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This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-
oriented distributed programs running on parallel machines equippedwith hierarchicalmemories.The paper uses languages whose
address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from
other threadmemories.Three type systems (for imperative distributed programs) are the tools of the proposed techniques.The first
type systemdefines for every programpoint a set of calculated (ready) statements andmemory accesses.The second type systemuses
an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used
later in the program.The third type system uses the information gather so far to eliminate unnecessary statement computations and
memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented
to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical
style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is
assigned a type derivation (serves as a correctness proof).

1. Introduction

Distributed programming is about building a software that
has concurrent processes cooperating in achieving some
task. For a problem specification, the type, number, and
the way of interaction of processes needed to solve the
problem are decided beforehand. Then a supercomputer can
be computationally simulated by a group of workstations to
carry different processes. A group of supercomputers can
in turn be combined to provide a computing power greater
than that provided by any single machine. This enormous
computing power provided by distributed systems is why
the distributed programming style [1–3] is quite important
and attractive. Among examples of distributed programming
languages (DPLs), based on machines having multicore
processors and using partitioned-global model, are Unified
Parallel C (UPC), Chapel, Titanium which is based on Java,
and X10.

Among advantages of object-oriented programming
(OOP) is combining other styles such as imperative, func-
tional, and relational programming. Concepts of class, pro-
cedure, and inheritance are basics for OOP. These concepts
result in dynamic behavior in various implementations of
object-oriented programming languages.

Recomputing a nontrivial statement and reaccessing a
memory location are waste of time and power if the value of
the statement and the content of the location have not been
changed. The purpose of frequent statement and dereference
elimination analysis is to save such wasted power and time.
This is an interesting analysis because it involves connecting
statement and dereference calculations to program points
where the calculated values may be reused. The analysis
also requires changing program points at the ends of these
connections. Such changes to programpoints have to be done
carefully so that they do not destroy the compositionality.
Our approach to treat this analysis is a type system [4, 5] built
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(0)
(1) x := k + l;
(2)
(3)
(4)
(5)
(6) else

l := c ∗ d; k := a ∗ b;

x := con�ert(∗(a∗ b), 2);
y := transmit c∗d from (3);

then y := transmit∗ (c∗ d)from (2);
x := con�ert (∗(a∗ b), 2);

if (∗ (a∗ b) = ∗ (c∗ d))

x := a∗ b + c∗d;
x := con�ert(∗k, 2);
y := transmit l from (3);
if (∗k = ∗l)

then y := transmit∗(c ∗ d) from (2);
else x := con�ert(∗(a ∗ b), 2);

Figure 1: Motivating example.

on a combination of two analyses; one of them builds on the
results of the other one.

For different programming languages, in previous work
[4, 5], we have proved that the type systems style is certainly
an adaptable approach for achieving many static analyses.
This paper proves that this style is flexibly useful to the
involved and important problem of frequent statement and
dereference elimination of imperative and object-oriented
distributed programs.

This paper introduces new techniques for frequent state-
ment and dereference elimination for imperative and object-
oriented distributed programs running on hierarchical mem-
ories. Simply structured type systems are the main tools of
this paper’s techniques presented using the languages 𝑤ℎ𝑖𝑙𝑒𝑑

of Figure 2 and OODP of Figure 3. These languages are
equipped with basic commands for distributed execution of
programs and for pointer manipulations.The single program
multiple data (SPMD) model is the execution archetypal
used in this paper. On different data of different machines
this archetypal runs the same program. The analysis of
frequent statement and dereference elimination for distributed
programs is achieved in three steps each of which is done
using a type system. The first of these steps achieves ready
statement and memory access analysis. The second step deals
with semiexpectation analysis and builds on the type systemof
the first step.The third type system takes care of the analysis of
frequent statement and dereference elimination and is built on
the type system of the second step. The paper also illustrates
how these type systems can be generalized to cover object-
oriented distributed languages.

This paper is an extended and revised version of [6],
which treats imperative distributed programs. The work of
[6] was generalized in Section 5 of the current paper to
cover object-oriented distributed programs. The soundness
theorems of the current paper are stated usingmemorymodel
and operational semantics in the appendix of [6].

Motivation. The left-hand-side of Figure 1 presents a moti-
vating example of our work. We note that lines 4 and 6
dereference 𝑎∗𝑏which has already been dereferenced in line
2 with no changes to values of 𝑎 and 𝑏 in the path from 2 to 6.
This is a waste of computational power and time (accessing
a secondary storage). One objective of the research in this
paper is to avoid suchwaste by transforming the program into
that in the right-hand-side of the algorithm. This is not all;
we need to do that in a way that provides a correctness proof
for each transformation. We adopt a style (type systems) that
provides these proofs (type derivations).

