=
B� � w
We note that ø and ù are respectively related to the mappings Í and

Î
of Lemma 4.2.9

as follows:

1. Ík��°Ô����<�Y�Ò ø���°Ô�?w
2. ù�� 8:��� Î �9<{Y�Ò[8:�7w
Let �W
@��»aù<É��9<{� . Then

ù 5 0 �Q�
�7���kù 5 0 � � °c
�� � ����»aù�É�� <{���JI(�1
#° � ��� � 8Q
Eø,ù�ú?û�� <{��Ia8=
#� � �!�kÖÀø,ù�ú,ûÕ�9<���w
Let � be an open upper set.

ø 5 0 �?ø,ù�ú?û�� <{�³Ö��D� � ø 5 0 � � 8=
Eø,ù�ú?ûÕ�9<{��I¹8Q
=� � �
� � °c
�� � �:��»aù�É��9<{���JIpø���°Ô��
R� �
� � °c
�� � �:��»aù�É��9<{���JIpø���°Ô��
 ßÖ � qÅ×(r C�t±® ÖmØ / Ã �

� ßÖ � q × r C�t±® ÖmØ / � °c
�� � ����»aù<É��9<�����Ipø���°Ô��
{Ã �

� ßÖ � q × r C�t±® ÖmØ / � °c
�� � ����»aù<É��9<�����Ia<{Y�ÃUPÏÍk��°Ô� �

� ßÖ � q × r C�t±® ÖmØ / � °c
�� � ����»aù<É��9<�����I�Î(] <{Y�ÃLf�
F° �

� ßÖ � q × r C�t±® ÖmØ / ��Ú�³ CNÙ Ö °9w
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The second last equality is true because by Lemma 4.2.8(2),

ÎO]â<�Y�ÃJf|
#°®TWV <�Y�ÃmPÏÍk��°Ô��w

Remark 4.2.16. Let ;�<Q*e¢�*�>3@ be a Priestley space with the trivial apartness Îm� Á¢ . Then

ø,ù�ú?û�� <{�¬��< and > n is the set of open upper sets of < . Therefore the set of open upper

subsets of any Priestley space is a stably compact topology on the same space.

We have already noted the following but we recall it in a remark as we will need to refer

to it later in the chapter.

Remark 4.2.17. The mappings ø and ù of Theorem 4.2.15 are respectively related to the

mappings Í and
Î

of Lemma 4.2.9 as follows:

1. Ík��°Ô����<�Y�Ò ø���°Ô�?w
2. ù�� 8:��� Î �9<{Y�Ò[8:�7w

4.3 From stably compact spaces to Priestley spaces with

apartness

In the previous section we have presented a fairly nice way of obtaining stably compact

spaces from Priestley spaces equipped with apartness relations. In this section we show

that every stably compact space can be obtained in this way and is a retract of a Priestley

space with apartness.

Definition 4.3.1. Suppose ;Gü�*?>A@ is a stably compact space and N1ý is the set of compact

saturated sets in ü . Then

B�ýR� � �~��*¬¶ �A
Q>®!=N(ý#I(��Pk¶ � w



138

Remark 4.3.2. As shown in [54, Theorem 23], ;GB�ý¬�,��*,��*a��4 *µ4���*h�Gü�*,ü��7�el�@ where � and �
are pair-wise intersection and union, respectively, and

�~��*¬¶ �Alm��� n *¬¶ n �A� q�r9sTWV ¶1PÆ� n *
is a strong proximity lattice.

Remark 4.3.3. Ë�ú¬�)ûµ»���B�ý���� ; �
	�� 
 �GBký����eP�*�> \ *�Î�Ù'@ is the Priestley dual of B�ý equipped

with the apartness Î	Ù .
�
	�� 
 �GBký�� is the set of prime filters of B�ý . > \ is the Priestley

topology generated by the sets Ã r ­¯® aµt � � Ø 
 �
	���
 �GBký���I:�~��*¬¶ ��
 Ø �
and F r ­´® aµt � � Ø 
�
	�� 
 �GBký��JI¨�~��*¬¶ ��Ä
 Ø �

. Obviously, F r ­´® aµt � �
	�� 
 ��BDC���Y�Ã r ­´® aµt and so each Ã r ­´® aXt is a clopen

upper, and each F r ­¯® aµt a clopen lower set. Moreover, every clopen upper (lower) has the

form Ã r ­´® aµt ( F r ­´® aµt ). Î�Ù is the apartness on
ØÛÚ ��Bký�� defined as follows

Ø Î�Ù~� q?r sT(V �G�³�~��*¬¶ �A
 Ø �©�G�³�~� n *¬¶ n ��Ä
R����¶~P�� n w
Lemma 4.3.4. Let ;)ü�*?>A@ be a stably compact space. Then ;)ü�*�>3@ is homeomorphic to

;�ø,ù�ú?ûÕ� �
	�� 
 �GBký�����*?> n\ @ .
Proof. Because ø,ù�ú?ûÕ� �
	���
 �GBký���� and ü are sober, it is sufficient to prove that the topologies

are isomorphic. The following mappings accomplish this task:

Î �z;�>J*eP�@¬$'& ;*��»aù<É�� �
	���
 ��B�ý����7*eP�@¹�]Lb2 $:& Î�Ù�] F r q ® ý�tyf)*,�Õ²�Ð
Í��z;*��»aù<É�� �
	���
 ��Bký����7*eP�@3$:& ;G>L*eP�@¹�]Là2 $:& ß � �(IÕÃ r ­´® aµt�P²LD� � w

Í is clearly well-defined and
Î

is well-defined by Lemma 4.2.4(1) and they are clearly

monotone. We show that they are inverses of each other.

Ík� Î �ZL������éß � �(IÕÃ r ­¯® aµt P�Î�Ù�] F r q ® ý�t f � �!Lvw
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This is proved as follows:

8Q
[Ík� Î �ZLD��� T(V �G�Å�6
=>3�¹�)�¾¶	
=NOý��³8=
X� and Ã r ­´® aµt P�Î(] F r q ® ýst f
T(V �G�Å�6
=>3�¹�)�¾¶	
=NOý��³8=
X� and Ã r ­´® aµt³Î�Ù"F r q ® ý�tÜ rvÝGÝ�Þ �]& �]&â0~ßT(V �G�Å�6
=>3�¹�)�¾¶	
=NOý��³8=
X� and ����*µ¶ �Alm��Lv*,ü��
T(V �G�Å�6
=>3�¹�)�¾¶	
=NOý��³8=
X�6P!¶"P²L
T(V 8Q
BLvw

The last equivalence is true because < is locally compact.

Also we have Î �]Ík��L������÷Î6Ù�]êF r¶àðr q t±® ý�tyf:�!Lvw
This is true because

�UÎ�Ù"F r¶à r�q t�® ý|t T(V � 
 Ã r ­´® aµt Î�Ù1F r²à r q t�® ý|t * by Lemma ö¨wÜö¨w��
T(V �G�"�~��*¬¶ �A
R���A����*¬¶¨�Al �~Ík��L��7*?ü6�
T(V �G�"�~��*¬¶ �A
R���x�6P!¶"PÏÍk��L��
T(V �G�"�~��*¬¶ �7*3�~� n *¬¶ n �3
RBDC����K
¯Ã r ­¯® aµtõ*�Ã r ­��Ë® a]��t�P²Lv*

and ��P!¶~P�� n * because ¶ is compact

T(V �G�"�~��*¬¶ �7*3�~� n *¬¶ n �3
RBDC����K
¯Ã r ­¯® aµtõ*�Ã r ­��Ë® a]��t�P²Lv*
and Ã r ­´® aµt Î�Ù1F r ­��á® a]��t

T(V ��Î�Ù �
	���
 ��BkC3��Y_Lv* by Lemma ö�w4ö¨w��
T(V � 
#Lvw

The left-to-right direction of the second last equivalence is true because�
	���
 �GBký���Y(L�P �
	���
 ��Bký���Y�Ã r ­ � ® a � t³�+F r ­ � ® a � tªw
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Theorem 4.3.5. The cores of Priestley spaces equipped with apartness relations are pre-

cisely the stably compact spaces.

Example

The unit interval ] b¨*©^©f equipped with the Scott topology is a stably compact space. Its

corresponding strong proximity lattice and Priestley space with apartness were explained

in detail in Section 3.3.4.

4.4 Morphisms: separators and continuous maps

In this section we prove the one-to-one correspondence between separators and frame ho-

momorphisms. This is sufficient to prove the equivalence between the category PSs, of

Priestley spaces equipped with apartness relations and separators, and the category SCS

of stably compact spaces and continuous maps. The equivalence of these categories fol-

lows because, as we have mentioned before in several occasions, the category of arithmetic

lattices and frame homomorphisms is equivalent to the category SCS [4, Section 7].

We also present the direct relationship between separators, between Priestley spaces

equipped with apartness relations, and continuous maps, between stably compact spaces.

We begin by reminding the reader of the following lemma which was presented in

the previous chapter (Lemma 3.3.33) and which is refereed to in several occasions in this

section.

Lemma 4.4.1. Let ;�<~0��e¢k07*?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ï+Pu<�03!Q<O2 be a separator. Then for closed

subsets � Pm<~0 and × P <O2 , if �±ï+× then there exist ÃZ
ñL³�:� <"0�� and Æ�
·�
�:� <(2,�
such that �UP÷Ã , ×}P�Æ and Ã}ïEÆ .
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Lemma 4.4.2. Let ;�<~0��e¢k07*?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ïcPc<~0A!Q<(2 be a separator. Then

´��~�¾��»aù<É�� <(27�A$:& ��»aù<É��9<"0��7�X�`2 $:& ïJ]â<O27YY�ÕfGw
is a frame homomorphism.

Proof. Similarly to Lemma 4.2.4.1, ´8�¬����� is proved to be in ��»aù�É��9<"0�� and so ´y� is well

defined. Clearly, ´y� is a monotone and preserves finite infima. Now we show that ´��
preserves arbitrary suprema. Let

� �µC � Cµ�<Ð6PI��»aù�É��9<O2�� . Then

�W
R´y�'� �C¬�>Ð �XC7��TWV �=ï <O27Y �Cµ�<Ð �]C
TWV �=ïu�9<O2�YÕÎ�2h]â<O27Y³ßC¬�>Ð �XC?fy�
TWV �=ïu�9<O2�YTßC¬�>Ð �XC7�7* by �¹ï�x��
TWV �=ï ôC¬�>Ð <(2,YY�XC
TWV �	Î60Ô�9<"0�Y³ßC¬�>Ð ïD] <O2�YY�XC?f9�
TWV �W
 �C¬�>Ð ´������]C©��w

The left-to-right direction of the second last equivalence is by �oxAïA� and the fact that

�µßC¬�>Ð ï�] <O2�YY�XC,f �kïu� ôC¬�>Ð <(27YY�]C7�7w
The other direction is proved as follows. By Lemma 4.4.1, there exists Æ 
 � � � <(2,�
such that ��ï�Æ and � <(2�Y�ÿ C¬�>Ð �XC¹�RPXÆ . Then by compactness of <W27YÕÆ the collec-

tion
� �XC � C¬�>Ð has a finite subsets

� �µC � 0Qº_C¬º?� such that � <(27Y�ÿ 0Qº_Cµº?� �XC¹�RP Æ . Therefore

��ï ± 0Qº_C¬º?� <O2�YY�XC . Hence by �¹ï�²:Ó�� , � Î60 �9<"0�Y ÿ 0Qº_Cµº?� ïJ]â<O27YY�XC?fy� implying �KÎ60
�9<"0�Y�ÿ Cµ�<Ð ïJ] <(27YY�]C?f � as required.
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Lemma 4.4.3. Let ;�<~0��e¢k07*?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ´ be a frame homomorphism from ��»aù;É�� <(2,�
to ��»aù�É�� <"0�� , then the binary relation ï�â�Pc<"03!�<O2 defined as follows:

�=ï�âE­���q?r sTWV �(
�´|�)Îk2�] ­?fy�7w
is a separator.

Proof. ï�â is open and satisfies �9Ò 0 ï�Ó 2 � as follows.

�=ï�âJ­ ��V �W
�´|�)Îk2�] ­?fy�
��V �)�zÃU
BL � � <~0ª�����(
¯ÃUP+´|�)Îk2�] ­?fy�7* because ´|�)ÎW]ê­?f � is open upper in <�0
��V �)�zÃU
BL � � <~0ª���©�G��Æ}
�� � �9<O2������W
¯ÃUP�´|�GÎv2h] Ævfy� and ­J
�Æ
��V �)�zÃU
BL � � <~0ª���©�G��Æ}
�� � �9<O2������W
¯Ã�*�­J
{Æ and Ã}ï�âDÆ¬w

That the third implication is true is seen as follows. By Lemma 4.2.4.2, the fact that ´
preserves joins, and the fact the compactness of Ã , there exist a clopen lower set Æ n in <O2
such ÃMP¡´��GÎv2h] Æ n fy� and <O2�YÕÆ n Î�2�­ . Then by Lemma 4.4.1, there exists a clopen-lower

set Æ such that <(2�YÕÆ n Îk2QÆ and ­ 
}Æ . Then by �)ÎJx�� , Î�2�] Æ n f�P Îk2�] Ævf and hence

´|�)Î�2h]ÜÆ n fy��P�´|�GÎ�2�] Æ�fy� . Therefore �W
¯Ã�P�´��GÎv2h]ÜÆ�f � and ­�
�Æ .

�yxAïA� is satisfied because:

�Qï�â�­ T(V �(
{´|�GÎ�2�]ê­?f �
T(V �6Î�0�<"0�YÕ´|�GÎv2h]ê­?f �
T(V �yxz8Q
Q<"0����6Î60�8 or 8"Î60�<"0�YÕ´|�GÎv2h]ê­?f ��* by �)ÎJx��
T(V �yxz8Q
Q<"0����6Î60�8 or 8Q
�´|�)Îv2h]ê­?f �
T(V �yxz8Q
Q<"0����6Î60�8 or 8#ï�â�­aw
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�¹ï�x�� is also satisfied because

�(
�´|�)Îv2a] ­?fy�tT(V �W
R´��GÎv2h] <O27YÕÎ�2�]ê­?f�fy�
T(V �oxz8R
Q<O2�YÕÎk2�] ­?fy���W
�´|�GÎv2h] 8�f �
T(V �oxz8R
Q<O2����Qï�âL8 or 8"Î�23­aw

The right-to-left direction of the second equivalence is true because, as proved above, ��

´|�)Î�2h]â8�fy� implies there exists Æu#�
G� � �9<O2�� such that 8=
�Æw# and �O
{´��GÎ�2�] Æw#¹f � . � Æw#�Ia8R

�9<O2�YÕÎ�2h]ê­,fy� � is an open cover to <(27YÕÎO] ­?f which is closed and hence is compact. Therefore

a finite subcover
� Æw#¬®�I�^v¢ ò�¢ ² �

exists and

�W
 ô ñ ´|�)Î�2h] Æw#¬® fy�¬�-´|� ô ñ Îv2h] Æ�ñ�f ���-´|�GÎ�2�]Öß ñ ÆÅ#¬®yfy��P�´|�GÎ�2�] <O2�YÕÎW]ê­,2?f�fy�7w
�¹ï�²:Ó�� is satisfied because:

��ï�â�Ö�Ó�Ð[ñZ��V �W
�´|�)Î�2h] ô ñ Ó�Ð[ñofy�7* as proved in the previous section

��V �W
�´|�)Î�2h]â<O27Y ß ñ Îk2�]êÐÕñ�f�fy�7* by �)ÎJx��
��V �W
�´|� � ñ Î�2�]êÐ[ñofy�¬� � ñ ´|�GÎv2h]êÐ[ñofy�
��V �	Î60�<"0�Y ß ñ ´|�)Î�2h] Ð[ñ�f �
��V �yxz8R
Q<"0����	Î�0�8 or �)�¨òõ�³8=
�´|�GÎv2h]êÐÕñ�f �
��V �yxz8R
Q<"0����	Î�0�8 or �)�¨òõ�³8Àï�âJÐ[ñ w

Lemma 4.4.4. The maps between separators and frame homomorphisms defined in Lemma

4.4.2 and 4.4.3 are inverses of each other.

Proof.

´y�;ã[�������¡ï�âÕ]â<O27YY�Õfz� � �W
�<~0JI��W
�´|�GÎv2h] <O27Y_�Õf � � �÷´|���¨��w
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�=ï�â��6­XTWV �(
�´����)Î�2h] ­?fy��� � 8=
Q<"0JIa8Àï��9<O2�YÕÎk2�]ê­,fy� �
TWV �Qïu�9<O2�YÕÎv2a] ­?fy�
TWV �oxz8=
=<O2����=ï 8 or 8"Î�2A­
TWV �QïÀ­hw

Theorem 4.4.5. The category PSs, of Priestley spaces with apartness and separators, is

equivalent to the category SCS of stably compact spaces and continuous maps.

In the following we present a direct way of getting the continuous map corresponding

to a separator and vice versa.

Lemma 4.4.6. Let ;�<~0��e¢k07*?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ïcPc<~0A!Q<(2 be a separator. Then


½�"�'ø,ù�ú?û�� <"0��3$'& ø,ù�ú?û�� <O2��3�[8�2 $:& e�ä�å���] 8�f�ï3�7*
is the continuous map (with respect to the stably compact topologies > n0 and > n2 ) corre-

sponding to the separator ï .

Proof. By Lemma 4.4.2 the separator ï corresponds to frame homomorphism:

´��~�¾��»aù<É�� <(27�A$:& ��»aù<É��9<"0��7�X�`2 $:& ïJ]â<O27YY�ÕfGw
By Section 2.4, this frame homomorphism corresponds to the following continuous map:


�â��(�Y� � ����»aù<É�� <"0����A$:&K� � ����»aù�É�� <(2,���3�$°ñ2 $:& ´ 5 0� ��°Ô�7w
Let 8=
Eø,ù�ú?û�� <~0�� . By Lemma 4.2.15,

� �1
í��»aù�É��9<"0���Ia8R
#� �
is the completely prime

filter in � � ����»aù<É¨�9<"0���� corresponding to 8 . Under 
�â�� ,
� �¯
k��»aù�É�� <"0��(I 8E
²� �

is sent to� �"
ñ��»aù�É��9<O2���I�8{
¯´y�'����� � which is the same as
� �"
ñ��»aù�É��9<O2��kI�8óïÀ<O27YY� �

. Again by
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Lemma 4.2.15, the completely prime filter
� �W
@��»aùÌÉ��9<O2���Ia8®ï <O2�YY� �

corresponds to the

following point of ø,ù�ú,û��9<(2�� :
e�ä<å � �1
Q<O2vIh8#ï <(2,YÕÎv2h]â��f �

By condition �7ï¬x�� (in the definition of separators) this is the same as

e�ä�å � �W
Q<O2�I�8#ï#� � �!e�ä�å���] 8�f�ï3�7w

For the other direction, according to the theory presented in [54], a continuous function


K��ü�0Q$:& üz2 between stably compact spaces �Gü|0�*?>�0)� and ��üz2e*?>�2�� corresponds to the

approximable relation «�¶vPuBkýa·A!=Bký7¸ defined as follows:

�~��*¬¶ �¬«³¶6��� n *¬¶ n � q?r sT(V 
���¶ �3P�� n w
As we have proved in the previous chapter, the approximable relation «�¶ corresponds to

the separator ï�¶vP �
	���
 ��B�ý · �3! �
	���
 ��Bký ¸ � defined as follows:

Ø ï�¶ Ø n q?r sT(V �G�³�~��*¬¶ �3
 Ø �©�)�³���hno*¬¶�n_��Ä
 Ø n_��
���¶ �AP��hnow

4.4.1 Computational Reading

We now present a computational reading of the separator ï�¶ corresponding to a continuous

map 
 . Let 
 be a continuous map (computable program) from a stably compact space (data

type) ü�0 to another one üz2 . Let ;]��*¬¶ @�
¯Bkýe· and ;~� n *µ¶ n @Ô
¯Bký7¸ be such that 
���¶ �3PÆ� n . As

we have mentioned in the introduction of the thesis, the elements of the strong proximity

lattices B�ý ¸ and Bký ¸ , which are pairs of the form ;]��*µ¶ @ , have the following computational

interpretation. Each pair ;]��*¬¶ @ represents a property that is

S satisfied by members of the open set � ,
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S unsatisfied by the elements in the complement of the compact saturated set ¶ , and

S unobservable by members of ¶ .

Therefore the condition 
���¶ �1Pæ� n is interpreted as follows. If the property ;]��*µ¶ @ is

satisfied or unobservable by the input, of the program 
 then the corresponding output will

satisfy the property ;]� n *µ¶ n @ . Hence a property ;~��*¬¶¨@ is related to a property ;]� n *¬¶ n @ in the

approximable relation «�¶ if and only if the satisfaction and un-observability of the former

property implies the satisfaction of the latter property. Let us fix this as a definition:

Definition 4.4.7. Let 
®�'ü³0�$z& ü�2 be a continuous map between stably compact spaces

ü�0 and üz2 . Let Bkýe· and B�ý7¸ , as defined above, be their lattices of observable properties.

Let ;]��*¬¶ @ and ;~� n *¬¶ n @ be two properties (elements) of Bvýe· and Bký7¸ , respectively. Then we

say that the property ;]��*¬¶ @ implies the property ;]� n *¬¶ n @ under the program (map) 
 if and

only of 
���¶ �AP�� n .
Lemma 4.4.8. Let 
m��ü|01$'& üz2 be a continuous map between stably compact spaces

ü�0 and üz2 . Let Bkýa· and B�ý7¸ be their lattices of properties. Let ;]��*¬¶ @ and ;]� n *¬¶ n @ be two

properties (elements) of B�ýa· and Bký¹¸ , respectively. Let «�¶ be the approximable relation

corresponding to 
 . Then

;]��*µ¶ @�«|¶�;]� n *¬¶ n @�TWV ;]��*µ¶ @ implies ;]� n *¬¶ n @¹w
The separator ï3¶ , corresponding to 
 and «|¶ , relates prime filters, which are in the

language of logic, models of properties, of the strong proximity lattice B�ýa· to prime filters

of the strong proximity lattice Bvý7¸ . Under ïA¶ a model
Ø 
 �
	�� 
 �GBkýe·ª� is related to a modelØ n 
 �
	���
 �GBký7¸?� if and only if there is a property in the model

Ø
that implies a property in

the complement of the model
Ø n . This has the following computational consequence.

Lemma 4.4.9. Let 
 ��ü³0J$'& ü�2 be a continuous map between stably compact spaces ü�0
and üz2 . Let
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S Bkýe· and B�ý7¸ be their lattices of properties, respectively, and
�
	�� 
 �GBkýe·ª� and

�
	�� 
 ��B�ýe·��
be their corresponding Priestley spaces, respectively,

S ï�¶ be the separator corresponding to 
 , and

S Ø
be a model in

�
	�� 
 ��B�ýe·�� that is not related, under the relation ï3¶ , to a model
Ø n

in
�
	�� 
 ��Bký ¸ � .

Then the set of all properties implied by a property in
Ø

is contained in
Ø n .

4.4.2 Examples

Consider the unit interval ]êb¨*e^¹f together with its Scott topology. It is a stably compact

space and its corresponding Priestley space < was explained in detail in Section 3.3.4.

In the following we show the separators that correspond to two simple continuous (with

respect to Scott topology) maps on ] b�*e^©f .
1. The function

�E�z] b�*e^©f\& ] b¨*©^©f
8 2& ç b �tb	¢ 8=¢ 0202 ��8#ë 02 *

corresponds to the separator ïe¿APc<t!Q< defined as follows

ï�è	� � � 8w�e*?���o�o�A
=< !Q< I ^¢ T²á6¢�^i*,b	¢bá n T ^¢ � w
2. The function

¾-�z]êb¨*e^©f¡& ] b�*e^©f
8 2& 8 2 *

corresponds to the separator ï Ù P <t!�< defined as follows

� Ù � � �98wé�*?� � ¸ �A
�< !Q< I<{ ë²áh*,b	¢!áêT÷^ � w
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4.5 The Co-compact Topology

This section has two objectives. The first one is to prove in full detail the isomorphism in

Corollary 4.2.10. The second objective is to show that co-compact topology on ø,ù�ú,ûÕ�9<�� ,
for a Priestley space < equipped with apartness Î , is homeomorphic to the core of <GS
equipped with Î 5 0 . In other words, this section investigates the direct relationship between

Priestley spaces equipped with apartness relations, their duals, their cores and co-compact

topologies of their cores. This is important because the co-compact topology plays a pivot

role in the relationship between stably compact spaces and compact ordered spaces. The

later relationship was discussed in detail in Section 2.6.

Theorem 4.5.1. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then ;*��»aù Ô �9<��7*eP�@
and ;GN � � óËë]r C=t�t *,V�@ are isomorphic via the following mappings:

ø,ùp�M�=�¾��»aù Ô � <{�A$:& N � � óËë]r C�t � Ø 2 $:& ø,ù�ú?ûÕ�9<{��Y Ø * and

¯®�ÕNì� � óËë*r C=t�$:& ��»aù Ô � <{�7�?Hî2 $:&X<{Y�Ò�H=w
Proof. Let

Ø 
@��»aù Ô �9<{� . Then

Ø 2 $:& Î � Ø �7* via Theorem �¨w�¢�wÜj2 $:& � °c
�� � ����»aù<É�� <{���JI Î � Ø �AP·° � * via Hofmann-Mislove Theorem ] 4 f
� � °c
�� � ����»aù<É�� <{���JI Ø PÏÍk��°Ô� � * because ÍE� Î 5 0
2 $:& � ø���°Ô��Ip°c
B� � ����»aù�É��9<{��� and

Ø PÆÍk��°Ô� � * by Theorem �¨w�¢�w ^hg2 $:& � ø���°Ô��Ip°c
B� � ����»aù�É��9<{��� and ø���°Ô�kÄ
 Ø � * by Remark �¨w�¢�w ^<�
� ø,ù�ú?ûÕ�9<{��Y Ø * because ø is onto w
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Let Ht
=N � � ó�ë�r C�t . Then

H 2 $:& � ù��98:��Ia8R
=H � * by Theorem � w�¢�w ^hg2 $:& ô � ù��98:��Ia8=
=H � * via Hofmann-Mislove Theorem ] 4 f2 $:& Ík� ô � ù�� 8:�DIa8=
RH � �7* via �¨w�¢�wÜj
� ô � Ík��ù�� 8:����Ia8R
RH � * because Í preserves intersection

� ô � Ík� Î � <{Y�ÒÕ8:���JIh8=
=H � * by
� Ñe�~�$áY¶ê� w�¢�w�^<�

� ô � <{Y�Ò[8¯Ih8=
RH �
� <{Y�Ò�H=w

Lemma 4.5.2. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î . Then ;�ø,ù�ú?û[�9<��7*h�9> � � ó�ë�r C�t �:�ª@
is homoeomorphic to ;�ø,ù�ú?ûÕ�9<8S��7*�> � � óËë�r C�í�t @ via the mappings:


=�'ø,ù�ú,ûÕ�9<��A$'& ø,ù�ú?û�� < S �7��8�2 $:& e�ä�å��9<�Y[ÎW] 8�f9��* and

>W�'ø,ù�ú?ûÕ�9< S �3$:& ø,ù�ú?ûÕ�9<{���?�32 $:& egfih�� <{Y�]ê��fyÎv��w
Furthermore, the frame isomorphism between ��»aù Ô � <{� .� ��>�� � ó�ëor C=tG��� and ��»aù<É��9< S �#.�
> ¿ 
 � � r Cxí�t that arises from this homeomorphism is the identity.

Proof. Let 8 
uø,ù�ú?û�� <{� . Then by Corollary 4.2.5, ÎO]â8�f¬
;��»aù;É�� <{� . Suppose Ï�*,Ð are two

distinct maximal elements in <{Y[Î(]â8�f . Then � Ò�Ï�Ö�Ò�Ð���Î-8 . Therefore by �9ÒÕÒ�Îv� , we have

Ï�ÎZ8|*ÔÐRÎZ8 or 8®Î¡8 . But 8�ÁÎZ8 because 8c
 ø,ù�ú,ûÕ�9<�� . Hence ÏOÎZ8 or ÐRÎZ8 ; i.e.

Ï�
 Î(]â8�f or Ð"
¯ÎW] 8�f , which is a contradiction. Therefore <{YÕÎO]â8�f³�+Ó�� for some �~
R< .

Therefore Î(] 8�f��-<�Y�Ó�� and hence <�Y�Ó�� is isolated. So e�ä�å�� <{Y[ÎW] 8�fy�A�÷�~
cø,ù�ú,ûÕ�9< S � .
Dually, > is well-defined. We show that

8~�keÕf�h'�9<{Y�]'e�ä�å��9<{Y[Î(]â8�fy��fyÎ���w
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We first prove that

]'e�ä�å�� <{Y[ÎW] 8�fy��fyÎ��K]â8�fyÎOw
One inclusion is proved as follows:

8"ÎÆ{���V 8~Î5e�ä<å'�9<{YÕÎO]â8�fy� or e�ä�å�� <{Y[ÎW] 8�fy��ÎÆ{�* by �)Î�x��
��V e�ä�å�� <{Y[ÎW] 8�fy��ÎÆ{�* because 8Q
=<{Y[ÎW] 8�fGw

The other inclusion is proved as follows.

e�ä�å�� <{Y[ÎW] 8�fy��ÎÆ{±��V e�ä�å��9<�Y[ÎW] 8�f ��Î+8 or 8~ÎÆ{�* by �)ÎDx��
��V 8"ÎÇ{�w

Since <{Y�ÒÕ8"� ] 8�f Î ,

Ò[8~��<�Y�] e�ä�å'�9<�YÕÎ(] 8�f9�õf Î	w
Therefore

8~�keÕf�h'�9<{Y�]'e�ä�å��9<{Y[Î(]â8�fy��fyÎ���w
Dually for �1
óø,ù�ú,û¹< S ,

���!e�ä�å'� <{YÕÎO] eÕf�h��9<{Y ] 8�fyÎ6��fy�7w
By Theorem 4.2.15, every open set on ø,ù�ú?ûÕ�9< �9� � is of the form

� � �/ � � �(
Eø,ù�ú?û�� < � � �DIh�W
=� �
for some open lower set �U
@��»aù�É��9<#S����¡��»aù Ô � <{� . Let 8=
óø,ù�ú,ûÕ�9<�� . Then

e�ä�å'�9<�YÕÎ(] 8�f ��
G�
/ T(V e�ä�å��9<{Y[Î(]â8�fy�3
=�
T(V <{YÕÎO]â8�f|Pu�
T(V <{Yi��P+ÎO]â8�f
T(V 8=
À]â<{Yi�Lf Î����
T(V 8=
óø,ù�ú,ûÕ�9<���Yzø,ùp�M�����D�7w
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4.6 Isolated Sets and Round Ideals and Filters

As we have seen so far, the concepts of lower and upper isolated subsets of Priestley spaces

equipped with apartness relations play a pivot role in our theory, in general, and in this

chapter, in particular. In this section, we yet introduce another meaning for isolated sets;

we show a one-to-one correspondence between lower (upper) isolated subsets of a Priest-

ley space equipped with apartness and round filters (ideals) of the corresponding strong

proximity lattice.

Theorem 4.6.1. Let ;�<À�e¢v*?>A@ be a Priestley space with apartness Î . Then the lattice

;*��»aù<É�� <{�7�eP�@ is isomorphic to the lattice ;�ú 	�� 	 �oËAú¬�)ûµ»��9<{���7�eP�@ via the mappings:

Î �ð��»aù�É��9<{�A$:& ú 	�� 	 �oËAú¬�)ûµ»Õ�9<{���7�,F¡2 $:& � ÃU
BL � �9<��JI[ÃmPuF � * and

Í���ú 	�� 	 �QË�ú¬�)ûµ»�� <{���A$:& ��»aù<É�� <{�7�]�32 $:& +���w
Proof. We first show that

Î
and Í are well defined.

1. Ó Ù 9 Î �GF��¬� Î �GF�� because for any Ã�
BL � �9<{� ,
ÃU
 Î ��F6�±T(V Ã+Î�� <{Y[F6�

T(V �9<�Y�] ÃLfyÎ��¬Î}�9<{Y�F6� by �)ÎJx��
T(V �)�OÃ n 
BL � �9<{����� <{Y�]4ÃJfyÎ��3P÷Ã n and Ã n Î��9<�Y[F6� by Lemma ö¨w4ö�w¥�
T(V �)�OÃ n 
BL � �9<{����Ã�Î\� <{Y�Ã n � and Ã n PuF
T(V �)�OÃ n 
BL � �9<{����Ã�l�ÚRÃ n and Ã n 
 Î ��F6�,w

For the second equivalence, we note that ]4ÃJfyÎ is open by the dual of Lemma 4.2.4(1).

Also,
Î ��F6� is clearly lower and closed under finite unions. Therefore

Î
is well-

defined.
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2. We notice that

8R
[Ík����� T(V �G�OÃU
BL � �9<{���³8Q
¯Ãm
#�
T(V �G�OÃA*7Ã n 
BL � � <{����8=
¯ÃmlJÚ=Ã n 
F�
T(V �G�OÃ n 
BL � � <{���³8~Î��9<�Y�Ã n � and Ã n 
#��* by Lemma ö¨wÜö¨w��
T(V 8"Î��9<{Y;Ík�������7w

For the the right-to-left direction of the last equivalence, by Lemma 3.3.4, there

exists Æ 
 �=�:�9<{� such that 8÷ÎXÆ and <{Y Ík������P±Æ . Then Ã n exists because

Ík���¨� is an open cover to the compact set <{YÕÆ . Ík����� is clearly an open upper set and

hence Í is well-defined.

Î
and Í are clearly monotone and they are inverses of each other by Priestley’s represen-

tation theorem.

Corollary 4.6.2. Let ;9<À�e¢v*?>3@ be a Priestley space with apartness Î . Then the set of

prime round ideals of Ë�ú¬�)ûµ»��9<�� is isomorphic to the ø,ù�ú,ûÕ�9< S � .
Proof. If follows from Theorem 4.6.1, Remark 4.2.2 and [20, exercises 11.17].

Remark 4.6.3. Let ;�<#�e¢�*�>3@ be a Priestley space with apartness Î . Then, dually to The-

orem 4.6.1 and Corollary 4.6.2, the lattice ;���»aù Ô �9<{���ePD@ is isomorphic to the lattice

;�ú �
	�� �QË�ú¬�)ûµ»�� <{�����ePD@ and the set of prime round filters of Ë�úÒ�)ûµ»��9<{� is isomorphic to the

ø,ù�ú?û�� <{� .

4.7 An Extension of Jung-Sünderhauf Representation The-

orem

In this section we extend the Jung-Sünderhauf representation theorem [54] (reviewed in

Section 2.7) between strong proximity lattices and stably compact spaces. We show that
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removing the compactness condition from the stably compact spaces side is equivalent to

removing the condition of having a top element from the strong proximity lattices side.

Removing the latter condition must be associated by removing any use of the empty meet

which is the top element. The resulting definition is the following.

Definition 4.7.1. A binary relation l on a distributive lattice ;G�Ô�,��*,��@ with b is called a

proximity if, for every ��*�8|*?�1
=� and � P3���k� ,

�ªlvlk� l���l+�ml�*
�)�3$�lk� � lu�	T(V � � lu��*
�ªlU$D��� n �Wlc8 and �Wl �	TWV �Wlc8��~�:*
�ªl�$���� �Wlc8	������V �)��8 n *?� n 
R���|8 n lc8|*�� n l � and �Wlc8 n ��� n *
�)�3$�lk� 8	���Wlu�	��V �)��8 n *?� n 
R���|8Ql 8 n *��1l � n and 8 n ��� n l+��w

� l\� and �#l¡� , respectively, stand for �ox:� 
��-��� l\� and �ox:� 
��-�A�#l}� .

A zero-strong proximity lattice is a distributive lattice ;)�����3*���@ with b together with a

proximity relation l on � .

On the morphism level the definition of approximable relations need to be adjusted to

get the following definition.

Definition 4.7.2. Let ;)�307���3*��3*,b��el�0ª@ and ;)�¬2a���3*��3*,b¨�elL2�@ be zero-strong proximity lat-

tices and let « be a binary relation from ��0 to �¬2 . The relation « is called zero-approximable
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if for every �W
R�307*?­�
R�¬2 , �®03PA���k�307*?­h*?Ï�
R�¬2 and �¯2LPA���k�¬2 ,
�)«{$UlL27� «Q��lJ2¬��«�*
�ªlk0�$�«|� lk0���«"��«�*

�)�3$+«|� �®0¬«Q­�T(V � �®0�«�­a*
�)«{$���� n �6«�­ and �	«QÏ�T(V ��«Q­¬��Ïh*
�)«{$D��� �6« � �¯23��V �)�	°±PA���k�30ª���Wlk0 � ° and �yx:²�
�°=�

�)���%
��¯27�³²�«��Rw
The relation « is called weakly zero-approximable if it satisfies all of the above conditions

but not necessarily �G«{$���� .
Therefore we prove that the category of coherent spaces, which are those topological

spaces that are sober and locally compact and in which binary intersections of compact

saturated subsets are compact, and continuous maps between them is equivalent to the

category of zero-strong proximity lattices and zero-approximable relations between them.

One interesting point about this extension is that coherent spaces cover all coherent

domains in their Scott-topologies whereas stably compact spaces cover only coherent do-

mains which are compact in their Scott-topologies.

4.7.1 From Zero-Strong Proximity Lattices to Coherent Spaces

We get coherent spaces from zero-strong proximity lattice in exactly the same way we get

stably compact spaces from strong proximity lattices. All proofs still work perfectly for the

general case in this section.

4.7.2 From Coherent Spaces to Zero-Strong Proximity Lattices

The proof of the basic result (Theorem 2.7.9) in the direction from stably compact spaces

to strong proximity lattices is not obviously true for the general case of coherent spaces and
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zero-strong proximity lattices. The reason is that the proof relies on the fact that for any

stably compact space ;)ü�*?>3@ , the ordered set ;GNWý�*mVD@ is an arithmetic lattice and hence for

every Ht
QN(ý ,

H � ô � H n 
=NOýEI�H n � H � w
This fact is not obvious for coherent spaces; it needs to be proved for achieving the more

general result.

In the following we first prove this for coherent spaces and then we review in full detail

how we get zero-strong proximity lattices from coherent spaces.

We remind the reader that for a coherent space ;)ü�*?>A@ , N1ý is the collection of compact

saturated subsets of ü .

Theorem 4.7.3. For a coherent space ;)ü�*?>A@ ,
1. �ox'H=*,H n 
=N(ý��|H � H n T(V �G� FK
=>A�'H n PuFKPuH .

2. for every H 
÷N(ý , the set
� H n 
+N(ý}I|H n � H �

is filtered and its intersection

equals H .

Proof. 1. By the Hofmann-Mislove Theorem [59, 29] and local compactness,

H n � ô � °XIi° is compact saturated and H n P�°Ñî � w
The set in the right hand side is filtered and hence the intersection is a directed join

in the lattice (the order is superset inclusion) of compact saturated subsets of ü .

Suppose H � H n . Then there exists ° such that H ¢-°X¢-H n i.e. H n P-° P�H .

Therefore H n Pu° î P�°±PuH .

For the other direction, suppose H n P+F¡P÷H . If H n ¢I± � H�ñ � ñ��m� i.e. ± � HOñ � ñ��m�vP
H n then ± � HOñ � ñ��m�JPuF . Hence by Hofmann-Mislove Theorem, HWñ�PuFO* for some ò�
B� .

Therefore HOñ|P�H i.e. Ht¢uHOñ .
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2. Let H�
=N(ý . From ^ , it is clear that

� H n 
=NOýEI�H n � H � *
is filtered and HtP!± � H n 
=NOýEI�H n � H �

. For the converse, suppose 8 belongs to

the intersection and F is an open set open which contains H . By local compactness,

there exists a compact saturated subset ° P F such that H P ° î . Therefore

° � H and hence it contains 8 . So 8Q
RF . Therefore

8R
 ô � FZI�FK
=> and H PuF � �÷H=w

Theorem 4.7.4. For a coherent space ;)ü�*?>A@ , the algebra ;)B�ý¬*���ý�*���ý�*?biý¬�elLý�@ , where

S Bký �4� � ��F(*,H���
Q>®!=N(ýóI�FKPuH �
,

S ��F(*,H�����ý=�GF n *,H n �3�4� ��F·+�F n *,H +�H n � ,
S ��F(*,H�����ý=�GF n *,H n �3�4� ��FuÖ�F n *,H¡Ö�H n � ,
S biý¯� � ��4 *µ4�� ,
S ��F(*,H��AlLýÀ��F n *?H n �Uq�r9sTWV HtPuF n .

is a zero-strong proximity lattice. Moreover, ;)ü�*?>3@ and spec �GB�ý�� equipped with the canon-

ical topology are homeomorphic.

Proof. Clearly, ;)B�ý¬*���ý�*���ý�@ is a distributive lattice with b[ý as its bottom element and

lLý���lLý P}lJý . The other inclusion ( l�ý P}lLý��OlLý ) follows from local compactness.

It is easy to prove �)�3$Ul�� and ��l�$D��� .
�ªl}$���� follows from compactness. To show �)�3$}lD� , suppose HQ0�ÖQHO2�PmF , where

FK
=>L*,H~0ª*?H(2Ô
RN(ý . Since

HOñ'� ô � H nñ 
=NOýðI�H nñ � H�ñ � * for ò�� ^[*µ¢�*
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H~0³Ö�HO2k� ± � H n0 Ö�H n2 I�H n0 *,H n2 
=NOý�*?H n0 � H"0�*,H n2 � H(2 � . The latter intersection is

a filtered intersection of compact saturated subsets of ü . Therefore by Hofmann-Mislove

Theorem [59, 29], there exists H n0 Ö�H n2 P+F .