Contributions. Contributions of this paper are new tech-
niques, in the form of type systems, for achieving the follow-
ing analyses for imperative and object-oriented distributed
programs.

(1) The analysis of ready statement and memory access.
(2) The analysis of semiexpectation.
(3) The analysis of frequent statement and dereference

elimination.

Organization. The rest of the paper is organized as follows.
Section 2 presents the type system achieving the analysis of
ready statement andmemory access for imperative distributed
programs. The analysis of semiexpectation as an enrichment
of the type system presented in Section 2 is outlined in
Section 3. The main type system carrying the analysis of
frequent statement and dereference elimination is contained in
Section 4. Type systems of Sections 2, 3, and 4 are generalized
in Section 5 to cover object-oriented distributed programs.
Related and future works are discussed in Section 6.

2. Ready Statement and Memory
Access Analysis of 𝑤ℎ𝑖𝑙𝑒𝑑

If the value of a statement and the content of a memory
location have not been changed, then the compiler should
not recompute the statement or reaccess the location. The
purpose of frequent statement and dereference elimination is
to save the wasted power and time involved in these repeated
computations. This is not a trivial task; compared to other
program analyses, it is a bit complex. This task is done in
stages. The first stage is to analyze the given program to
recognize ready statements and memory locations.

The analysis of ready statements and memory locations
calculates for every program point the set of statements and
memory locations that are ready at that point in the sense of
Definition 1. This section presents a type system (ready type
system) to achieve this analysis for imperative distributed
programs.

Definition 1. (1) At a program point 𝑝𝑡, a statement 𝑆 is ready
if each computational path to 𝑝𝑡

(a) contains an evaluation of 𝑆 at some point (say𝑝𝑡
󸀠) and

(b) does not modify 𝑆 (changing value of any of 𝑆’s
variables) between 𝑝𝑡

󸀠 and 𝑝𝑡.
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name ::= “string of characters”.

where
x ∈ lVar, an infinite set of variables, n ∈ Z (integers), iop ∈ Iop (integer-valued binary operations), and
bop ∈ Bop (Boolean-valued binary operations).

Program ::= Defs: S.

S ∈ Stmts ::= n | true | false | x | S1 iop S2 | S1 bop S2 | ∗S | skip | name | x := S | S1 ← S2 |

S1; S2 | if S then St else Sf | while S do St | 𝜆x · S | S1S2 | letrec x = S in S󳰀 |

newl | con�ert (S, n) | transmit S1 from S2.

Defs ::= (name = S); Defs | 𝜀.

Figure 2: The programming language 𝑤ℎ𝑖𝑙𝑒𝑑.

o := S | S1 · � := S2 | o1 := o2 · f(S) | o1 := super · f(S) | o := new C|S1; S2 |

S ∈ Stmts ::= n | o | o · � | S1 iop S2 | this | (C)S | true | false | S1 cop S2 | S1 bop S2 | skip |

if b then St else Sf |while b do St| con�ert (S, n) | transmit S1 from S2.

inhrt ∈ Inherits ::= 𝜀 | inherits C
cls ∈ Classes ::= class C inhrt {fun∗}
prog ∈ Progs ::= cls∗ main() {S}

fun ∈ Funs ::= f (p){S; return (Sr); }

Figure 3: The programming language OODP.

(2) At a program point 𝑝𝑡, a memory location 𝑙 is ready if
each computational path to 𝑝𝑡

(a) reads 𝑙 at some point (say 𝑝𝑡
󸀠) and

(b) does not modify content of 𝑙 between 𝑝𝑡
󸀠 and 𝑝𝑡.

The ready analysis is a forward analysis that takes as an
input a set of statements andmemory locations (the ready set
of the first program point). It is sensible to let this set be the
empty set. The set of types of our ready type system has the
form: 𝑝𝑜𝑖𝑛𝑡𝑠-𝑡𝑜-𝑡𝑦𝑝𝑒𝑠 × P(𝑆𝑡𝑚𝑡

+
∪ 𝑔𝐴𝑑𝑑𝑟𝑠), where

(1) 𝑆𝑡𝑚𝑡
+ is the set of nontrivial statements (Figure 2),

(2) 𝑔𝐴𝑑𝑑𝑟𝑠 is the set of global addresses. This set is
defined precisely in the appendix of [6], and

(3) points-to-types is a set of points-to-types (typically
have the formofmaps from the union of variables and
global addresses to the power set of global addresses
[4, 7]).