Now we show that ;)ü�*?>A@ and spec ��Bvý�� equipped with the canonical topology are

homeomorphic. It is enough to show that the topologies are isomorphic, because the topolo-

gies are sober. To show that, we define:

Î �z;�>J*eP�@¬$z& ;�ú 	�� 	 �GBv��*ePD@7�,FI2 $:& � � Ã�*,H��A
RB¡I[ÃUPuH PuF � *
and

Íu��;�ú 	�� 	 �GBv��*ePD@�$z& ;�>J*eP�@¹�X�T2 $:& ß � FZI��)� H 
=NOý����GFO*,H��A
#� � w
It is easy to check that

Î *RÍ are well defined and monotone. Now, we show that
Î *RÍ

are inverses to each other.

Ík� Î �GF6���±� ß � F n 
=>cI¨�G� H n 
QN(ý��A��F n *,H n �3
 Î ��F6� �
� ß � F n 
=>cI¨�G� H n 
QN(ý���F n PuH n PuF �
� F(* by local compactness w

�GFO*,H���
 Î �]Ík��������TWV FKPuHtPÏÍk�����
TWV FKPuHtP ß � F n I��G� H n 
=NOý��A��F n *,H n �A
F� �
TWV HtPuFvno* for some �GFvny*,HQn_�3
#��* because H is compact

and �W
 ú 	�� 	 ��Bv�
TWV �GF(*?H��A
#��w

The Jung-Sünderhauf machinery works perfectly (without any modifications) for the

new morphism, i.e under Jung-Sünderhauf duality, there is a one-to-one correspondence

between zero-approximable relations and continuous maps between coherent spaces.

Therefore we have the following result:
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Theorem 4.7.5. The category of zero-strong proximity lattices and zero-approximable re-

lations between them is equivalent to the category of coherent spaces and continuous func-

tions between them.



Chapter 5

Priestley Semantics for MLS

5.1 Introduction

In Chapter 3, the notion of apartness relation (Definitions 3.1.1 and 3.1.3) on Priestley

spaces was introduced to accomplish the task of extending the Priestley duality of bounded

distributive lattices to a duality theorem for strong proximity lattices (Definition 1.1.2).

Therefore the category PSws, of Priestley spaces equipped with apartness relations as ob-

jects and weakly separating relations (Definition 3.1.5) between them as morphisms was

introduced in Chapter 3 to represent the category PLwa of strong proximity lattices as ob-

jects and weakly approximable relations between them as morphisms (Definition 2.7.2).

The objects of the latter category were introduced, by Achim Jung and Philipp Sünderhauf

in [54] (reviewed in Section 2.7) to provide a finitary representation for stably compact

spaces (Section 2.6) which are topological spaces that capture most semantics domains in

the mathematical theory of computation. Therefore it was essential to study the direct links

between Priestley spaces equipped with apartness relations and stably compact spaces; this

was done in Chapter 4.

The category PLwa and the duality established in [54], then, are the basis for a log-

ical description (expounded in [50, 52] and reviewed in Section 2.8), of stably compact

159
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spaces, similar to Samson Abramsky’s domain theory in logical form, [2]. This logical

description is via the category MLS (Multi Lingual Sequents) which has logical systems,

the so-called coherent sequent calculi, as objects and consequence relations, the so-called

compatible consequence relations (Definition 2.8.1), between them as morphisms. It was

shown, in [52], that the categories MLS and PLwa are equivalent. Therefore it is obvious

that the category MLS is a logical description to the category PSws.

Hence, once again it is our duty to explore the direct links between the categories PSws

and MLS. This is the first goal of this chapter whose second goal is to show that PSws

provides a useful semantics for MLS. The latter goal is achieved via establishing Priestley

semantics (in PSws) for different MLS’s concepts and facts i.e. via translating MLS’s con-

cepts and facts into corresponding concepts and facts, respectively, in the category PSws.

The third object of this chapter is to further our study of Priestley spaces equipped with

apartness relations. This will be done via linking the category PSws to other categories in

mathematics.

In the previous chapter we have shown how the duality, in [54], between strong prox-

imity lattices and stably compact spaces can be extended to cover coherent spaces. For this

end, we have introduced the notion of zero-strong proximity lattice. Therefore the fourth

goal of this chapter is to show how MLS can be extended to describe coherent spaces. The

fifth and the final goal of this chapter is to show how domain constructions (like lifting,

sum, product and Smyth power domain) can be done in the Priestley form.

5.1.1 Organisation

The chapter is organised as follows. Section 5.2 presents preparatory results that are nec-

essary for the following sections. Sections 5.3 and 5.4 investigate the direct relationship

between the categories MLS and PLwa. The equivalence of these categories is proved

directly in Section 5.5.



161

Section 5.6 has two objectives:

1. Introducing Priestley semantics (in PSws) for MLS’s concepts and facts (such as

compatibility, Gentzen’s cut rule, round ideals and filters, and consistency).

2. Introducing a full and faithful functor from the category PSws to the category SL

of directed-complete meet semilattices and Scott-continuous semilattice homomor-

phisms. This results in proving that the category PSws is equivalent to the image of

this functor and therefore the full subcategory consisting of the image of the functor

is self-dual as PSws is. The self-duality of this full sub-category was first noticed

and proved in [65].

In Section 5.7, we show that the category PSws is equivalent to two other categories:

1. The Kleisli category SCS þ of the Smyth power monad ;�N�*�Ò�* ÿ @ where N [52, sec-

tion 6] is an endofunctor N on SCS. For an object < 
 SCS, NQ�9<�� (or NWC ) is the

set of compact saturated subsets of < equipped with the Scott topology and for a

morphism 
=�[<t$z& ü in SCS, NQ�)
�� assigns to each compact saturated subset � of

< the saturation of 
����D� .
2. The category of stably compact spaces as objects and continuous relations of the

form
� Pc<t!Rüâ� as morphisms, where ü�� is the co-compact topology on ü .

In Section 5.8, we show how the category MLS can be modified (in a very simple way)

to provide a logical description for the class of coherent spaces which includes coherent

domains in their Scott topologies. Section 5.9 shows how domain constructions can be

done in the Priestley form.

5.2 Preparatory results

This section presents technical results that are necessary for the following sections.
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Lemma 5.2.1. Let ;�<Q*e¢�*�>3@ be a Priestley space equipped with apartness Î . Then the

following statements are true for every ��*?Ï�*,ÐO
Q< :

� � $�Î�� �	Î��9Ó�Ï¬Ö"Ó�Ð��¬��V �ox'­�
Q<{���	Î��9Ó�­�Ö�Ó�Ð�� or ­�Î-Ï�*
�G��$�Î�� �9Ò�Ï¬Ö"Ò�Ð��¬Î-�6��V �ox'­�
Q<{��ÏÔÎ-­ or �9Ò�­�Ö�Ò�Ð���Î-��w

Proof. We have

�	Î}�9Ó�Ï¬Ö~Ó�Ð��±�'V �yxz8=
Q<{�|�	Î+8|*�8~Î-Ï or 8"Î-Ð�* by �GÎkÓÕÓ��
�'V �yxz8|*?­D
Q<{����Î÷8|*�8~Î-­a*¬­�Î-Ï or 8~Î-Ð�* by �GÎDx��
�'V �yxz8|*?­D
Q<{����Î÷8|*�8~Î�� Ó�­�Ö�Ó�Ð�� or ­�Î-Ïh* by � Ò�Î�Ó��
�'V �yx'­D
�<{���6Î\� Ó�­¬Ö"Ó�Ð�� or ­3Î-Ï�* by �)Î�x��7w

The argument for �G��$+Îv� is dual.

Lemma 5.2.2. Let ;�<Q*e¢�*�>3@ be a Priestley space equipped with apartness Î . Then the

following statements are true for every ��*?Ï�0�*©wewew©*?Ï¬�	
�< :

�	Î��9Ó�Ïe0�Ö¯wewewaÖ~Ó�Ïµ�Õ����V �yx'­D
Q<����	Î�� Ó�­¬Ö~Ó�Ï�2�Ö{wewewaÖ~Ó�Ïµ�Õ� or ­ÔÎ-Ïe0�*
�9Ò�Ïe0�Ö¯wewewhÖ"Ò�Ï¬�[��Î-�	��V �yx'­D
Q<���Ïe0�Î�­ or �9Ò�­¬Ö"Ò�Ï72�Ö{wewewaÖ~Ò�Ïµ�Õ��Î-��w

Proof. The proof follows the same lines as that of Lemma 5.2.1. We will just have to use

�¹ï�²:Ó�� instead of � Ò�Î�Ó�� . Recall that Î satisfies �7ï�²zÓ�� because Î is a separator.

Lemma 5.2.3. Let ;9<À�e¢v*?>3@ be a Priestley space equipped with apartness Î . Let Ã307*¹Ã�2J
� � �9<�� and Æ�
�� � � <{� such that Ã�0|Ö=Ã�23ÎUÆ . If FU� � 8=
Q< I[Ã�0¬Î÷8 �
then

���9<�YiF6�³Ö=Ã�27��Î�Æ¬w
Proof. By � Ò�ÎkÓ���F is a lower set and is open by Lemma 3.3.4. Obviously, Ã30�ÎZF . Let

8=
À�9<{Y[F���Ö�Ã�2 and �(
{Æ . Then there exist Ñv
Q<{Y[F and ÐW
¯Ã�2 such that 8Q
QÒ�Ñ�Ö(Ò�Ð .
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By definition of F there exists Ï � 
 Ã�0 such that Ï � ÁÎ±Ñ . But �9Ò�Ï � Ö¯Ò�Ð��OÎ�� because

Ã�0�Ö¯Ã�2vÎ¡Æ . Then by condition ���Ô$+Îv� of Lemma 5.2.1 �9Ò�ÑÔÖ=Ò�Ð���Î\� which implies

8~Î-� .

Lemma 5.2.4. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î	0 and Î�2 , respectively. Let ï be a weakly separating relation from <�0
to <(2 . Then the following statements are true for every ��*,Ñv
Q<�0�*�Ï�*,ÐO
Q<O2 :

� � $}ï�� �=ïu� Ó�Ï¬Ö�Ó�Ð��¬TWV �yx'­D
�<(2,���=ïu� Ó�­�Ö�Ó�Ð�� or ­�Îk23Ïh*
����$¡ï�� � Ò��DÖ�Ò�Ñh�kïÀÏ�T(V �yx'­J
Q<"0����6Î�0�­ or �9Ò�­�Ö~Ò�Ñh�DïóÏhw

Proof. We have

�=ïu� Ó�Ï¬Ö~Ó�Ð�����V �oxm{3
Q<"0����=ï�{ or {�Î�2D�9Ó�Ï¬Ö"Ó�Ð��7* by �¹ï�x��
��V �oxm{�*,­�
Q<"0��|�=ï�{�*�{¬Î�2D�9Ó�­¬Ö~Ó�Ð��7* or ­�Î�2�Ïh* by Lemma g�w�¢�w�^
��V �ox'­�
Q<"0��|�=ïu�9Ó�­¬Ö"Ó�Ð�� or ­�Î�2�Ï�* by �¹ï�x��7w

The other direction is proved as follows:

�yx'­D
Q<O2����=ïu�9Ó�­�Ö~Ó�Ð�� or ­ÔÎ�2�Ï ��V �yx'­a*�8R
Q<O2����=ïu�9Ó�­�Ö�ÓÕ8:�7*�8~Îk2AÐ or ­�Î�2AÏ
��V �yx'­�
=<O2����=ïÀ­a*¬­�Îk23Ï or ­ÔÎk2AÐ
��V �yx'­�
=<O2����=ïÀ­ or ­�Îk2k� Ó�Ï¬Ö~Ó�Ð�� by �9Ò�ÎDÓ��
��V �=ïu�9Ó�Ï¬Ö"Ó�Ð�� by �7ï¬x���w

The first implication is true by the left-to-right direction, proved above, and the second is

true by taking 8"�÷­ . The argument for ����$}ïA� is dual.

Lemma 5.2.5. Let ;�<À�©¢�*?>A@ be a Priestley space equipped with apartness Î . Let Æ 
�=�:�9<�� and Ã�*¹Ã�0�*©wewew©*7Ã��Q
;L"�:�9<�� such that ��± ñ Ã�ñzÖ Ãk�kÎ¡Æ . If for every ^"¢ òk¢K²
F�ñ:� � 8Q
Q< I�Ã�ñ'Î+8 �

then

� ô ñ �9<{YiF�ñ �³Ö�ÃD��Î�Æ�w
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Proof. By � Ò�ÎkÓ�� every FDñ is a lower set and is open by Lemma 3.3.4. Obviously, Ã�ñ'Î-F�ñ .
Let 8ó
²± ñ �9<{Y[F�ñy�³Ö�Ã and ��
ðÆ . Then there exists ÐR
 Ã and for every ò there exists

Ñ©ñ�
R<{Y�F�ñ such that 8�
 ± ñ Ò�Ñ©ñ¨Ö�Ò�Ð . For every ò , by definition of Fkñ there exists Ï ñ � 
#Ã�0
such that Ï ñ � ÁÎ-Ñ©ñ . But ��± ñ Ò�Ï ñ � Ö1Ò�Ð��¬Î-� because ��± ñ Ã�ñ�Ö�ÃD��Î�Æ . Then by Lemma 5.2.2

��± ñ Ò�Ñ©ñ�Ö�Ò�Ð���Î-� which implies 8~Î-� .

Corollary 5.2.6. Let ;�<À�e¢v*?>A@ be a Priestley space equipped with apartness Î . Let Æ 
�=�:�9<�� and Ã�0�*ewewew¹*¹Ã¸�®
5L"�:�9<{� such that ± ñ Ã�ñkÎ�Æ . If for every ^¯¢ òO¢ ² , FDñ��� 8=
�< IÕÃ�ñ'Î+8 �
then

ô ñ <{YiF�ñ'Î�Æ�w
Proof. The proof follows from Lemma 5.2.5 because < 
BLM�:�9<�� and ± ñ Ã�ñ'� ± ñ Ã�ñ Ö"< .

Lemma 5.2.7. Let ;�<Q*e¢�*�>3@ be a Priestley space equipped with apartness Î . Then the

following is true for every upper set / in <=*¬Ïh*,Ð(
�< , and ��*,×W* � Pc< :

1. �UPu× ��V ] ×�fyÎKPm]ê�Lf Î .

2. ��]ê�óÖ�×�f Îv�|Ö ��]ê�óÖ � fyÎ����K]â�óÖ#�G×!+ � �õf Î .

3. ÏÔÎ�� <{Yi/"����V ]ê/ Ö~Ò�Ð[f Î P ] Ò�Ï�Ö~Ò�Ð[fyÎ ;

4. ÏÔÎ�� <{Yi/"����V ]ê/ Ö~Ò�Ï�fyÎU� ]êÏ�fyÎ ;

Proof. ��^h� and ��¢[� are obvious. (3) is proved as follows.

Ï�Î}�9<{Y�/"�7*3�G/mÖ�Ò�Ð��¬Î-� ��V �yx'­D
Q<{�|ÏÔÎ-­ or � Ò�­¬Ö~Ò�Ð��¬Î��
��V �yx'­a*�{�
Q<���ÏÔÎ-­a*¬­�ÎÆ{�*�Ð	ÎÆ{ or {¬Î-��* by � ÒÕÒ�Î��
��V �yxm{3
�<{��ÏÔÎÆ{�*¬Ð�ÎÆ{ or {¬Î-��* by �)ÎJx��
��V �yxm{3
�<{�A� Ò�Ï¬Ö~Ò�Ð���ÎÆ{ or {¬Î-��* by � Ò�ÎkÓ��
��V �9Ò�Ï¬Ö�ÒÕÐ���Î-��* by �)ÎDx���w
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���Õ� follows from �ª^h��*Ô�Gö[� and �9Ò�ÎDÓ�� .

5.3 From PSws to MLS

This section explores the direct way of obtaining coherent sequent calculi and compatible

consequence relations from Priestley spaces equipped with apartness relations and weakly

separating relations, respectively.

Lemma 5.3.1. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î	0 and Î�2 , respectively. Let ï be a weakly separating relation from <�0
to <(2 . Then a consequence relation «�� from the algebra ;�L{�z�9<"0�����Ö3*¬+3*µ4 *�<"0�@ to the al-

gebra ;�L{�z� <(27����Ö3*¬+3*µ4 *�<O2,@ is defined as follows:

÷=«��Õø q?r sTWV �)Ö=÷���ïu� <O27Y{+�ø(��w
Lemma 5.3.2. Let <~07*�<O2 , and <�� be Priestley spaces equipped with apartness relations

Î�07*�Î�2 , and Î�� , respectively. Let ïL0�P <"03!�<O2 and ï�2DP <O2L!Q<�� be weak separators.

Then

«�� · î � ¸ �÷«�� · �v«�� ¸ w
Proof. Suppose ÷�«�� · î � ¸ ø and F%� � 8=
Q<O2vI��GÖ=÷��kï�0�8 �

. Then, by Lemma 3.3.33,

F is open, and by by �yx1$®Ïï��� Î ��� <W2,Y[F6��ï�2v�9<���YT+�ø(� . Again by Lemma 3.3.33, there

exists Ã 
BL{�z� <O27� such that �GÖ=÷��kïÔ0��9<O2�Y$ÃU� and Ã ï�2��9<��7Y{+�øO� . Hence÷R«�� · Ã Ã «�� ¸ ø � �Àð {�$ � �h� Î �7w÷�«�� · ��«�� ¸ ø
For the other direction, suppose ÷�«�� · ��«�� ¸ ü . Then

÷R«�� · ø107*�÷R«�� · ø�2a*©wewew7*µ÷R«�� · ø3� and ù�0¬«�� ¸ üJ*¬ùD2A«�� ¸ ü�*ew©wew¹*µùTw®«�� ¸ üJw
Hence

�)Ö=÷��kï�0��9<O2�Y{+BøW0��7*3�)Ö=÷��kïÔ0��9<O2�Y{+Bø	2��7*ew©wew©*h�GÖ=÷��kï30Ô� <O27Y³+ãø3�[�7*
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and

�GÖ
ù�0ª��ï�2D� <���Y³+ãü��7*3�)Ö
ùD2��kï�2��9<���Y{+ãü3�7*ewew©w©*h�GÖ�ùMwA�kï�2��9<���Y{+ãü3�7w
Therefore

�)Ö=÷��kï�0���+�ñª� <(2,Y³+Bø6ñ ��� and ��+�ñ��GÖ�ù�ñ����Dï�2��9<���Y���+=ü3����w
But we have +�ñ��9<O2�Y{+Bø6ñ9���-<O27Y �)Ö�ñ +Bø6ñ9� and Ö�ñ½+Bø6ñ�� +�¶AÖ�<(¶ , where <W¶	
iñÔñ�ø6ñ .
By the side condition of ��û�� � $¡û�ùp�M�'� each <W¶ covers ù"C , for some A . Therefore for

every <W¶ , Ö�<(¶�P�Ö
ù0C , for some A . Consequently, +�¶AÖ~<(¶�Pk+�ñ��GÖ
ùDñ9� . This implies

�GÖ
÷��kïÔ0��9<O2�Y���+¬¶��GÖ�<W¶h����� and ��+¬¶��)Ö�<(¶����kï�2D� <��7Y{+ãü3�7*
which implies that

�yxz8=
�<(27���)Ö=÷��kïÔ0�8 or 8#ï�2��9<���Y{+�ü���w
Therefore

�)Ö=÷��kïÔ0¬��ï�2D� <���Y³+ãü��7*
which implies ÷Q«�� · î � ¸ ü .

The following corollary which follows from the previous two lemmas makes it clear that

�yx1$®Ïï��� Î � provides a Priestley semantics for �Òû�� � $5û�ùp�M�'� of consequence relations.

Corollary 5.3.3. Let ïL0 and ï�2 be weak separators. Then

øm«�� · �v«�� ¸ ÷RT(V �GÖ=ø(��ï30���ï�2��9<��7Y{+�÷��7w
Lemma 5.3.4. Let ;9<À�e¢v*?>3@ be a Priestley space equipped with apartness Î . Then «�Ú is

a consequence relation which has interpolants on the algebra ;�LT�z� <{�7��Ö3*¬+3*µ4 *�<{@ .
Proof. We proof that «|Ú satisfies condition �Qï"$àý¬� � � of Definition 2.8.1. Suppose µ�*µ÷Q«�Úø . Then �)µ~Öc�)Ö=÷�����Î � <{Y¦+GøO� . Set F�� � 8=
�< I�µ~Î+8 �

. Then by Lemma 5.2.3

��� <{YiF���ÖÀ�GÖ=÷����3ÎZ� <{YM+�ø(� . Now by Lemma 3.3.4 and the dual of Lemma 3.3.1, there

exists µ n 
BL"�:�9<{� such that �9<�YiF6�AP�µ n and �)µ n Ö��GÖ=÷�����Î�� <{Y�+3øO� . Therefore µ"«³ÚQµ n
and µ n *µ÷Q«|Úãø . The argument for �Qþð$àýÒ� � � is dual.
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Remark 5.3.5. Using Lemma 3.3.4 and the dual of Lemma 3.3.1, it is not hard to prove

that if «³Ú has interpolants then Î satisfies ���Ô$�Î�� and � � $+Î�� . Therefore ����$�Î�� and

� � $�Î�� provide a Priestley semantics for the concept of interpolation in the category MLS.

Definition 5.3.6. Let ;�<#�e¢�*�>3@ be a Priestley space equipped with apartness Î . Then

ø,ù>ò³�9<{�¬� ;�L � �9<{����Ö3*¬+3*µ4 *�<À�,«|Ú:@¹*
where «|Ú is the binary relation defined on L³�z� <{� as follows:

÷=«³Ú�ø q?r sTWV �)Ö=÷���Î�� <O27Y{+�ø(��w
Corollary 5.3.7. Let ;9<=*e¢v*?>A@ be a Priestley space equipped with apartness Î . Then

ø,ù>ò³�9<{� is a coherent sequent calculus.

Proof. Recall that a consequence relation on an algebra with interpolants is closed under

��û�� � � if and only if it is closed under ��û�� � $¡û�ùp�M�'� (Lemma 2.8.3). The closeness of

«³Ú under �Òû�� � $5û�ùp�M�'� follows from Corollary 5.3.3 and the fact that Î is closed under

�yx1$®Ïï��� Î � .
Corollary 5.3.8. Let ;�<~0��e¢k07�?>�0G@ and ;�<(2©�e¢J2©*?>�2ª@ be Priestley spaces equipped with

apartness relations Î	0 and Î�2 , respectively. Let ï be a weak separator from <�0 to <O2 .
Then ø,ù>ò|�7ï3�¬�-«�� is a compatible consequence relation from the algebra ;�LT���9<"0��7�,Ö�*µ+�*X4 *
<"0�@ to the algebra ;�L{�:�9<O2�����Ö3*¬+3*µ4 *�<O2�@ .
Proof. The compatibility of «�� with «³Ú:· and «³Ú�¸ follows from Corollary 5.3.3 and the fact

that Î�0��~ïó�¡ï®�Zï®�vÎ�2 .

5.4 From MLS to PSws

Definition 5.4.1. For a coherent sequent calculus ;)�����3*��3*¬��*µö���«|@ , we let � stands for

the least congruence [73] such that ��Ä�� is a bounded distributive lattice.
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Definition 5.4.2. Let ;)�����3*��3*¬�	*¬ö��,«�@ be a coherent sequent calculus. Then a subset�1Pu� is said to be an ideal if it satisfies the following conditions:

1. �(
#� and �D��­¤��­���V ­�
F� .

2. ��*,­J
#����V �D�Q­J
#� .

If an ideal � additionally satisfies the condition:

�D�Q­J
#����V �W
#� or ­�
#��*
then � is said to be a prime ideal.

Filters and prime filters of coherent sequent calculi are defined dually to ideals and

prime ideals, respectively. We let
�
	�� ����� and

	�� 	 ����� denote the partial orders of filters and

ideals, respectively, ordered by inclusion. We also let
�
	��o
 ����� and

	�� 	 
 �G��� denote the partial

orders of prime filters and prime ideals, respectively.

Lemma 5.4.3. Let ;)�����3*��3*¬�	*¬ö	��«|@ be a coherent sequent calculus. Then
�
	�� ����� and�
	�� �G��Ä���� are isomorphic via the following maps:

Î � �
	�� �G���3$'& �
	�� �G��Ä������ Ø 2 $:& � ] µ�f¬I�µQ
 Ø � * and

Í+� �
	�� �G��ÄÀ���3$:& �
	�� �������µ°ñ2 $z& ß °Dw
Proof. Let

Ø 
 �
	�� ����� . Then
Î

is well-defined because

] µ�f|
 Î � Ø � and ]âÛ�f Â ]Üµ�f:��V µQ
 Ø
and µ	��Û��÷Ûó��V Û 
 Ø ��V ]âÛ�f|
 Î � Ø ��* and

]Üµ�f)*a]êÛ�f|
 Î � Ø �¬��V µ|*?Ûc
 Ø ��V µ	�~Û 
 Ø ��V ]Üµ	�~Û�f|
 Î � Ø ��w
Let °c
 �
	�� �G��Ä��v� . Then Í is well-defined because

µQ
[Ík��°Ô�7*�µ���Û��÷Ûó��V ]êÛ�f Â ] µ�f|
F°®��V ]êÛ�f|
F°®��V Û 
[Ík��°Ô�7* and
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µ|*?Ûc
[Ík��°Ô����V ]Üµ�f)*a]êÛ�f³
8°®��V ]Üµ�f��#]âÛ�f:� ]Üµ	��Û�f³
8°®�'V µ	��Ûð
[Ík��°Ô��w
It is also true that °®� Î �]Ík��°Ô��� and

Ø �ÆÍk� Î � Ø ��� because

]Üµ�f³
F°®TWV µQ
[Ík��°Ô��TWV ]Üµ�f³
 Î �]Ík��°Ô���7* and

µR
 Ø TWV ]Üµ�f³P Ø TWV ]Üµ�f|
 Î � Ø �¬TWV µ=
[Ík� Î � Ø ����w

Corollary 5.4.4. Let ;)�����3*��3*¬�	*¬ö	��«|@ be a coherent sequent calculus. Then
�
	�� 
 �G��� and�
	�� 
 �G��ÄÀ��� are isomorphic via the mappings of Lemma 5.4.3.

Definition 5.4.5. Let ;)�����3*��3*¬�	*¬ö	��«|@ be a coherent sequent calculus. Then

ËAú¬�)ûµ»��G�����K; �
	���
 �G���7*©P�*?> ^ *�Î���@¹* where

> is the topology generated by the collections Ã�ó�� � Ø 
 �
	���
 �G���1I�µc
 Ø �
and F$ó~�� Ø 
 �
	�� 
 �G���JIiµóÄ
 Ø �

. And ÎÀ� is a binary relation on
�
	�� 
 ����� defined as follows:

Ø 0�Î�� Ø 2 q�r9sTWV �)�	µ=
 Ø 0�*�Û Ä
 Ø 2���µ~«�ÛLw
Lemma 5.4.6. Let ;)�����3*��3*¬��*µö���«|@ be a coherent sequent calculus. Then ; �
	�� 
 �G���7*eP
*?> ^ @ , of Ë�ú¬�)ûµ»������ , is a Priestley space and Î�� , of ËAú¬�)ûµ»��G��� , is an apartness.

Proof. The bounded distributive lattice ��Äì� together with the binary relation l defined

as follows:

] µ�f|lm]âÛ�fóq?r sT(V µ"«�ÛJ*
is a strong proximity lattice. Therefore it enough to show that Ë�ú¬�)ûµ»��G��ÄI�v� is apartness

homeomorphic to Ë�ú¬�)ûµ»������ (see Section 2.8). It is easy to check that the mappings of

Lemma 5.4.3 satisfy

Ã ³ óR° � Î � Ã�ó�� and Ãxó���Ík�õÃ ³ ó�° �,w
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Therefore the Priestley topology on
�
	�� 
 ����ÄL�v� is homeomorphic to > ^ on

�
	�� 
 �G��� via

these mappings. It remains to show that

�ox Ø 07* Ø 2J
 �
	�� 
 �G����� Ø 0¬Î�� Ø 2�T(V Î � Ø 0���Î�Ù Î � Ø 27�7w
This is proved as follows:

Ø 0�Î�� Ø 2XTWV �)�	µQ
 Ø 07*�Û Ä
 Ø 27��µ"«�Û
TWV �)�"] µ�f³
 Î � Ø 0��7*3]êÛ�f3Ä
 Î � Ø 27����]Üµ�f|lm]êÛ�f
TWV Î � Ø 0���Î�Ù Î � Ø 2���w

5.5 Equivalence of PSws and MLS

Lemma 5.5.1. Let ���Ô�,��*,��*µ��*¬ö	��«|� be a coherent sequent calculus and µ�*?Ûc
=� . Then

1. µ"«�ÛóTWV Ã�ó�Î��kF�ô .

2. Ãxó�ÖRÃxôW�-Ã�ó�õ>ô and Ã�ó"+=ÃxôW�-Ã�ó�%>ô .

Proof. 1. We have

µ~«~ÛóTWV ]Üµ�f|lm]êÛ�f:TWV Ã ³ óR° Î�Ù~F ³ ó�° TWV Ã�ókÎÀ��F$ó�* by Lemma g�w�� wÜ`¨w
2. Let

Ø 
 �
	�� ����� and µW�RÛU
 Ø
. Then µ	� �)µ	��ÛA���\µ . Therefore, by the dual of

Definition 5.4.2(1), µQ
 Ø
. Similarly

Û{��Û 
 Ø �'V Ûc
 Ø w
This proves Ã�ó�õ>ô�P ÃxóÔÖRÃyô . The other inclusion is clear. The argument for

Ãxó0+RÃxôW�-Ã�ó�%>ô is dual.
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Theorem 5.5.2. The categories MLS and PSws are equivalent.

Proof. We prove that the functor ø,ù>ò introduced in Corollaries 5.3.7 and 5.3.8 is faithful as

follows:

�=ïÀ­ T(V �G�WÃ�0A
BL � �9<"0���*¹Ã�2J
BL � � <(2,�����(
¯Ã�*�­OÄ
¯Ã�2 and Ã�0Dïu�9<{Y�Ã�27�
T(V �G�WÃ�0A
BL � �9<"0���*¹Ã�2J
BL � � <(2,�����(
¯Ã�*�­OÄ
¯Ã�2 and Ã�0¬«��1Ã�2
T(V �G�WÃ�0A
BL � �9<"0���*¹Ã�2J
BL � � <(2,�����(
¯Ã�*�­OÄ
¯Ã�2 and Ã�0¬«�� � Ã�2
T(V �G�WÃ�0A
BL � �9<"0���*¹Ã�2J
BL � � <(2,�����(
¯Ã�*�­OÄ
¯Ã�2 and Ã�0Dï�n'�9<�Y�Ã�27�
T(V �=ï n ­hw

The first and the last equivalences are true by by Lemma 3.3.33. Now we prove that ø,ù>ò is

full. Let « be an arbitrary compatible consequence relation between objects in the image

of the functor ø,ù>ò . Set

ï���� ß � Ãm!#�9<O27Y�Ã n �JIÕÃU
BL � �9<"0���*�Ã n 
�L � � <O2��7*�Ã�«�Ã n � w
It is easy to check that ïe� is a weak separator.

Before we show that ø,ù>ò³�¹ïe������« , we need to notice that for Ã¡
íL³�:� <~0ª� and Ã n 
L"�:�9<O2�� ,
Ã\ï����9<O27Y�ÃLnp��TWV Ã÷«RÃLn w

The left-to-right direction is obvious. The other direction is proved as follows. Fix 8R
 Ã .

Then

�ox:�"
Q<O2�Y�Ã n �©�G�OÃy=k
BL � �9<"0���*�Ã n= 
BL � �9<O2����|8=
{Ãx=�*��W
Q<O27Y�Ã n= and Ãx=L«RÃ n= w
Therefore ± � Ã n= I��W
 Ã � P Ã n . Hence, by co-compactness of Ã n , a finite intersection± � Ãy=:®"I�^#¢�ò1¢M² �

is contained in Ã n . Set Ãx#{� ± ñ Ãx=:® . By ��ÃU� , ������� and � � ��� ,
Ãy#E« Ã n w The set

� Ãx#-IA8¡
 Ã �
forms an open cover to Ã . Hence a finite subcover� Ãy#�x�I�^v¢ñAW¢ � �

exists. By �G����� , ÿ C Ãy#�x�«RÃ n and hence by ��ÃU� we have Ã÷«RÃ n .
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Now we show that ø,ù>ò��¹ïe�����÷« as follows:

÷=«��;�Oø T(V ô ÷ðï���� <O2�Y ß øO�
T(V ô ÷=«#ß ø
T(V ÷R«�ø~w

Finally, we show that every equivalence class (up to isomorphism) of objects in MLS

meets the image of the functor ø,ù>ò . Let ;)�����3*��3*,b¨*e^[�,«�@ be a coherent sequent calculus.

We show that � and ø,ù>ò|�oËAú¬�)ûµ»��G����� are isomorphic in MLS. To this end we define:

÷R«�0�Ã�ö ·�*©wewew©*7Ã�ö ) q?r sT(V ÷R«ì	h07*ew©wew©*�	¬�
Ãxö ·�*ewewew¹*¹Ãxö ) «³2 ÷ q?r sT(V 	a07*ewewew¹*�	Ò�v«�÷�w

Obviously «�0 and «�2 are well-defined compatible consequence relations. It is straightfor-

ward to check «�0¬��«�2A�-« and «�2A��«�0��+«³Úw� using that facts that «=�+«=��« and

Ãxö · *ew©wew©*¹Ãxö�)�«³Úw�vÃxó · *ewewew¹*¹Ãxó�~ T(V ô ñ Ã�ö�®�ÎÀ� ô C F$ó]x
T(V Ã�õ(®�ö�®³Î���FO%�xÁó*x�* by Lemma g�w g�w ^[w�¢
T(V ��ñv	�ñ�«Q�zC7µ C�* by Lemma g�w g�w ^[w ^
T(V 	a07*ewewew¹*�	Ò�v«Qµ³0�*ew©wew©*�µ¾wLw

5.6 Semantics

This section has two goals; the first one is to establish Priestley semantics (in PSws) for

concepts in the category MLS. The other goal is to introduce a full and faithful func-

tor (called ýµ¯y÷D� ) from the category PSws to the category SL of directed-complete meet

semilattices and Scott-continuous semilattice homomorphisms. As it is well known from
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category theory, this proves that the category PSws is equivalent to the image of the functorý¬¯y÷D� . Therefore the image of this functor, which is a full subcategory of SL, is self-dual as

PSws is. The self-duality of this full subcategory was noted first by J. D. Lawson in [65].

5.6.1 Compatibility

Lemma 5.6.1. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Îk2 , respectively. Let ï be a binary relation from <�0 to <(2 that is

open in >�0�!=>�2 and satisfies � Ò 0 ï�Ó 2 � . Then the following statements are equivalent:

1. «�� is compatible.

2. ï satisfies �oxAïA� and �¹ï�x�� and hence is a weak separator.

3. ï satisfies conditions �G��$}ïA� and � � $}ï3� of Lemma 5.2.4.

Proof. We first prove that ^ implies ¢ . �yxAïA� is proved as follows.

­6ïÀÐ T(V �G�zÃ�0A
#L � �9<"0����©�õÃ�2L
BL � �9<O27����­�
¯Ã�0�*�Ð�Ä
¯Ã�2 and Ã�0Dïu�9<{Y�Ã�27�
T(V �G�zÃ�0A
#L � �9<"0����©�õÃ�2L
BL � �9<O27����­�
¯Ã�0�*�Ð�Ä
¯Ã�2 and Ã�0¬«��WÃ�2
T(V �G�zÃ�07*7ÃU
BL � �9<"0����©�õÃ�2L
BL � �9<O2�����­�
¯Ã�07*�Ð�Ä
¯Ã�2a*�Ã�0�«³Ú:·�Ã

and Ã+«��(Ã�2a* by Lemma ¢�wÜd¨w�¢
T(V �G�zÃ�07*7ÃU
BL � �9<"0����©�õÃ�2L
BL � �9<O2�����­�
¯Ã�07*�Ð�Ä
¯Ã�2a*�Ã�0�Î�0��9<"0�Y�ÃD�

and Ã\ïu�9<O2�Y�Ã�27�
T(V �ox'ÏD
Q<"0���­�Î�0�Ï or Ï6ïÀÐ�w

The left-to-right direction of the last equivalence is true as follows. Set FU� � 8Q
Q<Q0�Ia8ÀïÀÐ �
.

Then by Lemma 3.3.33 F is open and ­ðÎ�0�� <~0ªY[F6� . Now we apply Lemmas 3.3.4

and 3.3.33 to get the required clopen upper sets. The argument for �¹ï¬x�� is dual.

��¢[� implies �GöÕ� is Lemma 5.2.4. Finally we show that ��öÕ� implies ��^h� . We do this via

proving the conditions of Lemma 2.8.2. We first prove �oï"$ñý¬� � n � as follows. Suppose
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µ�*X÷ «��-ø . Then µ�Ö��)Ö=÷��+ï � <(2�Yg+�øO� . Set F � � 8Q
Q<~0JIiµ"Î60�8 �
. Then by

Lemma 3.3.4 F is open lower, and by Lemma 5.2.3 �9<�YiF6��Ö{�)Ö=÷��kïu�9<127Y"+�øO� . Now by

Lemmas 3.3.33 and 3.3.1 there exists µ n 
8L"�:�9<"0�� such that <{YiFZP-µ n and µ n ÖÀ�GÖ=÷��6ï
�9<O2�Y³+BøO� . Therefore µ�«³Ú:·�µ n and µ n *µ÷R«��gø . �Qï1$¡û�� � � is proved as follows. Suppose÷U«³Ú:·Oµ and µ�*¬ù «��àü . Therefore Ö=÷ Î60��9<"0�YÕµ'� and µ~Ö �)Ö
ù��¯ïM�9<O27Y¦+Gü3� . Fix

ÏD
�Ö=÷ and ��Ä
8+�ü . Then for every ­�
Q<~0 and Ð(
{Ö
ù , we have ÏÔÎ60�­ or � Ò�­³Ö	Ò�Ð���ïÀ� .

Therefore, by condition �G��$}ï3� of Lemma 5.2.4, � Ò�Ï�ÖJÒ¨Ð��DïÀ� . Since this is true for every

ÐW
{Ö
ù , we have �9Ò�Ï�Ö#�)Ö
ù�����ï®� . Again since this is true for every ÏD
{Ö=÷ , �¯Ä
 +�ü , we

have ���GÖ
÷���Ö®�GÖ�ù����(ï �9<(27YO+#ü3� . Therefore ÷¬*¬ù�«���ü . The arguments for �oþc$àý¬� � n �
and �Qþð$¡û�� � � are, respectively, dual to that of �oï~$ñýÒ� � n � and �Qï1$¡û�� � � . Therefore «�� is

compatible.

5.6.2 Gentzen’s Cut Rule

Lemma 5.6.2. Let ;�<~0��e¢k07�?>�0�@ be a Priestley space equipped with apartness relations Î .

Then the following statements are equivalent:

1. «³Ú is closed under Gentzen’s cut rule (or �Òû�� � � ) .

2. Î is closed under �ox~$ÀÏï�h� Î � .
Proof. ��^h����V ��¢[� is proved as follows. Suppose ��ÎM�QÎ ­ and set FM� � 8{Ii�6Î+8 �

.

Then �#Î F and � <{Y[F6�6Î ­ . Now by Lemma 3.3.4 there exits
� 
éL � � <{� such that

�(ÎU<{Y �
and

� Î ­ . By the same lemma again there exist Ã 
�LM���9<{� and Æ\
à�=�:�9<��
such that ��
óÃ , ­v
ÀÆ , ÃmÎ <�Y �

and
� ÎKÆ . Therefore Ãm«�Ú �

and
� «|ÚQ<{YÕÆ . By

the assumption, Ã÷«|Ú1<{YÕÆ and hence Ã÷Î�Æ implying �	Î-­ .
For the other direction, suppose ÷M«�ÚJø"*�µ and µ�*µù «|Ú ü be two sequents withø�� � 	a0�*ewew©w©*�	¬� �

and ù÷� ��ø 07*ewewew¹* ø w �
. We claim that � ± ÷3Ö ± ù��¬Î��9<�Y�� ÿ ø#+ ÿ ü���� .

Let �=
���±²÷~Ö8±bù�� and ­6
#<�Y��)ÿ�ø +�ÿ�ü�� , we claim that �~Î}�1Î�­ . From the first
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sequent Ö=÷�Î��)Ö�ñª� <{YÌ	�ñ��³Ö � <{YÕµ'��� . Set
� ñ'�-ÎO] <{Y;	7ñ�f . Then by the dual of Lemma 5.2.5

�	Î��GÖ�ño<{Y � ñ9��Ö��9<{Y�µ'� . Similarly if we set /	ñ'�K] ø ñof Î , then by Lemma 5.2.5 �)Ö¬ñy<�Yi/6ñ9�iÖ
µ~Î-­ . Moreover, by the choice of � and ­ we have �6Î +¬ñ /6ñ and +�ñ � ñ'Î-­ . Let 8Q
Q< be

such that �=ÁÎ+8 we claim that 8~Î-­ . Then 8Q
Q<{Y +¬ñÕ/6ñ because �6ÎI+�ñ9/6ñ . If 8Q
�µ then

8~Î-­ because �GÖ�ñy<{Y[/6ñ �aÖ�µ"Î-­ . If 8EÄ
�µ then 8Q
8+�ñ � ñ because �	Î��GÖ�ñy<{Y � ñ9�aÖ�� <{Y[µ:� .
Therefore 8E
c­ . Hence for every 8ð
ó< , �QÎ}8 or 8#ÎZ­ . Therefore �QÎZ��Î¡­ which

implies by assumption �	Î-­ .

5.6.3 Round Ideals and Filters

Recall the notions of round ideal and filter of coherent sequent calculus is reviewed in

Section 2.8.

Lemma 5.6.3. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness relations Î .