The subtyping relation has the form ≤𝑝 × ⊇, where ≤𝑝 is
the order relation on the points-to-types and ⊇ is the order
relation onP(𝑆𝑡𝑚𝑡

+
∪𝑔𝐴𝑑𝑑𝑟𝑠). A state on an execution path

is of type 𝑟𝑠 ∈ P(𝑆𝑡𝑚𝑡
+
∪ 𝑔𝐴𝑑𝑑𝑟𝑠) if all elements of 𝑟𝑠 are

ready at this state according to Definition 1. Judgments of the
ready type system have the form 𝑆 : (𝑝, 𝑟𝑠)→𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
).

The symbols𝑝 and𝑝
󸀠 denote the points-to-types of the before

and after states of executing 𝑆. The set 𝐴󸀠 denotes the set of
addresses that 𝑆may evaluate.We assume that all such pointer
information is given along with the statement 𝑆. Techniques
like [4, 7] are available to compute the pointer information.
For a given statement along with pointer information and a
ready pretype rs, we present a type system to calculate a post
ready-type 𝑟𝑠

󸀠 such that 𝑆 : (𝑝, 𝑟𝑠)→𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
). The type

derivation of this typing process is a proof for the correctness
of the ready information.Themeaning of the judgment is that

if elements of 𝑟𝑠 are ready before executing 𝑆, then elements
of 𝑟𝑠󸀠 are ready after executing 𝑆.

The inference rules of the ready type system are presented
in Algorithm 1. Comments on the inference rules are in
order. We note that numbers, variables, and the allocating
statement (new) do not affect the ready pretype. In line with
semantic rules (𝑖

𝑟

𝑜𝑝
) and (𝑏

𝑟

𝑜𝑝
) [6], nontrivial arithmetic and

Boolean statements and their nontrivial substatements are
made ready. The direct assignment rule (:=

𝑟
) expresses that

after executing the assignment the substatements of r.h.s.
become ready and that all statements involving 𝑥 become
unready as the value of 𝑥may become different.The rule (∗

𝑟
)

reflects the fact that the statement ∗𝑆 becomes ready after
executing the dereference. Moreover if 𝑆 evaluates a single
address according to the underlying pointer analysis, then
this address becomes ready as well. However if 𝑆 evaluates
a large set of addresses (more than one), then we are not
sure which of these addresses is the concerned one and hence
cannot conclude any readiness information about addresses.
The rule (←

𝑟
) adds the substatements of 𝑆1 and 𝑆2 to the

ready pretype. Since the content of address referenced by 𝑆1 is
possibly changed after executing the statement, all statements
involving dereferencing this address are removed from the
set of ready items. Remaining rules are self-explanatory.
The Boolean statements 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 have inference rules
similar to that of 𝑛.

All in all, the information provided by type derivations
obtained using this and the following type system is classified
into two sorts. The first sort is about knowing the program
point at which a particular statement becomes ready. The
second sort of information is about the program point at
which a precomputed value of a ready statement can be
replaced with the statement.

Nowwe recall the assumption that our distributed system
consists of |𝑀|machines. For a given statement 𝑆 and a given
machine𝑚, the type system of Algorithm 1 calculates for each
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𝑛 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑛 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠)

𝑆1 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑆1 𝑖op 𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑖op 𝑆2})

(𝑖
𝑟

op)
𝑥 : 𝑝→ 𝑚 (𝐴

󸀠
, 𝑝
󸀠
)

𝑥 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠)

𝑆1 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑆1 𝑏op 𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑏op 𝑆2})

(𝑏
𝑟

op)
∗𝑆 : 𝑝→ 𝑚 (𝐴

󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

∗𝑆 : (𝑝, 𝑟𝑠) → 𝑚 {

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆, 𝑔}) , 𝐴

󸀠󸀠
= {𝑔} ;

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆}) ,

󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󸀠󵄨󵄨
󵄨
󵄨

̸= 1 .