Then

1. ��»aù�É��9<�� and round ideals of the coherent sequent calculus ;�LT�:� <{�7��Ö3*¬+3*�µ|*�<À��«³Ú:@
are isomorphic via the following mappings:

Î �¾��»aù�É�� <{�A$:& ú 	�� 	 �ZL � � <{�����X�¦2 $'& � ÃUPb��IÕÃU
�L � � <{� � * and

Í+� ú 	�� 	 ��L � � <{���A$:& ��»aù�É�� <{�7� Ø 2 $'& ß Ø w
2. ��»aù Ô �9<{� and round filters of the coherent sequent calculus ;�LM�:� <{�7��Ö3*¬+3*�µ|*�<À��«³Ú:@

are isomorphic via the following mappings:

Î �¾��»aù Ô �9<��A$'& ú �
	�� �ZL � �9<{���7� Ø 2 $'& � ÃU
BL � � <{�JIh<{Y Ø P÷Ã � * and

Í�� ú �
	�� ��L � �9<����A$:& ��»aù Ô �9<��7�µ°í2 $:&X<{Y ô °Dw
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Proof. 1. We show that
Î

is well defined by proving that
Î �����¬�K] «�Ú:f Î ���¨� .

ÃU
 Î ����� T(V Ã÷Î�� <{Y_���
T(V �G�OÃ n 
BL � � <{����Ã n Pb� and Ã�Î��9<{Y�Ã n �7* by Lemma ö¨w4ö�w¥�
T(V �G�`øZPJ¶,ñ�� Î ���¨����Ã÷Î�� <{Y"+BøO�
T(V �G�`øZPJ¶,ñ�� Î ���¨����Ã÷«³Ú�ø
T(V Ãm
À]Ü«³Ú:f Î ������w

Î
is clearly an order-preserving map. Now we show that Í is well-defined.

8=
 ß Ø TWV �)�OÃU
 Ø �|8Q
¯Ã
TWV �)�OÃU
 Ø *µøZPJ¶?ñ�� Ø �³8=
¯Ã÷«³Ú�ø
TWV �)�OÃU
 Ø *µøZPJ¶?ñ�� Ø �³8=
¯Ã÷Î�� <{Y"+BøO�
TWV �)�OÃ�*¹ÃLnz
 Ø �³8=
¯Ã�Î\� <{Y�ÃLn �
TWV 8~Î�� <{Y
ß Ø �7* by Lemma ö¨wÜö¨w�� w

The right-to-left direction of the last equivalence is proved as follows. By Lemma 3.3.4

there exists Ã�*¹Ã n 
BL � �9<�� such that 8Q
¯Ã�*�Ã n P�ÿ Ø
and Ã+Î�� <{Y�Ã n � . Because

Ø
is an open cover of Ã n , there exists ÆK
 Ø

such that Ã n P�Æ and this implies Ã n 
 Ø
.Î �]Ík� Ø ����� Ø

and Ík� Î ���¨����� � follows from the Priestley’s representation theo-

rem [20, 11.29].

2. The argument for this is dual to that of �ª^a� .

For the rest of this section the reader needs to recall Theorem 4.2.6 and its dual.

Lemma 5.6.4. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness relations Î .

Then the mappings

>À$'& ��»aù Ô �9<{���,FI2 $:& ] <{Y[F�f Î and >À$:& ��»aù�É�� <{�7�,F52 $'& Î(] <{Y[F�f
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are Scott-continuous retractions on > .

Proof. The maps are clearly monotone. Idempotence follows from the definition of isolated

sets. Scott-continuity is proved as follows. Let
� FkñAIiòA
 � �

be a directed subset of > . We

claim that ÿ ñ��m� �)ÎO] <{Y[F�ñ�fy���-ÎO]â<{Y��Gÿ ñ��m� F�ñ �õf .
8=
8ßñ��m� �GÎ(] <{Y[F�ñofy��TWV �)��ò�
#���³8~Î��9<{YiF�ñ �

TWV 8~Î��9<�Y�ßñ��m� F�ñ9��w
The right-to-left direction of the last equivalence is proved as follows. By Lemma 3.3.4,

there exists ÃU
BL"�:�9<{� such that 8"Î+<{Y�Ã and Ã�P ÿ ñ��m� F�ñ . The by the compactness of

Ã and the directness of
� Fkñ¬I�ò�
#� �

, there exits ò�
B� such that 8~Î+<{YiFDñ�Pc<{Y�Ã .

The following Lemma is a straightforward generalisation of Lemma 4.2.4.

Lemma 5.6.5. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ï be a weak separator from <�0 to <O2 . Then

for closed subsets �UPc<~0 and ×\Pc<O2 , ]â�Jf�ïu
G��»aù Ô � <(27� and ïJ]ê×�f|
@��»aù�É�� <"0�� .
Theorem 5.6.6. Let ;�<�0,�e¢�07��>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ï be a weak separator from <�0 to <O2 . Then

the mappings:

< 2 $:& ��»aù Ô �9<{�
ï 2 $:& � Ø 2 $'& ] <{Y Ø f�ï��
ü 2 $:& ��»aù Ô �Gü6�

establish a functor ý¬¯y÷ 	 from PSws to the category SL of directed-complete meet semilat-

tices and Scott-continuous semilattice homomorphisms. Dually, The mappings

< 2 $'& ��»aù<É��9<{�
ï 2 $'& �¹ïJ]â<�YY��f8ù~$b���
ü 2 $'& ��»aù<É��Gü	�
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establish a contra variant functor ýµ¯y÷D� from PSws to SL.

Proof. From Lemma 5.6.5, ] <{Y��ªw4��f�ï is well-defined. Also ]â<�Y��ªw4��fyÎ is the identity on

òQ�>� Ô �9<{� by definition of ��»aù Ô � <{� . Similarly to Lemma 5.6.4, the maps above are proved to

be Scott-continuous. Clearly, ] <{Y�<Qf?ï®�K] 4if�ï®�÷ü . For the binary meet we have

] <{Y�� Ø Ö�����f�ï®�K]�� <{Y Ø ��+#�9<�Yi���õf?ïó� ��] <{Y Ø f�ï��³Ö#��] <{Yi�kf?ïA�7w
It remains to show that ý¬¯y÷D���¹ïL0¬�~ï�2����éýµ¯y÷D�|�¹ï�0��³�{ý¬¯y÷D�|�7ï�27� .
8=
À��ý¬¯y÷D�³�¹ï30��³�³ýµ¯y÷D�|�¹ï�27���¹� Ø ��TWV 8Q
®] <(2,Y�]â<"0�Y Ø f?ï�0õf�ï�2

TWV � <O2�Y�]â<"0�Y Ø f�ï�0��Dï�2�8
TWV �G�OÃU
BL � �9<O2����A� <(2,Y�]â<"0�Y Ø f?ï�0��3P÷Ã

and Ã¡ï�2�8
TWV �G�OÃU
BL � �9<O2����A� <(2,Y�Ãk�3P ] <~0ªY Ø f�ï�0

and Ã¡ï�2�8
TWV �G�OÃU
BL � �9<O2����A� <~0ªY Ø �Dï�0Ô� <{Y�ÃD� and Ã}ï�2�8
TWV � <"0�Y Ø �Dï�0��~ï�2�8
TWV 8Q
®] <~0ªY Ø f�ï�0³��ï�2
TWV 8Q
®��ýµ¯y÷D�|�¹ï30¬��ï�27���©� Ø ��w

The left-to-right direction of third last equivalence is proved as follows. Set FU� � �W
Q<"2�I
�¯ï�238 �

. Obviously F�ï�238 . Moreover, by Lemma 3.3.33 F is an open upper set, and by

�yx1$®Ïï��� Î ���9<"0�Y Ø �kï�0��9<O2�Y[F�� . Then we can apply Lemma 3.3.33 to get Ã .

The next two lemmas are essential for the following subsection.

Lemma 5.6.7. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness relations Î .

Then for every < Á� Ø 
@��»aù Ô �9<{� , the following statements are equivalent where
� Æ|0�*ew©wew©*�Æð� � P� � �9<�� :
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1.
Ø

is meet-prime in the lattice ��»aù Ô �9<�� ;
2. � <{Y Ø ��Î���± ñ Æ ñ9�¬��V �)��ò ��Æ ñ�P Ø

.

3.
Ø ��<{Y�ÒÕ8 , for some 8=
Q< ;

Proof. ��^h����V ��¢[� : Suppose �9<{Y Ø ��Î �o± ñ Æ�ñ � . Set F�ñk� ÎO] Æ�ñ�f . Then by the dual of

Corollary 5.2.6 � <{Y Ø �¬Î�� <{Y$+�ñ F�ñ � . Each F�ñ is open therefore we can apply Lemma 3.3.2,

to get
� Ã�0�*ewew©w©*¹Ã¸� � P²L"�z�9<�� such that Ã�ñ�PuF�ñ and � <{Y Ø ��Î�� <{Y�+�ñ�Ã�ñ9� . We notice that

ô ñ ] �9<�Y Ø �³ÖRÃ�ñ ��fyÎ � ]�� <{Y Ø �'Ö#��+�ñ)Ã�ñ9�õf Î�* by Lemma g�w�¢�wú� ��¢[�
P ]â<{Y Ø fyÎ�� Ø * by Lemma g�w�¢�w¶�¨�GöÕ�

By �ª^a� There exists ^v¢ ò�¢ ² such that

Æ ñ|Pm]4Ã�ñof Î Pm] �9<ZY Ø �³Ö�Ã�ñ�f Î P Ø w
��¢[����V �Gö[� : Suppose ��*,­ are distinct minimal points in <{Y Ø

. Then by Presley separa-

tion condition, there exist Ã��k
#L"�z� <{� containing � but not ­ and Ã�NA
#L"�:�9<�� containing

­ but not � . The set
� Ã���Ii� is maximal in <�Y Ø �

is an open cover to the compact set <{Y Ø
.

Therefore a finite subcover
� Ã���®QIL^®¢�ò�¢�² �

exists. Hence Ö�ñ��9<{Y�Ã���® �QP Ø
which

implies �9<{Y Ø �¬ÎUÖ�ñõ�9<{Y�Ã���®)� . Therefore by ��¢i� there exists ò such that <{YÕÃ=��®¬P Ø
which

implies <�Y Ø P Ã��*® . But this is a contradiction because Ã���® does not contain all elements

of <{Y Ø
.

�GöÕ����V �ª^h� : Suppose
Ø 07* Ø 2D
à��»aù Ô � <{� and they are not contained in

Ø
. Then 8{
 Ø 0

and 8Q
 Ø 2 . So 8=
 Ø 0�Ö Ø 2 and hence
Ø 0|Ö Ø 2�ÁP Ø

.

Lemma 5.6.8. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness relations Î .

Then if �=
b��»aù�É��9<{� and
Ø 
b��»aù Ô � <{� are maximal with respect to the property

Ø +��ÀÁ�
< , then

Ø
is meet-prime in the lattice ��»aù Ô �9<{� .
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Proof. Suppose
Ø

is not meet-prime, then by Lemma 5.6.7 there exists
� Æ�0:wewew¹*�Æ¾� � P�=�:�9<�� such that �9<{Y Ø ��Î��)Ö�ñ Æ�ñ � and Æ ñ�ÁP Ø

for every ^�¢ ò�¢ ² . Set FDñ'�÷Î(]ÜÆ ñof . Then

by the dual of Corollary 5.2.6 � <{Y Ø �¬Î�� <{Y +¬ñ�F�ñ9� . Each F�ñ is open therefore we can apply

Lemma 3.3.2, to get
� Ã�07*ewewew7*¹Ã¸� � P²L"�:�9<{� such that Ã�ñ�P+F�ñ and �9<{Y Ø ��Î��9<{Y¤+�ñ¨Ã�ñ � .

Therefore Æ�ñ|P ] Ã�ñ�f Î and hence

�ox�^�¢ ò�¢ ²��A]4Ã�ñof Î ÁP Ø w
Therefore

�ox�^v¢uò�¢ ²³�¹�)��8Q
Q<{�¬Ã�ñ'Î+8 and 8EÄ
 Ø
��V �ox�^v¢uò�¢ ²³�¹�)��8Q
Q<{�¬Ã�ñ'Î+8 and <�Y Ø ÁÎ+8
��V �ox�^v¢uò�¢ ²³�¹�)��8Q
Q<{�A���9<{Y Ø �³Ö�Ã�ñ ��Î+8 and 8EÄ
®] <{Y Ø f Î
��V �ox�^v¢uò�¢ ²³� Ø �K] <{Y Ø f Îüûm] �9<�Y Ø �³Ö=Ã�ñof Î	w

Hence for every ò , �O+¯]�� <{Y Ø �³Ö=Ã�ñyf Îm�÷< because
Ø

is maximal with respect this prop-

erty. We notice that

�ox�^�¢ ò�¢ ²��¸�O+ ]�� <{Y Ø �'Ö�Ã�ñofyÎm� < �'V �O+ ô ñ ] �9<{Y Ø �³Ö�Ã�ñ�f Î���<
�'V �O+¯]�� <{Y Ø �³ÖBß ñ Ã�ñ�f Î���<
�'V �O+ Ø �u<Qw

The second implication is true by Lemma 5.2.7(2). The last implication is true because for

every ÏD
®� <{Y Ø � , ÏÔÎ�� <{Y�ÿ ñ Ã�ñ � and hence by Lemma 5.2.7(4),

]âÒ�Ï�Ö ß ñ Ã�ñ�f ÎU� ]êÏ,f Î�w
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Therefore

] �9<{Y Ø �³Ö ß ñ Ã�ñyf Î � ] ß�o�¹C�ÙPÂ Ò�Ï¬Ö ß ñ Ã�ñyf Î
� ]gß�o�¹C�ÙPÂ �9Ò�Ï�Ö#ß ñ Ã�ñ ��fyÎ
� ô�Q�¹C�ÙPÂ ] �9Ò�Ï�Ö#ß ñ Ã�ñ ��fyÎ
� ô�Q�¹C�ÙPÂ ]êÏ,f Î
� ]â<{Y Ø fyÎ�� Ø w

5.6.4 Consistency

Definition 5.6.9. Let ;�<~0��©¢�07�?>�0)@ and ;�<(2©�e¢J2a*�>�2ª@ be Priestley spaces equipped with

apartness relations Î	0 and Î�2 , respectively. Let ï be a weak separator from <�0 to <O2 .
A pair of sets �UPc<~0 and ×}Pc<O2 is said to be ïJ$ close if ýÔ���\ïÀ×	� .
Lemma 5.6.10. Let ;�<~0��e¢k07�?>�0G@ and ;�<(2©�e¢J2a*�>�2�@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively. Let ï be a weak separator from <�0 to <(2 . For everyØ 
@��»aù Ô �9<"0�� and �(
@��»aù�É�� <(2,� , The following statements are equivalent:

1. ;9<~0�Y Ø *��¨Y�<O2�@ is ïL$ close.

2. ; Î � Ø ���7* Î ������@ is «�� -consistent, where the functions
Î

are defined in Lemma 5.6.3.

Proof. Suppose ;�<~0�Y Ø *¬<O2�YY��@ is ïÔ$ close. This is equivalent to �9<�0�Y Ø ��Áï÷�9<O27YY��� and,

by Lemma 3.3.33, the last is equivalent to

�ox|ÃU
#L � �9<"0����©�ox|ÃJn:
BL � �9<O2����|<{Y Ø P÷Ã and ÃJnzPb����V Ã¡Áï <O2�Y�ÃLn w
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Again this is equivalent to

�yx|øZPJ¶?ñ�� Î � Ø ��� and �yx|÷¯P�¶?ñ�� Î �����������GÖ
øO�kÁï��9<O2�Y{+�÷��
which is equivalent to

�yx|ø¡P�¶?ñ�� Î � Ø ��� and �ox|÷ P�¶?ñ�� Î ���������zø Á«��Õ÷
which means that ;oÍk� Ø �7* Î ���¨��@ is «�� -consistent.

Lemma 5.6.11. Let ;�<~0��e¢k07�?>�0G@ and ;�<(2©�e¢J2a*�>�2�@ be Priestley spaces equipped with apart-

ness relations Î60 and Îk2 , respectively. Let ï be a weak separator from <�0 to <O2 . For a

pair of closed subsets ��P <�0 and ×}Pc<(2 , the following statements are equivalent.

1. ;���*�×6@ is ïJ$ close.

2. ;���*�<O27YÕÎk2h] ×vf @ is ïÔ$ close.

3. ;9<~0�Y�]â�JfyÎ	0,*¬×	@ is ïÔ$ closet.

4. ;9<(2�Y�]â�Jf�ïJ*�×	@ is Îv2©$ close.

5. ;���*�<"0�Y�ïJ] ×�fy@ is Î	0,$ close.

6. ]â�Jf�ï8+ZÎ�2h] ×vf�Á��<O2 .
7. ]â�JfyÎ	0�+ ïJ] ×vf�Á��<"0 .
8. �G�6�W
=��*��1
Q<O2e*¬­�
=×	���=Áï#�=ÁÎ�2�­ .
9. �G�6�W
=��*�8=
Q<"0�*¬­J
R×	���QÁÎ60�8ÀÁïÀ­ .

10. �)�6�W
=��*��1
Eø,ù�ú?ûÕ�9<FS2 �7*�­�
R×	���=ÁïÀ�=ÁÎk23­ .
11. �)�6�W
=��*�8=
óø,ù�ú,ûÕ�9<"0��7*�­�
R×	���=ÁÎ60�8ÀÁïÀ­ .
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Proof. ��^h�¬��V �GöÕ� : If �9<"0�Y�]ê�Lf Î60��kïÀ× then by �oxAï3�|�¡ïÀ× because �+Î	0���]â�JfyÎ	0�� .
�GöÕ�L��V �)g[� : If � Î�0�� <~0ªY�ïD]ê×�f � then by �oxAïA�¬�Mï+× because �¹ïD]ê×�fy�Oïu× . By the

same condition this implies that � <�0�Y�]ê�Lf Î�0��Dï®× .

�)g[�v��V �~�[� : If ]â�JfyÎ	0¨+tïD]ê×�fA�\<"0 then <~0�Y'ï�] ×vfJP%]â�JfyÎ	0 which is equivalent to

�+Î60��9<"0�Y�ïJ] ×vf � .
�]�[����V �ª^a� : If �¡ïÀ× , then, by �yxAïA� , for every, 8=
Q<�0,*��+Î�0�8 or 8#ïÀ× . Therefore

]â�JfyÎ	0�+ ïJ] ×�f:�u<~0 .
Clearly �GjÕ� is equivalent to �]�i� , Therefore �ª^a�7*	��öÕ�7*6�)g[��*6�~�[� and ��jÕ� are equivalent.

Moreover, ��^[^h� implies �GjÕ� is obvious.

�]�[����V �ª^i^h� : Suppose ]ê�Lf Î	0�+ ïJ] ×�f�Á�u<~0 . Set

�#� � Ø 
@��»aù Ô � <~0��JI¨]â�JfyÎ60AP Ø
and

Ø +óïD]ê×�f�Á�u<"0 � w
By the dual of Theorem 4.2.6, the directed joins in ��»aù Ô �9<"0�� are unions. For a directed

subset / Pk� , It is true that

�yx'Ð(
=/"��ÐM+EïD]ê×�f�Á� <~0¬��V � ß&X�>þ Ð���+ðïJ] ×vf�Á��<"0�*
otherwise ÿ &X�>þ Ð is an open cover to the compact set <�0�Y�ïJ] ×�f which implies by directness

of / that Ð³+ðïD]ê×�f�� <~0 , for some Ð=
®/ . By Zorn’s Lemma � has a maximal element

say � and by Lemma 5.6.8, � is a meet-prime in ��»aù Ô � <"0�� . Therefore, by Lemma 5.6.7,

� � <{Y�Ò[8 � ]âÒÕ8�fyÎ	0�� ] 8�f Î60 for some 8®
ó< . Therefore 8®
�ø,ù�ú?û�� <�0�� and ]ê�Lf Î	0vP
<"0�Y�ÒÕ8 which implies 8UÄ
-]â�JfyÎ�0 because ]â�JfyÎ	0 is lower by the dual of Lemma 4.2.4(1).

Hence there exists �1
R� such that �QÁÎ	0¬8 . Finally ] 8�f Î	0¨+tï�] ×vf�Á�+<~0 implies that there

exists {A
Q<~0 and ­D
R× such that 8ÀÁÎ60�{DÁïÀ­ . This by �yxAï3� implies 8#ÁïÀ­ .
The argument that �ª^a�7*���¢[�7*3������*Ô�G`[�7*���dÕ� and ��^abÕ� are equivalent is dual.

Lemma 5.6.12. The functors ýµ¯y÷ 	 and ýµ¯y÷D� of Theorem 5.6.6 are full and faithful.

Proof. Let ;9<~0��e¢k0��?>�0)@ and ;�<O2e�e¢L2a*?>�2õ@ be Priestley spaces equipped with apartness rela-

tions Î60 and Î�2 , respectively. Let ïL0 and ï�2 be weak separators from <�0 to <(2 satisfying
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] <~0ªY Ø f�ïÔ0¬� ] <"0�Y Ø f�ï�2 for every
Ø 
@��»aù Ô �9<"0�� . Then

�=ï30�­XTWV ;G��*?­¹@ is not ïÔ0�$ close

TWV ;9<~0ªY�] �[fyÎ	0�*,­7@ is not ïÔ0�$ close * by Lemma g�w4`�w�^[^Õ�ª^h��*h�GöÕ�
TWV ;9<(2,Y�]â<"0�Y�]ê�[f Î60õf?ï�0�*,­7@ is not Î�2�$ close * by Lemma g�wÜ`¨w ^[^���^h�7*h�v���
TWV ;9<(2,Y�]â<"0�Y�]ê�[f Î60õf?ï�2e*,­7@ is not Î�2�$ close * by assumption

TWV ;9<~0ªY�] �[fyÎ	0�*,­7@ is not ï�2�$ close * by Lemma g�w4`�w�^[^Õ�ª^h��*h�����
TWV ;G��*?­¹@ is not ï�2�$ close * by Lemma g�wÜ`¨w�^i^��ª^h��*h�Gö[�
TWV �Qï�2�­aw

Hence the functor ýµ¯y÷ 	 is faithful.

Let 
ó�z��»aù Ô � <"0���$:& ��»aù Ô � <(27� be a Scott-continuous semilattice homomorphism. We

define a binary relation ï3¶vPc<~0A!Q<O2 by

ïA¶��éß � ÃU!�ÆZIÕÃU
BL � � <~0ª�7*�ÆK
G� � � <(2,� and 
���]4ÃJfyÎ	0��¨+QÎ�2�] Æ�f:��<O2 � w
We show that ï�¶ is a weak separator. Obviously ïA¶ is open in >�0A! >�2 and satisfies

condition �9Ò 0 ï�Ó 2 � . The condition �yxAï3� is proved as follows. Suppose ��ï3¶=­ . This is

equivalent to

�)�zÃU
�L � � <"0����¹�)��Æ�
G� � �9<O2������W
¯Ã�*,­J
�Æ and 
���]4ÃLf Î	0ª�¨+=Î�2�] Æ�f:�u<(2©w
Moreover,


���] ÃLfyÎ	0��z+QÎ�2h] Ævfz��<O2 TWV <O2�YÕÎ�2h] Ævf|P�
���]4ÃLf Î60��
TWV �G�OÃ n 
BL � � <~0ª���|<O2�YÕÎk2�] Æ�f|P�
���] Ã n fyÎ	0�� and Ã+Î�0�<"0�Y�Ã n
TWV �G�OÃ n 
BL � � <~0ª���¬Ã�Î60�<~0ªY�Ã n and 
���] Ã n fyÎ	0��¨+QÎ�2�] Æ�f:��<O2
TWV �oxz8=
=<"0����	Î60�8 or 8®ï�¶J­hw
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The left-to-right direction of the second equivalence is true because by the dual of Lemma 4.2.4(1):


���]4ÃLf Î60���� 
���+ � � ]êHQfyÎ60JI�H 
#L � � <~0�� and H +#]4ÃLf Î	0¬��<"0 � �
� + � � 
���]êHQfyÎ60��JI�H�
#L � �9<"0�� and HJ+ ] ÃLfyÎ	0��u<~0 � *

is an open cover to the compact set <W27Y���] Æ�fyÎv2�� taking into consideration the directness

of the union. The other direction of the same equivalence is proved as follows. It is true

that Ã�Î60�<"0�Y�Ã n and Ã n Î60�]4Ã n fyÎ	0 . Therefore by �)ÎJx���Ã�Î	0�]4Ã n fyÎ	0 implying ]4Ã n fyÎ	0LP
]4ÃJfyÎ	0 . Hence <(2�YÕÎ�2h] Ævf³P+
���]4Ã n fyÎ	0��3P�
���] ÃLfyÎ	0�� implying <O27Y[Îv2h] Ævf|P�
���] ÃLfyÎ	0�� .

The right-to-left direction of the last equivalence is proved as follows. Set F � � 8ó

<"0"I³�{Î�0�8 �

. Hence �{Î%F and F is a lower open subset of <�0 . Moreover, for every

8 
c<"0�Y[F , there exists Ãx#�
²L � � <"0�� and ÆÅ#Q
5� � � <O2�� such that 8 
÷Ãx# , ­1
 Æw# , and


���] Ãy#efyÎ60��¨+QÎ�2h] ÆÅ#ef¬� <O2 . The set
� Ãx#QI�8À
À<"0�Y[F �

is an open cover to <{Y[F which is

compact and hence a finite subcover
� Ã�#¬®DI'^(¢ òJ¢ ² �

exists. Set Ã n ��+�ñ)Ãy#¬® and ÆZ�
Ö�ñ�ÆÅ#¬® . Therefore �	Î60�<~0ªY�Ã n because <~0�Y�Ã n PuF . We prove 
���]4Ã n fyÎ60��¾+(Îv2h] Ævf:�u<O2 as

follows. For every ^�¢ ò�¢ ² , ÆKP�Æu#¬® and hence Î�2h] ÆÅ#¬®yf|P�Îv2h] Ævf . Therefore

�yx�^v¢ ò�¢ ²���
���] Ãy#¬®yfyÎ60��¨+�Îv2h] Ævf:�u<O2
��V ô0Qº�ñ�º?� 
���]4Ãy#¬®yf Î60��¨+=Îk2�]ÜÆkf:��<O2
��V 
�� ô0Qº�ñ�º?� ] Ãy#¬® fyÎ60��¨+�Îv2h] Ævf:�u<O2a* because 
 is Scott-continuous

��V 
���]³ß0Qº�ñ�º?� Ãy#¬®yf Î60��¨+=Îk2�]ÜÆkf:��<O2
��V 
���]4Ã n f Î60��¨+=Îk2�]ÜÆkf:��<O2ew

By Lemma 3.3.4, Ã exists.

The �¹ï�x�� is proved as follows. Suppose �=ï�¶J­ . This is equivalent to

�)�zÃU
�L � � <"0����¹�)��Æ�
G� � �9<O2������W
¯Ã�*,­J
�Æ and 
���]4ÃLf Î	0ª�¨+=Î�2�] Æ�f:�u<(2©w
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Moreover,


���] ÃLfyÎ	0��z+QÎ�2h] Ævfz��<O2 TWV � <O2�YÕ
���]4ÃLf Î60��¬Î�23Æ
TWV �G��¾�
BL � � <(27����� <O27YÕ
���]4ÃLf Î60���Î�2�<O27Y�¾ and ¾uÎk2�Æ
TWV �G��¾�
BL � � <(27����
���]4ÃJfyÎ	0��¨+QÎ�2h] <O27Y�¾Ôfz��<O2 and ¾ Î�23Æ
TWV �oxz8=
=<"0����=ï�¶Ô8 or 8~Î�2�­hw

The second equivalence is true by �)ÎJx�� and Lemma 3.3.4. The prove of the last equivalence

is similar to its counter part in the prove of �oxAïA� above.

In the following we show that ý¬¯y÷ 	 �7ï3¶h���+
 .

] <~0ªY Ø f�ïA¶ � � 8=
Q<O2�Ia<"0�Y Ø ï�¶Ô8 �
� + � � Æ I�ÆK
G� � � <O27�7*¹ÃU
�L � �9<"0��7*h� <"0�Y Ø �AP÷Ã and 
���]4ÃLf Î	0��¨+�Îv2h] Ævf:� <(2 �
� + � � Æ I�ÆK
G� � � <O27�7*�ÆKP�
���] ÃLfyÎ	0���*¹ÃU
BL � �9<"0�� and � <~0�Y Ø �AP÷Ã �
� + � � 
���]4ÃLf Î60���I[ÃU
BL � �9<"0���*h�9<"0�Y Ø �AP-Ã �
� 
���+ � � ]4ÃLf Î	0�I[ÃU
�L � � <"0��7* Ø +RÃ÷�u<"0 � �
� 
�� Ø �7* by the dual of � w�¢�w¥����¢[�7w

The second equality is proved as follows. For every �"
�<�0�Y Ø
, there exists Ã��v
8L"�:� <~0ª�

and Æ¾� 
J� � �9<O27� such that ��
¡Ã�� , 8 
}Æ¾� , and 
���]4Ã��,fyÎ	0��z+QÎ�2h] Æs��f��±<(2 . The set� Ã��ðI��÷
 <"0�Y Ø �
is an open cover to <{Y Ø

which is compact and hence a finite sub-

cover
� Ã��*®=IJ^ð¢ òQ¢�² �

exists. Set Ã n �W+�ñ)Ã���® and Æ � Ö�ñ9Æs��® . As proved above


���] Ã n fyÎ60��¨+QÎv2h] Ævf'��<O2 . The union is directed as follows. Suppose Æ|0 and Æ�2 are clopen

lower subsets of <(2 that belong to the collection on the right hand side of the second equal-

ity. Then there exists clopen upper subsets ÃA0 and Ã�2 of <"0 such that for ò�� ^i*¬¢ , � <~0ªY Ø ��P
Ã�ñ and 
���]4Ã�ñ�f Î60��¨+=Îk2�]ÜÆ ñof��}<O2 . Therefore �9<"0�Y Ø ��P\Ã�0³Ö�Ã�2 . Moreover for òL�M^[*¬¢ ,

���] Ã�0³ÖRÃ�2?f Î�0��¨+QÎ�2h] Æ�ñyf�� <O2 because 
���]4Ã�0õfyÎ	0���*�
���] Ã�2�fyÎ	0��kP 
���]4Ã�0|Ö=Ã�2?f Î60�� . There-

fore 
���] Ã�0³ÖRÃ�2?f Î60��¨+#�GÎ�2�] Æ�0 f�Ö=Îk2�]ÜÆ�2�fy�k��<O2 . Hence 
���]4Ã�0�Ö�Ã�2�fyÎ	0��¨+=Îk2�] Æ�0�+=Æ�2�f��
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<O2 implying Æ�0 +OÆ�2 belongs to the collection on the right hand side of the second equality.

The third equality is proved as follows. Because 
���]4ÃLf ÎO0��3
@��»aù Ô �9<O27� , we have

ÆKP�
���] ÃLfyÎ	0���TWV <O2�YÕ
���]4ÃLf Î60���Î�2AÆ
TWV <O2�YÕ
���]4ÃLf Î60��3P�Î�2�] Æ�f
TWV 
���]4ÃLf Î�0��¨+=Îk2h] Ævf:�u<O2aw

The fourth equality is true because 
���] ÃLfyÎO0�� as an open lower subset of a Priestley space

is the union of all clopen lower sets contained in it. The second last equality is true because


 is Scott-continuous.

5.7 Two More Equivalences of Categories

In [52, Section 6], the category SCS of stably compact spaces and continuous functions

between them was equipped with an endofunctor N . For an object < 
 SCS N=� <{� (or

N�C ) is the set of compact saturated subsets of < equipped with the Scott topology, and for

a morphism 
À� < $:& ü in SCS NQ�)
�� assigns to each compact saturated subset � of <
the saturation of 
����D� . The endofunctor N defines a monad ;�N�*�Ó�*¹ÿ(@ in the category SCS

where the unit Ó assigns to each object < in SCS the function < $z& NWCJ��882 $:& ÓÕ8 (the

lower closure with respect to the specialisation order) and the multiplication ÿ assigns to

each object < in SCS the function N(þ ÿm$:& N�CD�?� 2 $:& ÿð� . The monad ;GN�*�Ó�*�ÿW@ is

called the Smyth power monad.

In this section, we study the Kleisli category SCS þ of the Smyth power monad ;GN�*�Ó�*7ÿW@
and show that it is equivalent to the category PSws. This is the first goal of this section.

The second object of the section is to show that the category PSws is equivalent to the

category of stably compact spaces as objects and continuous relations of the form
� P

<t!Rüâ� as morphisms where ü�� is the co-compact topology on ü .
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Lemma 5.7.1. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness Î . Let ��
��»aù�É��9<{� and
Ø 
@��»aù Ô �9<{� be such that

Ø +ã�RÁ� < . Then there exists 8=
Eø,ù�ú?ûÕ�9<{��Y_� such

that 8"Î Ø
. Moreover,

Ø � ô � ] 8�f ÎZIa8Q
Eø,ù�ú?û�� <{�7*�8"Î Ø � w
Proof. We have

Ø +��RÁ�u< TWV ]â<{Y Ø fyÎ²+=ÎO]â<{YY�Õf�Á�u<=* by definition of ��»aù�É and ��»aù Ô
TWV �)�6�{Ä
 Ø *�8Q
Eø,ù�ú?û�� <{�7*�­OÄ
#�����QÁÎ+8ÀÁÎ-­a* by Lemma g�wÜ`¨w�^i^��]�[��*h�ª^i^h�7w

8�Á
;� because 8-ÁÎ\<{YY� and 8mÄ
 Ø
because <{Y Ø ÁÎ¡8 . Therefore 8ð
mø,ù�ú,ûÕ�9<���Y_� and

because <{Y Ø Î Ø
, 8~Î Ø

. For the second claim we have

�{Ä
 Ø TWV �9<{Y Ø �DÁÎ÷�
TWV <{Y Ø ÁP�Î(]ê��f
TWV ÎW]â��f$+ Ø Á��<
TWV �)��8Q
Eø,ù�ú?û��9<���Y[Î(]ê��f ��8~Î Ø
TWV �)��8Q
Eø,ù�ú?û��9<�����8~Î Ø

and 8ÀÁÎ÷�zw
Therefore

�ox:�1
Q<{�|�1
 Ø T(V ���yxz8=
óø,ù�ú,ûÕ�9<����|8"Î Ø ��V �1
®] 8�f Î��7w

For the next lemma we recall the following fact which was proved in chapter 4 (Corol-

laries 4.2.7 and 4.2.10, and Theorems 4.2.15 and 4.5.1). For a Priestley space ;�<Q*e¢�*�>3@
equipped with apartness Î , ��»aùÌÉ�� <{� is isomorphic to the open set lattice E��?ø,ù�ú?û�� <{��� , and��»aù Ô �9<{� is isomorphic to the lattice N � � óËë]r C=t . The isomorphisms are given by

� T(V ø,ù�ú?ûÕ�9<{�³Ö��z* (5.7.1)
Ø T(V ø,ù�ú?ûÕ�9<{��Y Ø w (5.7.2)
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Lemma 5.7.2. Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness Î . Then the

sets

���)Æ6�¬� � Ø 
@��»aù Ô � <{�JI�Æ�P Ø � *�Æ�
�L � � <{�7w
form a basis for the Scott-topology on ;*��»aù Ô �9<��7*eP�@ .
Proof. By the dual of Theorem 4.2.6, the directed suprema of in ��»aù Ô � <{� are unions so

by the compactness of Æ the sets �¨�GÆ�� are Scott-open. The sets ÒÒ[8�� � �+I�8b� � �
in

any domain form a basis for the Scott-topology. Therefore it is enough to show that these

sets are of the form �¨�GÆ6� . Let
Ø n 
é��»aù Ô �9<{� and pick an element

Ø 
 ÒÒ Ø n . Then by the

interpolation property of domains there exists
Ø n n 
<��»aù Ô � <{� such that

Ø n � Ø n n � Ø
.

The fact
Ø n n � Ø

corresponds to H n n � H for some compact saturated subsets H n n and

H . So there exists an open set F such that H P F�PZH n n by Theorem 2.6.6. From the

correspondence 5.7.1 and 5.7.2 above there is �~
ñ��»aù É�� <{� such that ø,ù�ú?û�� <{��Y Ø P!� and�kÖÀø,ù�ú,ûÕ�9<��JP¡ø,ù�ú?û�� <{��Y Ø n n . So
Ø + �"�Zø,ù�ú,ûÕ�9<�� . If

Ø +ã� Á�-< then by Lemma 5.7.1

there is a 8ó
Uø,ù�ú?ûÕ�9<{��YY� such that 8 Î Ø
. This implies 8E
 Ø

and hence 8#Î}8 which

is impossible for core points (Remark 4.2.2). Hence
Ø +��W�U< implying <{YY�QP Ø

. We

recall that
Ø

is the union of clopen upper sets contained in it. Therefore by compactness of

<{YY� there exists ÆK
BL{�:�9<�� such that <�YY�WP�Æ�P Ø
. Hence

Ø 
X���)Æ�� .



190

We show that �¨�GÆ��3P ÒÒ Ø n . We have

�K
X�¨�GÆ���TWV ÆKP ô � ] 8�fyÎ¡I�8Q
Eø,ù�ú?û�� <{�7*�8~Î�� � * by Lemma g�wú��w�^
TWV �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-���³8~Î�Æ
��V �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-���³8~Î+<{Yp�
��V �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-���³8=
#�
��V �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-���³8óÄ
 Ø n n
��V �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-��� Ø n n Pu<�Y�ÒÕ8~�K] 8�fyÎ
��V �yxz8Q
Eø,ù�ú?û�� <{�7*�8"Î-���³8~Î Ø n n
��V Ø n n:P ô � ] 8�fyÎ Ia8Q
ðø,ù�ú?û�� <{�7*�8~Î-� � �+��* by Lemma g�wú��w ^
��V Ø n½� �Ow

Lemma 5.7.3. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Îk2 , respectively. Then there is a one-to-one correspondence be-

tween weak separators from <~0 to <O2 and continuous maps from ø,ù�ú?û�� <�0�� to N � � óËë]r C³¸Qt ���»aù Ô �9<O2�� .
Proof. Given a weak separator ï from <�0 to <(2 , the map


½�"�:ø,ù�ú?û�� <"0��A$'& ��»aù Ô �9<O2��3�[8�2 $:& ]â8�f�ï
is well-defined by Lemma 5.6.5. Now we show that 
u� is continuous


 5 0� �GFW�)Æv����� � 8=
óø,ù�ú,ûÕ�9<"0��JI�Æ�Pm]â8�f�ï �
� � 8=
óø,ù�ú,ûÕ�9<"0��JIa8®ï®Æ �
� � 8=
óø,ù�ú,ûÕ�9<"0��JIa8R
{Ã\ï®Æ�*�ÃU
#L � �9<{� � * by Lemma ö¨wÜö¨wÜö[ö
� ß � ø,ù�ú?û�� <~0ª�³Ö�Ã�I[Ãm
BL � � <{�7*�Ã}ï®Æ � w
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We show that the map �¹ï 2 $:& 
Å��� is one-to-one. Suppose ï�Á�¡ï n , Then by Lemma 5.6.6

there is
Ø 
 ��»aù Ô � <"0�� such that ] <{Y Ø f?ï Á� ]â<�Y Ø f�ï n . Without loss of generality, we

can assume that there exists �M
t<W2 such that �9<{Y Ø � ï � and � <{Y Ø �KÁï n � . SoØ +óï n ]â��f�Á��<"0 . Then by Lemma 5.7.1 there exists 8K
�ø,ù�ú?û�� <�0ª� such that 8UÎ60 Ø
and 8}Áï n � . Therefore 8}ï�� because <{Y Ø ï�� and 8}Áï n � . Hence 
½���98:��Á� 
:� � � 8:�
proving that 
½�RÁ�-
½� � .

We show that the map �7ïD2 $:& 
½��� is surjective. Let 
 be a continuous function from

ø,ù�ú?û�� <"0�� to ��»aù Ô � <O27� . Set

ïA¶�� � ÃU!�ÆZI[Ãm
BL � � <"0��7*¬ÆK
@� � � <(2,�7* and 
��,ø,ù�ú?ûÕ�9<"0��³Ö�ÃD�3P��¨�GÆ6� � w
We prove that Î60���ï�¶���Îk2 is a weak separator from <~0 to <O2 . First notice that

Î�0��	�7ï�¶���Îk2����K�)Î�0���ï�¶h����Îk2
as follows.

8��)Î�0��~ïA¶h����Îk2A� T(V �ox�á6
=<O2��|8"Î60���ï�¶Má or ákÎ�2A�
T(V �ox�á6
=<O2��©�ox���
Q<"0��|8"Î60
�[*=�Wï�¶³á or ákÎ�2A�
T(V �ox���
Q<"0��|8"Î60
� or �OïA¶D�vÎ�2��
T(V 8"Î60��6�¹ï�¶D�vÎ�27�|�:w

Condition �9Ò 0 ï�Ó 2 � is proved for Î60¬��ï�¶D��Îk2 as follows.

{ Â 8"Î60���ï�¶c�vÎ�2�� Â � ��V �yx�á	
�<(27��8�Î�0���ï�¶{á or á�Îk2A� Â �
��V �yx�á	
�<(27��8�Î�0���ï�¶{á or á�Îk2 �
��V { Â 8��GÎ60¬��ï�¶����vÎ�2 �
��V �yx��v
Q<"0���{ Â 8"Î60=�[* or �Wï�¶���Îk2 �
��V �yx��v
Q<"0���{�Î�0=� or �Wï�¶D��Îk2 �
��V {�Î�0��~ïA¶���Îk2 � w
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Condition �yxAï3� is proved for Î	0���ï�¶���Îk2 as follows.

8~Î�0¬��ï�¶c��Îk2�� TWV �yx���
Q<"0���8~Î�0�� or �(ïA¶���Îk2A�
TWV �yx��[*�{3
�<~0ª�|8~Î�0N{�*x{�Î�0
� or �Wï�¶���Îk2��
TWV �yxm{3
�<~0��³8~Î�0�{�*x{�Î�0��~ïA¶D�vÎk2A�zw

Dually condition �¹ï¬x�� is proved for Î	0���ï�¶D�vÎ�2 .
We prove that 
Å��lL�-
 .