(∗
𝑟
)

𝑠𝑘𝑖𝑝 : (𝑝, 𝑟𝑠) → 𝑚 (0, 𝑝, 𝑟𝑠)

𝑥 := 𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

𝑥 := 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡 | 𝑥 ∈ 𝑓𝑟𝑒𝑒 (𝑆)})

(:=
𝑟
)

𝑆1 ← 𝑆2 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑆1 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴1, 𝑝1, 𝑎𝑠1)
𝑆2 : (𝑝1, 𝑎𝑠1) → 𝑚 (𝐴2, 𝑝2, 𝑎𝑠2)

𝑆
1
← 𝑆
2
: (𝑝, 𝑟𝑠) →

𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑎𝑠
2
\ (𝐴
󸀠
∪ {𝑆 | 𝑆 : 𝑝→

𝑚
(𝐴
𝑠
,—) &𝐴

𝑠
∩ 𝐴
󸀠

̸= 0}))

(←
𝑟
)

𝑆1 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑆1; 𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑠𝑒𝑞
𝑟
)

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
)

𝑆𝑡 : (𝑝, 𝑟𝑠
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑆𝑓 : (𝑝, 𝑟𝑠
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑖𝑓 𝑆 𝑡ℎ𝑒𝑛 𝑆𝑡 𝑒𝑙𝑠𝑒 𝑆𝑓 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑖𝑓
𝑟
)

𝑆1 [𝑆2/𝑥] : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝜆𝑥 ⋅ 𝑆1) 𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑎𝑝𝑝𝑙
𝑟
)

𝑆 : (𝑝, 𝑟𝑠) → (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠
)

𝑆𝑡 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠)

𝑤ℎ𝑖𝑙𝑒 𝑆 𝑑𝑜 𝑆𝑡 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑤ℎ𝑙
𝑟
)

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝜆𝑥 ⋅ 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑎𝑏𝑠
𝑟
)

𝑓𝑑 (𝑛𝑎𝑚𝑒) : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑛𝑎𝑚𝑒 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑛𝑎𝑚𝑒
𝑟
)

(𝜆𝑥 ⋅ 𝑆
󸀠
) 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑙𝑒𝑡𝑟𝑒𝑐 𝑥 = 𝑆 𝑖𝑛 𝑆
󸀠
: (𝑝, 𝑟𝑠) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑙𝑒𝑡𝑟𝑒𝑐
𝑟
)

𝑛𝑒𝑤𝑙 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑛𝑒𝑤𝑙 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠)

(𝑛𝑒𝑤
𝑟
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑐𝑜𝑛V𝑒𝑟𝑡𝑟)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : 𝑝 → (𝐴
󸀠
, 𝑝
󸀠
)

𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴2, 𝑝2, 𝑎𝑠2)

𝑆1 : (𝑝2, 𝑎𝑠2) → 𝑚 (𝐴1, 𝑝1, 𝑟𝑠
󸀠
)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑡𝑟𝑎𝑛𝑠
𝑟
)

(𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
) ≤ (𝑝1, 𝑎𝑠1)

𝑆 : (𝑝1, 𝑎𝑠1) → 𝑚 (𝑝2, 𝑎𝑠2)

(𝑝2, 𝑎𝑠2) ≤ (𝑝
󸀠

2
, 𝑟𝑠
󸀠

2
)

𝑆 : (𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
) →
𝑚
(𝑝
󸀠

2
, 𝑟𝑠
󸀠

2
)

(𝑐𝑠𝑞
𝑟
)

𝐷𝑒𝑓𝑠 : 0 ↷ 𝑓𝑑 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝐷𝑒𝑓𝑠 : 𝑆 : (𝑝, 𝑟𝑠) →
𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝑝𝑟𝑔
𝑟
)

Algorithm 1: Inference rules of the ready type system.

program point of 𝑆, the set of ready items. The following
rule can be used to combine the information calculated for
eachmachine to get new ready information for each program

point. The new ready information is valid on any of the |𝑀|

machines.
Consider

∀𝑚 ∈ 𝑀 ⋅ 𝑆 : (sup {𝑝, 𝑝𝑗 | 𝑗 ̸= 𝑖} , sup {𝑟𝑠, 𝑟𝑠𝑗 | 𝑗 ̸= 𝑖}) 󳨀→𝑚 (𝐴𝑚, 𝑝𝑚, 𝑟𝑠𝑚)

𝑆 : (𝑝, 𝑟𝑠) 󳨀→𝑀 (∪𝑖𝐴 𝑖, sup {𝑝1, . . . , 𝑝𝑛} , sup {𝑟𝑠1, . . . , 𝑟𝑠𝑛})

(𝑚𝑎𝑖𝑛-𝑟𝑠) . (1)

The rule (main-rs) supposes a suitable notion for the join of
pointer types.The soundness of the ready type system is stated
asfollows.