½� l 8 � ß � Æ�
�� � �9<O2���I��)�zÃm
BL � � <{����8=
Eø,ù�ú?ûÕ�9<"0��³ÖRÃmP�
 5 0 �~���)Æ���� �
� ß � Æ�
�� � �9<O2���Ia8=
{
 5 0 �~���)Æ���� �
� ß � Æ�
�� � �9<O2���I�
��98:�3
X���)Æ�� �
� ß � Æ�
�� � �9<O2���I�Æ}P�
��98:� �
� 
��98:��w

The second equality is proved as follows. Suppose 8-
U
 5 0 �~���)Æ6��� . By continuity of 

there exists an open upper set � such that �DÖ®ø,ù�ú?û�� <�0���� 
 5 0 �~���)Æ���� . Therefore 8\
�kÖÀø,ù�ú,ûÕ�9<"0�� . Because � is the union of clopen upper sets contained in it, there exists a

clopen upper set ÃXP L{�:�9<"0�� such that 8 
}ÃXP � and hence 8 
\Ã®Ö®ø,ù�ú?û�� <�0��QP

 5 0 ���¨�GÆ���� . The last equality is again true because in a Priestley space every open upper

set is the union of clopen upper sets contained in it.

In the following we would like to study the Kleisli category SCS þ of the Smyth power

monad ;GN�*�Ó�*7ÿ(@ . We first study the composition in this category. Let ;�<�0��e¢k07*?>�0G@ , ;�<O2e�e¢L2
*?>�2ª@ and ;�<��e�e¢r�a*?>��ª@ be Priestley spaces equipped with apartness relations ÎO0 , Îk2 and Î�� ,
respectively. Let 
R�'ø,ù�ú?ûÕ�9<~0��A$:& ��»aù Ô �9<O2�� and >1�:ø,ù�ú?ûÕ�9<O27�A$:& ��»aù Ô �9<���� be continuous

functions. The composition of 
 and > is ÿ �iN=�Z>¨���J
 ��ø,ù�ú?û�� <"0���$:& ��»aù Ô �9<���� . For 8 

ø,ù�ú?û�� <"0�� we calculate in detail the image of 8 under this composition. First 8 is mapped

to 
��98:� which is a lower isolated subsets of <W2 . The compact saturated subset of Ïï�(áiÑ�� <12,�
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corresponding to 
�� 8:� is ø,ù�ú?ûÕ�9<(2���YÕ
�� 8:� (Theorem 4.5.1). Then this set is mapped to the

saturation of its image under > which is equivalent to Ó � >'���¨��I[� Ä
¯
��98:� � . Notice that this

downward closure is taken in the lattice ;*��»aù Ô �9<����7�©PD@ . The last step in constructing the

composition is to take the union which is an infimum in the lattice N Ò¥Ó � � r C��:t . Hence the last

step is equivalent to taking the infimum of
� >'���¨�JI��#Ä
{
��98:� � in the lattice ��»aù Ô �9<���� which

is ] <��7Y
± � >'�9� �LIh�¯Ä
�
��98:� � f:Î�� . Therefore

8�2 $:& ] <���Y�ô � >'�9� �LIh�¯Ä
�
��98:� � f:Î��Jw
Theorem 5.7.4. The category PSws is equivalent to the Kleisli category SCS þ of the Smyth

power monad ;GN�*�Ó�*7ÿ(@ .
Proof. By the Lemma 4.3.4, all objects are reachable up to an isomorphism. Most of the

facts needed about the morphisms have already been proved in the prove of Lemma 5.7.3.

Therefore we just need to show that the mapping introduced in the prove of Lemma 5.7.3

is a functor.

For a Priestley spaces ;�<À�e¢v�?>A@ equipped with apartness relations Î . The image of Î
is


�Ú��'ø,ù�ú?û�� <{�A$:& ��»aù Ô �9<{�A�[8�2 $:& ] 8�f ÎU��<�Y�ÒÕ8�w
Note that <{Y�ÒÕ8 as a lower isolated set is corresponding to ø,ù�ú?ûÕ�9<{��Y��9<{Y�ÒÕ8:� as a compact

saturated set which is the same as ø,ù�ú?û�� <{��Ö=ÒÕ8 , the upper closure of 8 in ø,ù�ú?ûÕ�9<{� (with

respect to the specialisation order). Therefore the identity Î is mapped to the unit of the

monad which is the identity in the Kleisli category.

Let ;9<~0��©¢�0���>�0)@ , ;9<(2e�©¢J2a*?>�2�@ and ;�<��e�e¢r�a*?>���@ be Priestley spaces equipped with apart-

ness relations Î60 , Îk2 and Î'� , respectively. Suppose ïL0�Pm<~03!Q<O2 and ï�26Pm<(2J!Q<��
are weak separators. To show that the composition is preserved we need to show that for

every 8=
óø,ù�ú,ûÕ�9<"0�� :

:� · î � ¸ � 8:���÷
½� · �L
½� ¸ � 8:�7w
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This is the equivalent to proving

]â8�f�ïÔ0³�Oï�2A�K] <���Y ô � ]â��f�ï�2�Ih8ÀÁï30�� � f:Î'�aw
This is proved as follows:

8®ï�0¬��ï�2�{�TWV �yx:�¯Ä
À]â8�f�ïÔ0��|�Rï�2�{
TWV {3
 ô � ]â��f�ï¬2�Ia8#ÁïÔ0�� �

Therefore

] 8�f�ïL0��Oï�23� ô � ]â��f?ï�2vIa8#ÁïÔ0�� �
which completes the prove since ]â8�f�ïJ0³�Oï�2�
G��»aù Ô � <��7� .

Let ;�<#�e¢���>3@ be a Priestley space equipped with apartness Î . Clearly the dual of Î is

an apartness on <FS and ��»aù<É��9<#S�� � ��»aù Ô �9<{� . The topology on ø,ù�ú,ûÕ�9<8S�� is specified by��»aù�É��9<FS�� and hence by ��»aù Ô � <{� . Now we notice that

�oxz8=
Eø,ù�ú?ûÕ�9<{���©�yx Ø 
@��»aù Ô � <{���³8=
 Ø TWV eÕf�h'�9<�YÕÎ(] 8�f �3
 Ø w
This notice together with Equations 5.7.1 and 5.7.2 and Lemma 4.5.2 is enough to show that

ø,ù�ú?û�� <FS�� � ø,ù�ú?û�� <{��� as follows. Every open set of ø,ù�ú?ûÕ�9<8S�� is of the form ø,ù�ú?û�� <8S���Ö Ø
for some

Ø 
���»aù�É��9< S �L� ��»aù Ô � <{� . But ø,ù�ú,ûÕ�9< S �³Ö Ø � ø,ù�ú?ûÕ�9<{�³Ö Ø
and the latter set

is the complement of a compact saturated subset of ø,ù�ú?û�� <{� and hence open in ø,ù�ú,ûÕ�9<��µ� .
This argument is true in the other direction as well. Therefore the co-compact topology <��
of a stably compact space < is a stably compact space and �9<7�ª������< .

Definition 5.7.5. Let ;�<~0��©¢�07�?>�0)@ and ;�<(2©�e¢J2a*�>�2ª@ be Priestley spaces equipped with

apartness relations Î	0 and Îk2 , respectively. Suppose ï±P±<�0A!Q<(2 is a weak separa-

tor. We define a binary relation
� �~PKø,ù�ú?ûÕ�9<"0��3!Eø,ù�ú?û�� <O2�� as follows:

8 � ��� q�r9sTWV 8ÀÁï#�zw
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Remark 5.7.6. Let 
Å�~�'ø,ù�ú?ûÕ�9<"0��3$:& ø,ù�ú?ûÕ�9<O27��� be the continuous function corresponding

to ï . Then it is straightforward to check that

8 � ����T(V �{Ä
{
:���98:��w
Lemma 5.7.7. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively and ïKP <~0A!Q<(2 a weak separator. Then
� � is

continuous (closed) in ø,ù�ú?ûÕ�9<~0��3!óø,ù�ú?û��9<O2��:� .
Proof. Suppose ;�8|*?�¨@ be in ø,ù�ú,û��9<~0��Ô! ø,ù�ú?ûÕ�9<O27� but not in

� � . Then 8 ï � . Therefore

there exist Ã%
²L{�:�9<"0�� such that 8 
-Ã and Ã ïm� . Set � �MÃóÖÀø,ù�ú?û�� <�0ª� and × �
]4ÃJf�ï�Ö®ø,ù�ú?ûÕ�9<O2�� . Then � is open in ø,ù�ú?û��9<~0�� and ø,ù�ú,ûÕ�9<O2���Y�] ÃLf�ï is compact saturated

in Ïï�pá�Ñ��9<O27� its complement is × and hence × is open in ø,ù�ú,ûÕ�9<W2��:� . Clearly � ï+× and

hence ���U!R×6�³Ö � �(�!4 .

Lemma 5.7.8. Let ;�<~0��e¢k07�?>�0G@ and ;�<O2e�e¢L2e*?>�2ª@ be Priestley spaces equipped with apart-

ness relations Î60 and Î�2 , respectively and
� PKø,ù�ú?û�� <�0��3!®ø,ù�ú,ûÕ�9<O27�:� a continuous rela-

tion. Then the binary relation Î	0��~ï¤Å~��Î�2 , where

ï�Å�� ß � Ãm!RÆ I[ÃU
BL � �9<"0���*�ÆK
G� � �9<O27��* and �õÃm!�Æ��³Ö � �!4 � *
is a weak separator.

Proof. By Lemma 2.6.12 the map


pÅR�:ø,ù�ú?û�� <~0��A$:& Nì� � óËë*r C³¸Qt���8�2 $'& � �1
Eø,ù�ú?ûÕ�9<O2���Ia8 � � �

is continuous. By Theorem 4.5.1, the map 
�Å can be rewritten as


_ÅR�'ø,ù�ú?û�� <~0ª��$z& ��»aù Ô �9<O27�7��872 $:& <O2�Y�Ò � �(
Eø,ù�ú?û�� <(27�JIh8 � � � w
Now we calculate the weak separator corresponding to 
$Å . By Lemma 5.7.3, Î60���ï Å��vÎ�2 ,
where

ï Å�� � Ãm!RÆ I[ÃU
BL � �9<"0���*�ÆK
G� � �9<O27�7* and 
_Å��,ø,ù�ú?ûÕ�9<"0��³Ö�ÃD�3P��¨�GÆ�� � *
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is the weak separator corresponding to 
�Å . We notice that


_Å��,ø,ù�ú?ûÕ�9<"0��³Ö�ÃD�3P��¨�GÆ6��TWV �yxz8R
óø,ù�ú,ûÕ�9<"0��³ÖRÃk����
pÅ��98:�3
X���)Æ��
TWV �yxz8R
óø,ù�ú,ûÕ�9<"0��³ÖRÃk����ÆKP+
_Å��98:�
TWV �yxz8R
óø,ù�ú,ûÕ�9<"0��³ÖRÃk���|<O27Y[
pÅ��98:�3Pc<O27Y[Æ
TWV �yxz8R
óø,ù�ú,ûÕ�9<"0��³ÖRÃk���|Ò � �1
óø,ù�ú,ûÕ�9<O2���Ia8 � � � P <O2�YÕÆ
TWV �yxz8R
óø,ù�ú,ûÕ�9<"0��³ÖRÃk��� � �1
óø,ù�ú,ûÕ�9<O2���Ia8 � � � Pc<O2�YÕÆ
TWV �õÃm!�Æ��³Ö � �é4 w

Theorem 5.7.9. The category PSws is equivalent to the category of stably compact spaces

as objects and continuous relations of the form
� P+<t!=ü|� as morphisms. The composi-

tion in the latter category is the usual relation composition.

Proof. We prove that the translations between continuous relations and continuous maps

in Lemmas 5.7.7 and 5.7.8 are inverses of each other. Let ;�<Q0��©¢�07�?>�0G@ , ;�<O2e�e¢L2a�?>�2�@
and ;�<��a�e¢r�e*?>��ª@ be Priestley spaces equipped with apartness relations Î�0 , Î�2 and Î�� ,
respectively and ïL0APc<"03!Q<O2 and ï�2LPc<(2L!Q<�� weak separators.

Let
� P ø,ù�ú?û�� <~0��3!Eø,ù�ú?ûÕ�9<O2��:� be a continuous relation. Then

8Àï�0�� TWV �G�zÃU
BL � �9<"0����©�G��Æ}
G� � � <O2����³8=
¯Ã�*?�(
�Æ and Ã}ï�0�Æ¬* by Lemma ö¨wÜö¨wÜö[ö
TWV �G�zÃU
BL � �9<"0����©�G��Æ}
G� � � <O2����³8=
¯Ã�*?�(
�Æ and � ÃU!�Æ���Ö � � · �!4
TWV 8#ï Å8� · �zw

Also we have

8 � � TWV 8ÀÁï�Å"�:* by definition of ï Å
TWV 8 � �����z* by definition of

� �~w
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Therefore it remains to show that the composition is preserved under these translations.

Let ï�0APc<~03!Q<O2 and ï�2JPc<O2J!Q<�� be weak separators. We show that� � · î � ¸ � � � · � � � ¸ w
This is proved as follows:

8 � � · î � ¸ � TWV �98|* � ��Ä
 ï30���ï�2
TWV �)���1
Q<O27��8®Áï30��RÁï�2 �
TWV ]â8�f�ïÔ0¨+Eï�2h] � fAÁ� <O2
TWV �)���1
Eø,ù�ú?ûÕ�9<O27����8ÀÁï�0��=Áï�2 �
TWV �)���1
Eø,ù�ú?ûÕ�9<O27����8 � � · � � � ¸ � w

5.8 Logic for Coherent Spaces

In the previous chapter we have seen that removing the requirement of having a top ele-

ment from the side of strong proximity lattices is equivalent to removing the compactness

requirement from the side of stably compact spaces, in the Jung-Sünderhauf represent-

ing theorem. Therefore we proved that zero-strong proximity lattices represent coherent

spaces. As strong proximity lattices were the basis for coherent sequent calculi, the ques-

tion now is the following:

How can the notion of coherent sequent calculus be extended to provide a

logical description of coherent spaces ?

The answer, as the reader may have already guessed, is to remove the truth unit ö
from the notion of coherent sequent calculus and to do all necessary changes that must be

associated with this.

We arrive at the following notion.
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Definition 5.8.1. Let ;������3*��3*¬�v@ and ;)×W���3*��3*¬�v@ be two algebras of type ;�¢�*¬¢�*,b[@ . A

binary relation « between finite subsets of � and × is zero-consequence if for every µ�*�Û 

��*X÷�*X÷ n PJ¶?ñ��v��*�µ n *?Û n 
R× and ø"*µø n PJ¶?ñ���× ,

�G���v� �ox7ù P�¶?ñ��v×6� � � � «Bù6w
�G�����Qµ|*?ÛJ*X÷=«�øKTWV µ	��ÛJ*X÷=«Bø"w
�G�����Qµ|*µ÷=«ãø and ÛJ*X÷R«�ø�T(V µ6��ÛJ*µ÷Q«Bø"w
� � �v�ã÷Q«Bø�TWV ÷R«Bø"*¬� .

� � ���ã÷Q«Bø"*�µ n and ÷=«�ø~*�Û n TWV ÷R«�ø"*�µ	��ÛJw
� � ���ã÷Q«Bø"*�µ n *?Û n T(V ÷R«ãø"*�µ	�=��ÛJw
(W) ÷Q«Bø���V ÷ n *µ÷=«�ø~*Xø n w

Recall that the notion of interpolant and the composition rule Cut were reviewed in

Section 2.8.

Definition 5.8.2. A zero-coherent sequent calculus is an algebra ;G�����3*��3*¬�v@ together with

a zero-consequent relation ú on � such that ú is closed under Cut and has interpolants.

Definition 5.8.3. A zero-consequent relation « from a zero-coherent sequent calculus ;G�����3*
�3*¬�Iú0/�@ to a zero-coherent sequent calculus ;)×W���3*��3*¬�	*¬úM¼|@ is compatible if

ú0/��v«=�÷«=�+«=� ú{¼¬w
We let MLS ¿ stands for the category whose objects are zero-coherent sequent calculi

and whose morphisms are compatible zero-coherent relations. Our experiments show that

the whole theory (of MLS) still works perfectly for MLS ¿ . This means that MLS ¿ provides

a logical description for coherent spaces including coherent domains in their Scott topolo-

gies. However the observations made in this section and Section 4.7 are simple, they are

quite powerful as they provide algebraic and logical interpretations for coherent domains.
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5.9 Domain Constructions

In this section we hint at the way simple domain constructions can be done in our Priestley

form.

5.9.1 Lifting

Suppose ;)ü�*?>�ý'@ is a stably compact space and ;9<À�?>�CA*e¢�@ is a Priestley space equipped

with apartness Î . Suppose � � ÿ	� ��ø,ù�ú?û�� <{�L$:& ü is a homeomorphic map. The lifting of

;)ü�*?>�ý:@ is the space ;)ü � *?>y=�
�@ , where ü � ��ü!+ � � �
and >x=�
��u>�ý¦+ � ü ���

. Now we add

a bottom element (with respect to ¢ ) � to the Priestley space as follows. We set < � �
<J+ � � �

and let >�C 
 be the topology generated by >�CB+ �Õ� � �Õ�
. Then ;�< � �?>�C 
 *©¢ � @ is

a Priestley space and the binary relation

Î � �+ÎI+Ô�9< ! � � � �
is an apartness on it. It is not hard to check that ø,ù�ú?ûÕ�9< � ��� ø,ù�ú?û�� <{��+ � � �

. The home-

omorphic map � � ÿ�� can be extended to a homeomorphism between ø,ù�ú?û�� < � � and ü � by

defining � � � � �é� .

5.9.2 Sum

Suppose ;)ü³0�*�>�ýe·G@ and ;Güz2e*?>�ý7¸õ@ are stably compact spaces and suppose ;�<�0,�?>�C�·�*e¢k0�@ and

;�<O2e�?>�C³¸�*©¢J27@ are Priestley spaces equipped with apartness relations Î�0 and Îk2 , respec-

tively. Let ��0 � ÿ�� ��ø,ù�ú?û�� <"0��Ô$:& ü�0 and �'2 � ÿ
� ��ø,ù�ú,ûÕ�9<O2���$:& ü�2 be homeomorphic maps.

The sum of ü³0 and üz2 is the topological space ;)ü�*�>3@ , where ü is the disjoint union of ü�0
and ü�2 , i.e. üm�÷ü³0 &+#ü�2 , and > is generated by >�ýe· and >�ý7¸ . Let

1. <���<"0 &+{<O2 ,
2. ¢��m¢�0=+E¢J2 , and
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3. > be the topology generated by >�0 and >�2 .
Then ;9<À�?>L�e¢D@ is a Priestley space and the relation

Î��-Î60=+#Îk20+Ô�9<"03!Q<O2��¨+#�9<O2L!Q<"0��
is an apartness on it. It is obvious that ø,ù�ú,ûÕ�9<��¬�}ø,ù�ú?û�� <�0ª� &+ ø,ù�ú,ûÕ�9<O2�� and that the map

� � ÿ
� �'ø,ù�ú?û�� <{�A$:& üO��8�2 $:& �:ñ � 8 � * if 8=
óø,ù�ú,ûÕ�9<�ñ �7*?ò��m^i*¬¢�w
is a homeomorphism.

If the stably compact spaces represented by the <�0 and <O2 are pointed, then ø,ù�ú?û�� <�0ª�
and ø,ù�ú?û�� <(2�� will have bottom elements �	0 and ��2 , respectively. In this case we construct

the coalesced sum just like the usual sum after unifying ��0 and ��2 . The apartness Î , in

this case, will be constructed as follows:

Î��÷Î�0�+#Îk20+Ô� <~0ªY � �60 � !Q<O2�Y � ��2 � �|+#�9<O2�Y � �k2 � !�<~0�Y � ��0 � ��w

5.9.3 Product

Suppose ;)ü³0�*�>�ý · @ and ;Güz2e*?>�ý ¸ @ are stably compact spaces and suppose ;�<�0,�?>�C · *e¢k0�@ and

;�<O2e�?>�C ¸ *©¢J27@ are Priestley spaces equipped with apartness relations Î�0 and Îk2 , respec-

tively. Let ��0 � ÿ
� ��ø,ù�ú?ûÕ�9<"0��{$:& ü�0 and ��2 � ÿ�� �	ø,ù�ú,ûÕ�9<O27��$'& ü�2 be homeomorphic

maps.

Let ;�<À��>J�e¢�@ be the product of ;�<~0��?>�C�·�*e¢k0�@ and ;�<O2e�?>�C�¸�*e¢L2�@ . Then ;�<À��>J�e¢�@ is a

Priestley space. We equip < with the following relation

;�8|*?�¨@�Î�;�8 n *?� n @ q?r sT(V 8"Î60�8 n or �6Î�2�� n w
It is not hard to prove that Î is an apartness on < and ø,ù�ú,ûÕ�9<��L� ø,ù�ú,ûÕ�9<�0��L!cø,ù�ú?û�� <(2,� .
The map � � ÿ�� �'ø,ù�ú?û�� <{�3$z& ü�03!Qüz2a�h;98|*?� @=2 $:& ;o��0 � 8 � *¬�'2 � � � @¹w
is a homeomorphism.
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5.9.4 The Smyth Power Domain

Suppose ;)ü�*?>�ý'@ is a stably compact space, ;9<À�?>�CA*©¢D@ is a Priestley space equipped with

an apartness Î and � � ÿ
� �'ø,ù�ú,ûÕ�9<��A$'& ü is a homeomorphic map.