Theorem 2. Suppose that (𝑆, 𝛿) → (𝑉, 𝛿
󸀠
), 𝑆 : (𝑝, 𝑟𝑠) →

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
), and the items of 𝑟𝑠 are ready at the point

corresponding to 𝛿 on the execution path. Then the items of 𝑟𝑠󸀠
are ready at the point corresponding to 𝛿

󸀠 on the execution path.

3. Semiexpectation Analysis of 𝑤ℎ𝑖𝑙𝑒𝑑

Theaimof frequent statement elimination is to introduce new
variables to accommodate values of frequent statements and
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reusing these values rather than recomputing the statements.
Analogously, the aim of frequent dereferences elimination
is to introduce new variables to accommodate values of
frequent dereferences and reusing these values rather than
reaccessing the memory. The information gathered so far
by the ready type system introduced in the previous section
is not enough to achieve frequent statements and derefer-
ences elimination. We need to enrich the ready information,
assigned to each program point, with new information called
semiexpectable information.

Definition 3. (1) At a programpoint𝑝, a statement 𝑆 is semiex-
pectable if there is a computational path from 𝑝 that

(a) contains an evaluation of 𝑆 at some point (say 𝑝
󸀠),

where 𝑆 is ready at 𝑝󸀠, and
(b) does not evaluate 𝑆 between 𝑝

󸀠 and 𝑝.

(2) At a program point 𝑝, a memory location 𝑙 is semiex-
pectable if each computational path to 𝑝

(a) reads 𝑙 at some point (say 𝑝
󸀠) where 𝑙 is ready at 𝑝󸀠,

and
(b) does not read 𝑙 between 𝑝

󸀠 and 𝑝.

The semiexpectation analysis is a backward analysis that
takes as an input a set of statements and memory locations
(the semiexpectable set of the last programpoint). It is sensible
to let this set be the empty set.The following example gives an
intuition for the previous definition:

if (⋅ ⋅ ⋅ ) , then 𝑎 := 𝑦 + 𝑡 else 𝑏 := ∗𝑟; 𝑐 :=

(𝑦 + 𝑡)

∗𝑟

. (2)

Neither the statement 𝑦 + 𝑡 nor the statement ∗𝑟 is ready
after the if statement because they are not computed in all
branches. Hence it is not true to replace these statements
with variables towards optimizing the last statement of the
example. The job of the type system presented in this section

is to provide us with this sort of information. More precisely,
as the statements 𝑦 + 𝑡 and ∗𝑟 are not ready after the if
statement, the second statement of the example does not
make them semiexpectable.

The semiexpectation analysis assigns for each program
point the set of items that are semiexpectable. The analysis
is based on the readiness analysis and is backward. The
set of types of the semiexpectation type system has the
form: 𝑝𝑜𝑖𝑛𝑡𝑠-𝑡𝑜-𝑡𝑦𝑝𝑒𝑠 × P(𝑆𝑡𝑚𝑡

+
∪ 𝑔𝐴𝑑𝑑𝑟𝑠) × P(𝑆𝑡𝑚𝑡

+
∪

𝑔𝐴𝑑𝑑𝑟𝑠). The subtyping relation has the form ≤𝑝 × ⊇ × ⊇.
A state on an execution path is of type 𝑠𝑒 ∈ P(𝑆𝑡𝑚𝑡

+
∪

𝑔𝐴𝑑𝑑𝑟𝑠) if all elements of 𝑠𝑒 are semiexpectable according to
Definition 3. Judgments of the semiexpectation type system
have the form 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
). For a

given statement along with pointer information, readiness
information, and a semiexpectation type 𝑠𝑒

󸀠, we present a
type system to calculate a pre-semiexpectable-type 𝑠𝑒 such
that 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
). The type derivation

of this typing process is proof for the correctness of the
semiexpectable information. The meaning of the judgment
is that if elements of 𝑠𝑒

󸀠 are semiexpectable after executing
𝑆, then elements of 𝑠𝑒 must have been semiexpectable before
executing 𝑆.

The inference rules of the semiexpectation type system
are shown in Algorithm 2. Some comments on the inference
rules are in order. In the rule (𝑖

𝑒

𝑜𝑝
), given the posttype 𝑠𝑒

󸀠,
we calculate the pretype 𝑠𝑒

󸀠󸀠 for the statement 𝑆2. Then the
resulting pretype is used as a posttype for the statement 𝑆1

to calculate the pretype 𝑠𝑒. In line with Definition 3, the
arithmetic statement 𝑆1 𝑖𝑜𝑝 𝑆2 is added to 𝑠𝑒 only if it belongs
to 𝑟𝑠. Similar explanations illustrate the rule (∗𝑒).The remain-
ing rules mimic the rules of the ready type system.