The Smyth power domain of ü is the set of compact saturated non-empty subsets or-

dered by the reverse inclusion. In this section, there is no problem in excluding the empty

set therefore let us not bother removing it from the collection of compact saturated sets.

We have shown that ;GN � � óËë�r C�tª*,V�@ is isomorphic to ;*��»aù Ô �9<{��*ePD@ .
By Lemma 5.7.2, the Scott topology on ;*��»aù Ô �9<{��*eP�@ is given by

¾�0¬� � �
/#Ih�UP5� � �9<{� � *
where �
/�� � Ø 
@��»aù Ô �9<{�JIh�UP Ø � w
By Lemma 2.3.18, the set of compact saturated sets in the Scott topology on ;���»aù Ô �9<��7*eP�@
is given by

¾'2A� � ô × I�×}P � Ó Ø 0�+ ÿ}ÿ}ÿ +�Ó Ø �"I Ø ñ�
@��»aù Ô � <{� �Õ� w
We consider the strong proximity lattice

B-� � ��F(*,H��ÔI$� 
Q¾|0�*,Ht
�¾'2 and FKPuH � *
where the order is the point-wise inclusion and the proximity relation is given by

��F(*,H��Alm��F n *,H n � q�r9sTWV HtPuF n w
Let ;�< n �?> nC *e¢ n @ equipped with Î n be the Priestley dual of B . Then by the representa-

tion theorem introduced in Chapter 3, ø,ù�ú?û�� < n � is homeomorphic to NWý equipped with the

Scott topology.



Appendix A

Order Theory

This appendix reviews concepts and results from order theory, that are related to and needed

in the work presented in this thesis. The appendix is based on [20, 28].

Definition A.1. A binary relation ¢ on a set
�

is called an order if for every 8|*?�z* � 
 �
,

1. 8Q¢c8 ,

2. 8Q¢ �:*��W¢c8~�'V 8~�u� , and

3. 8Q¢ �:*��W¢ � ��V 8Q¢ �
.

The relation ¢ is a pre-order if it satisfies conditions ^ and ö but not necessarily ¢ . A set is

called an ordered set, a poset, or a partially ordered set if it has an order. 8R¢u� is read as

“ 8 is less than or equal to � ”.

Definition A.2. Let ; � *e¢D@ be a poset and �®P �
.

1. The dual of ; � *e¢�@ is the poset ; � *©¢MS�@ where 8=¢³S�� if and only if �1¢c8 .

2. An element 8�
 �
is an upper bound of � if for every �6
G� , �	¢�8 . Lower bounds

are defined dually.

202
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3. An element �~
²� is minimal in � if there is no � n 
²� such that � n Tu� . Maximal

elements are defined dually

4. If � has a least upper bound then this element is called the supremum or join of �
and is denoted by �b� . The infimum or meet of � is defined dually to the supremum

and is denoted by ¹ � . Provided that � � � �i0�*©wewew©*µ�,� �
and its supremum (infimum)

exists then it is also denoted by �[0��¯wew©wa�#�m� ( ��0��¯wewewh���m� ).

5.
�

is a meet-semilattice (join-semilattice) if for every 8|*?�Q
 �
, 8O�Q� ( 8O�Q� ) exists.�

is a lattice if for every 8|*?�R
 �
, 8(�=� and 8(�=� exist.

�
is a complete lattice if

for every �UP �
, �ð� and ¹ � exist.

6. If
�

has a least (greatest) element then this element is denoted by b ( ^ ) or by � ( ö ).�
is bounded if it has least and greatest elements.

7. The lower of � (denoted by Ó?� ) is the set
� 8®
 � I|�)�O�{
;����8E¢m� �

. The upper

of � (denoted by Ò � ) is defined dually. ÒÕ8 and ÓÕ8 are shorthand for Ò � 8 �
and Ó � 8 �

,

respectively. � is a lower set if �c�mÓ?� . Dually, an upper set is defined. The set of

all lower (upper) subsets of
�

is denoted by �J� � � ( L�� � � ).
8. An element 8�
 �

is join-prime or � -prime if for every ��*,­k
 �
, 8�¢÷�D�Q­ implies

�W¢c8 or �W¢ � . Meet-primes or � -primes are defined dually.

Definition A.3. A filter base ° is a collection of nonempty sets such that

Ø 0�*X°�2�
F°®�'V �)� Ø 
F°Ô� Ø P Ø 0³Ö Ø 07w
Lemma A.4. Let

�
be an ordered set, 8|*?�1
 �

, and F 
@�J� � � . Then

8=¢ ��T(V ÓÕ8QPcÓ���TWV ���1
=FU��V 8Q
RF6��w
Lemma A.5. Let � be a lattice and 8|*?�1
R� . Then

8=¢ ��T(V 8	���	�+�	TWVX8����	�u8|w
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Lemma A.6. Let
�

be an ordered set, 8c
 �
, and ��*,×±P �

. Suppose � ��*¬¹ð��* � × ,

and ¹ × exist in
�

. Then

1. �ox'�W
=�D���W¢!�ð� and ¹ �U¢u� .

2. 8Q¢ ¹ �÷T(V �ox'�W
=�D�|8=¢u� .

3. �ð��¢c8�T(V �ox'�W
=�D���W¢c8 .

4. �ox'�W
=�D�©�yx'­D
=×	���W¢u­3��V � �U¢ ¹ × .

5. �UPu× ��V �ð�U¢!�ð× and ¹ � Â ¹ × .

Lemma A.7. Let � be a distributive lattice and 8|*?�-
 � such that 8 Á� b and � Á� ^
provided that � has b and ^ . Then

8 is join-irreducible TWV ���yx'� 07*ew©wew©*,�$ak
R��� 8=¢u�¨0��3wewew4�¬�?aJ��V �)�¨ò�
 � ^[*©wewew7*¬¶ � � 8=¢u�[ñ9��w
Dually,

� is meet-irreducible TWV ���ox'��07*©wewew7*,�$av
=��� 8 Â �¨0��3wewew4�¬�$a��'V �G�¨ò�
 � ^i*ewewew7*¬¶ � �¨8 Â �[ñ9��w
Definition A.8. Let

�
be a poset and � be a non-empty subset of

�
. The set � is directed

if

8|*?�1
8�#�'V �G� � 
8���|8|*��1¢ � w
Dually, � is filtered if

8|*?�1
8�#�'V �G� � 
8��� � ¢c8|*?�zw
The supremum of � in

�
, if it exists, is denoted by � � � .

�
is directed-complete if it is

closed under joins of directed subsets.

Definition A.9. Let � be a lattice and � be a non-empty subset of � .

1. The set � is an ideal if it is lower and closed under binary suprema. Filters of � are

defined dually. The set of all ideals (filters) of � is denoted by
	�� 	 ����� (

�
	�� �G��� ).
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2. An ideal � of � is called maximal if the only ideal properly containing it is � . Maxi-

mal filters are defined dually.

3. A proper ideal � of � is prime if for every 8|*?�1
=� , if 8	���1
#� then 8=
#� or �1
#� .

Prime filters are defined dually. The set of all prime ideals (filters) of � is denoted by	�� 	 
 ����� (
�
	���
 �G��� ).

4. If � is complete then an ideal � of � is completely prime if for every �®P+� ,

� �ó
#���'V ��Ö��=Á�é4 w

5. If � is complete then a filter
Ø

of � is Scott-open if for every directed subset �EPu� ,� � �K
 Ø
implies �QÖ Ø Á� 4 w The set of all Scott-open filters of � is denoted by¯ �
	�� �G��� .

Definition A.10. A lattice � is distributive if for every ��*,­a*,ÏD
R� ,

�D� �G­���Ï©��� ���D�Q­7�|� ���D�QÏ¹�7w
Definition A.11. A distributive lattice ;)×W�,��*,��@ is a Boolean algebra if it has least and

greatest elements b and ^ , respectively, and is equipped with a unary operation n such that

for every ­�
�× :

1. ­��Qbv�÷­ and ­��{^��+­ , and

2. ­��Q­ n �+b and ­��Q­ n � ^ .

Definition A.12. A map 
 from an ordered set
�

to an ordered set
�

is

1. order-preserving (monotone) if for every ��*,­�
 �
,

�W¢u­���V 
��G���A¢+
���­¹��w
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2. order-reflecting if for every ��*,­�
 �
,


��G���3¢�
���­¹����V �W¢u­aw
3. order-embedding (embedding) if for every ��*,­J
 �

,

�W¢u­3TWV 
��G���A¢�
��G­7��w
4. order-isomorphism if it is onto and an order-embedding.

Definition A.13. A map 
=�Õ�U$z& × between lattices � and × is a lattice homomorphism

if for every ��*,­�
=� ,


��G�D��­7���+
��G���³�=
���­7� and 
��G���Q­7���+
��G���³�=
��G­7�7w
If � and × are Boolean algebras then 
 is a Boolean (Boolean algebra) homomorphism if it

additionally preserves b¨*e^ , and the unary operation n . An embedding is a one-to-one lattice

homomorphism. A lattice isomorphism is a bijective lattice homomorphism. A Boolean

(Boolean algebra) isomorphism is a bijective Boolean homomorphism.

Definition A.14. Let � be a lattice and 8#
 � . The element 8 is join-irreducible if 8cÁ�mb
(provided that L has b ) and for every ��*?­D
R� ,

8~�+�D��­Ô�'V 8"�÷� or 8"�÷­aw
Meet-irreducible elements are defined dually. The set of all join-irreducible (meet-irreducible)

elements in � is denoted by Rz�G��� ( U��G��� ).
Lemma A.15. Let � be a lattice and �WPu� . Then

�1
 	�� 	 
 ������T(V ���=Y0�¨�3
 �
	�� 
 ������w
Lemma A.16. Let � be a distributive lattice and � and � be an ideal and a filter respec-

tively of � . If �(Ö���� 4 then there exist ��
 	�� 	 
 �G��� and
Ø � �QY"��
 �
	�� 
 �G��� such that�{Pb� and �KP Ø

.
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Lemma A.17. Let × be a Boolean algebra and � be a proper ideal of × . Then there exists�1
 	�� 	 
 �G��� such that �¯Pb� .

Lemma A.18. In a finite distributive lattice, every element is the join (meet) of join-

irreducible (meet-irreducible) elements below (above) it.



Appendix B

Topology

This appendix reviews topological concepts and results, that are related to and needed in

the work presented in this thesis. The appendix is based on [15, 22, 19].

Definition B.1. A topological space is a pair ;9<=*?>A@ where < is a set and > is a collection

of subsets of < such that:

1. The sets 4 and < belong to > .

2. The collection > is closed under finite intersections and arbitrary unions.

The collection > is called a topology on the set (space) < . The elements of > are called

open sets and their complements are called closed sets. A subset �\P�< is clopen if it is

closed and open.

Definition B.2. Let ;�<À�?>A@ be a topological space.

1. A closed set in > is irreducible if it is non-empty and is not a union of two of its

closed proper subsets.

2. A set �EPc< is saturated if it is an intersection of open sets.

208



209

3. ;9<À�?>A@ is ¾'¿ if for every pair of distinct points 8|*?�1
Q< , there exists an open set that

contains 8 but not � .

4. ;9<À�?>A@ is ¾'2 or Hausdorff if for every pair of distinct points 8|*?�1
Q< , there exist two

disjoint open sets Æ�*µÃ 
=> such that 8=
{Æ and �1
FÃ .

5. A subset �XP > is a basis for the topology > if every element in > is a union

of elements of � . The set � is a subbasis for the topology > if the set of finite

intersections of elements in � is a basis for > .

6. A set �EP > is an open cover for < if ÿ �¯��< .

7. ;9<=*?>A@ is compact if every open cover to < has a finite subcover.

8. ;9<=*?>A@ is locally compact if for every 8Q
Q< and FK
=> such that 8Q
RF , there exists

ÆK
=> and a compact set H�P < such that 8Q
�ÆKP�H P�F .

9. ;9<=*?>A@ is totally disconnected if for any two distinct points 8|*?��
À< , there exists a

clopen set containing 8 but not � .

10. The closure of a set �óPc< is denoted by � and defined by

�#� ô ��� I �
is a closed set containing � � w

11. ;�<=*?>A@ is sober if for every closed irreducible subset
� P < , there exists a unique

point 8=
Q< such that
� 8 � � �

.

12. The binary relation ¢ � defined on < by

8Q¢ � � q�r9sTWV ���ox'FK
=>3��8=
RFU�'V �1
RF��7*
is a pre-order and is known as the specialisation order of ;�<Q*?>A@ . This pre-order

defines an order iff ;�<=*?>A@ is ¾'¿ .
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Definition B.3. Suppose 
=�[<~03$:&X<O2 is a map between two topological spaces ;�<�0�*?>�0G@
and ;9<(2e*�>�2ª@ . Then

1. 
 is continuous if it satisfies any of the following equivalent conditions.

(a) �yx'F�
=>�2ª��
 5 0 �GF���
=>�0 .
(b) For every closed set

�
of <W2 , 
 5 0 � � � is a closed subset of <~0 .

(c) If ì is a basis or subbasis for >�2 then

�ox'FK
 ì ��
 5 0 �GF��A
=>�0ªw
2. 
 is a homeomorphism if it is bijective and continuous, and its inverse image 
 5 0 is

continuous.

3. 
 is open if

�yx'FK
=>�0)��
���F6�A
=>�2,w
Definition B.4. An ordered space is a topological space ;�<=*�>3@ equipped with an order ¢
that is closed in ;�<�!~<=*?>¯!�>A@ , where >#!�> is the topology on <�!�< generated by the

basis
� F !RF n I�F(*,F n 
=> �

.

Definition B.5. Let ;�<~0,�?>�0ª*e¢k0�@ and ;�<"0��?>�0ª*e¢k0�@ be ordered space and 
R�[<~03$:&X<O2 be

a map. Then 
 is an order-homeomorphism if it is an order-isomorphism and a homeomor-

phism.

Lemma B.6. Suppose 
E��<�0k$'& <O2 is a map between two topological spaces ;�<�0�*?>�0G@
and ;�<(2e*�>�2ª@ .

1. If ;�<"0�*?>�0G@ is compact Hausdorff and 
 is continuous then 
�� <�0�� is compact.

2. If ;�<"0�*?>�0)@ is compact Hausdorff, ;9<W2e*?>�2ª@ is Hausdorff, and 
 is continuous and

bijective then 
 is a homeomorphism.
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The following lemma is known as Alexander’s subbasis lemma.

Lemma B.7. Suppose ;�<=*?>A@ is a topological space and ì is a subbasis for > . ;�<=*�>3@ is

compact if and only if every open cover for < contained in ì has a finite subcover.

Lemma B.8. Suppose ;9<=*?>A@ is a compact Hausdorff topological space and
� Pc< . Then�

is closed if and only if it is compact.



Appendix C

Category Theory

This appendix, which is based on [70, 97], reviews concepts and results from category

theory, that are essential for the work presented in this thesis.

Definition C.1. A category is a collection of three entities:

1. a class whose elements are called objects.

2. a class whose elements are called morphisms. Every morphism is assigned two ob-

jects as its domain and codomain. 
 ��� $z& × denotes the morphism 
 whose

domain is the object � and whose codomain is the object × .

3. a composition operation which assigns to every pair of morphisms 
R�Õ�m$:& × and>W��×}$:& �
a morphism >D�L
R�Õ�U$:& �

such that:

(a) given ´�� � $:& /Q*3�)´6�D>¨���L
��÷´��v��>��Ô
�� .
(b) for every object � , there an identity morphism ^(/=�Õ�U$:& � such that 
��k^}/"�-


and ^}¼1�L
~�-
 .

Definition C.2. Let
�

be a category. Then the opposite or dual
� � � of

�
is the category

which has the same objects as
�

and whose morphisms are of the form 
 � � ��×\$:& �
212
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where 
��i�m$:& × is a morphism in
�

. The composition in
� � � is defined by


 �9� �D> � � �K��>D�L
�� � � w
Definition C.3. Let

�
and / be two categories. A functor

Ø � � $:& / is a pair of

functions (both denoted by
Ø

):

1.
Ø � objects of

� $:& objects of / , and

2.
Ø � morphisms of

� $z& morphisms of / .

This pair is subject to the following conditions:

1. for every morphism 
R�[�U$:& × in
�

,
Ø �G
��A� Ø ���k�3$z& Ø ��×	� ,

2.
Ø �)
	�D>¨�¬� Ø �)
���� Ø ��>¨� , and

3.
Ø �ª^,/:���m^ Â r / t .

A functor
Ø � � $:& / is

1. full if for all objects ��*,× in
�

and for every morphism > � Ø �9�k��$:& Ø �G×6� in /
there is a morphism 
��Õ��$:& × such that

Ø �)
��¬�!> .

2. faithful or an embedding if for all objects ��*,× in
�

and for all morphisms 
�*�
 n �[�U$:& ×
in

�
,
Ø �G
��¬� Ø �)
 n � implies 
��+
 n w

A contravariant functor has the same definition as functor except that the directions of

morphisms get reversed under it, i.e. it maps a morphism 
����t$z& × to a morphismØ �)
��A� Ø �G×	�A$:& Ø �9�k� . An endofunctor is a functor from a category to itself.

Definition C.4. Let
Ø *?� � � $:& / be two functors between categories

�
and / . A

natural transformation is a mapping 1 that assigns for every object � in
�

a morphism1 /R� Ø ���D�A$:& �(���D� in / such that for every morphism 
��i�m$:& × in
�

�(�)
'�³� 1 /�� 1 ¼W� Ø �)
'�7w
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If both F and G are contravariant then the later equation takes the following form1 /O� Ø �)
'�¬�+�(�)
��³� 1 ¼¬w
If 1 / is an isomorphism in / , for every � in

�
, then 1 is a natural isomorphism.

Definition C.5. Let
�

and / be two categories. An adjunction from
�

to / is a triple

; Ø *,��* 1 @ such that
Ø � � $:& / and � ��/ $:& �

are functors and 1 is a mapping that

assigns for every pair of objects �m
 �
and ×\
=/ a bijection of sets1 /m® ¼{��/R� Ø ���D�7*,×6��$:& � ����*,�W��×	����*

which is natural in � and × . /R� Ø �9�k��*,×	� is the set of all morphism in / from
Ø ���D�

to × . Similarly
� �9��*,�(�G×6��� is defined. The functor

Ø
and � are called left-adjoint and

right-adjoint, respectively.
Ø

and � are said to be dual adjoints to each other.

Lemma C.6. Let
�

and / be two categories and ; Ø *,��* 1 @ an adjunction from
�

to / .

Then the adjunction is completely determined by the functors
Ø

and � and any pair of

natural transformations 1 �$�}��$:& �ð� Ø
and 6 � Ø �3�K$:& �(þ such that the composites:

1. � �
�$:& � � Ø �L� ���$:& � and

2.
Ø Â

�$:& Ø �Ô� � Ø �]Â$:& Ø
are the identity transformations.

Definition C.7. Let
�

and / be two categories. Then
�

and / are equivalent to each other

if there are two functors
Ø � � $:& / and �M�³/ $:& �

and two natural isomorphisms

� � Ø .� �W� � $:& �
and

Ø �L��.� �(��/ $:& / . The functor
Ø

is called an equivalence

of categories. The category
�

is dual equivalent or dual to the category / if
�

is equivalent

to the opposite of / .

Lemma C.8. Let
�

and / be two categories and
Ø � � $:& / a functor. Then the

following statements are equivalent.



215

1.
Ø

is an equivalence of categories.

2.
Ø

is full, faithful, and for each object × in / there is an object �±
 �
such thatØ ���D� and × are isomorphic.

Definition C.9. Let
�

be a category. A collection � of objects and morphisms of
�

is a

subcategory of
�

if

1. for every morphism 
R�[�U$:& × in � , � and × belong to � ,

2. for every object � in � , ^}/ belongs to � , and

3. for every pair of arrows 
R�Õ��$'& × and >1��×}$'& �
in � , >D�J
 belongs to � .

A subcategory � of a category
�

is full if the functor from � to
�

that sends every object

to itself and every morphism to itself is full.

Definition C.10. Let
�

be a category. Then
�

is Cartesian-closed if it satisfies the follow-

ing conditions.

1.
�

has an object ¾ such that for every object � in
�

there exists a single morphism


(/R�[�U$'&X¾ . The object ¾ is called terminal.

2. For every pair of objects ��0 and �J2 in
�

, there exists an object < and a pair of

morphisms ��ñ��[< $'& �Jñ , ò��U^[*¬¢ , in
�

such that for every object × and every pair

of morphisms 
�ñ��¨×\$'& �Jñ , ò�� ^[*¬¢ , there exists a unique morphism 
��¨×\$:& <
such 
hñ�����ñ¨�L
�*?òJ� ^[*¬¢ . The object < is called the product of ��0 and ��2 and is

denoted by �v03!=�J2 .
3. Provided that condition ¢ is satisfied, for every pair of objects �60 and ��2 in

�
, there

exists an object � and a morphism 1 ����!=��0A$:& �J2 such that for any object < in�
and morphism >W�[< !���0�$:& ��2 there is a unique morphism �����[<t$:& � such

that 1 ��������!#^,/�·ª���·>zw



216

The object � is called an exponential and is denoted by � /�·2 .
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