Nowwe recall the assumption that our distributed system
consists of |𝑀|machines. For a given statement 𝑆 and a given
machine 𝑚, the type system given above calculates for each
program point of 𝑆 the set of semiexpectable items. Now the
following rule can be used to combine the information calcu-
lated for eachmachine to get new semiexpectable information
for each program point. The new semiexpectable information
is valid on any of the |𝑀| machines.

Consider
∀𝑚 ∈ 𝑀 ⋅ 𝑆 : (sup {𝑝, 𝑝𝑗 | 𝑗 ̸= 𝑖} , sup {𝑟𝑠, 𝑟𝑠𝑗 | 𝑗 ̸= 𝑖}) 󳨀→𝑚 (𝐴𝑚, 𝑝𝑚, 𝑟𝑠𝑚)

𝑆 : (𝑝, 𝑟𝑠) 󳨀→𝑀 (∪𝑖𝐴 𝑖, sup {𝑝1, . . . , 𝑝𝑛} , sup {𝑟𝑠1, . . . , 𝑟𝑠𝑛})

× (𝑚𝑎𝑖𝑛-𝑟𝑠) .
(3)

The difference in the way that this rule treats the semiex-
pectable information and the way ready information is treated
is explained by the fact that the ready analysis is forwardwhile
the semiexpectation analysis is backward.

It is not hard to prove the soundness of the above type
system.

Theorem 4. Suppose that (𝑆, 𝛿) → (𝑉, 𝛿
󸀠
), 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) →

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) and the items of 𝑠𝑒󸀠 are semiexpectable at the

point corresponding to 𝛿
󸀠 on the execution path.Then the items

of 𝑠𝑒 are semiexpectable at the point corresponding to 𝛿 on the
execution path.

4. Frequent Statement and Dereference
Elimination of 𝑤ℎ𝑖𝑙𝑒𝑑

This section presents a type system that is an enrichment of
the type system presented in the previous section. The type
system of this section achieves the frequent statement and
dereference elimination. The type system uses a function 𝑠𝑛 :

𝑆
+

→ 𝑆𝑡𝑚𝑡-𝑛𝑎𝑚𝑒𝑠 that assigns each nontrivial statement
a name. These names are meant to carry values of frequent
statements and dereferences. The judgments of our type
system have the form 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢

(𝑛𝑠, 𝑆
󸀠
). The type information (𝑝, 𝑟𝑠, 𝑠𝑒) and (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)
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𝑛 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑛 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

𝑥 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑥 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 𝑆2 : (𝑝

󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑆1 𝑖op 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {𝑆1 𝑖op 𝑆2})) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑖op 𝑆2} , 𝑠𝑒

󸀠
)

(𝑖
𝑒

op)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 𝑆2 : (𝑝

󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑆1 𝑏op 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑏op 𝑆2}, 𝑠𝑒

󸀠
)

(𝑏
𝑒

op)

∗𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)

∗𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑒 ∩ {∗𝑆, 𝑔})) → 𝑚 {

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆, 𝑔} , 𝑠𝑒

󸀠󸀠
) , 𝐴

󸀠
= {𝑔} ;

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆} , 𝑠𝑒

󸀠󸀠
) ,

󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󵄨󵄨
󵄨
󵄨

̸= 1 .

(∗
𝑒
)

𝑠𝑘𝑖𝑝 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(0, 𝑝, 𝑟𝑠, 𝑠𝑒)

𝑥 := 𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)

𝑥 := 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡 | 𝑥 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒

󸀠󸀠
)

(:=
𝑒
)

𝑆1 ← 𝑆2 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑎𝑠1, 𝑠𝑒1)
𝑆2 : (𝑝1, 𝑎𝑠1, 𝑠𝑒1)→ 𝑚(𝐴2, 𝑝2, 𝑎𝑠2, 𝑠𝑒2)

𝑆1 ← 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑎𝑠2 \ (𝐴

󸀠
∪ {𝑆 | 𝑆 : 𝑝→ 𝑚(𝐴 𝑠, )&𝐴 𝑠 ∩ 𝐴

󸀠
̸= 0}), 𝑠𝑒2)

(←
𝑒
)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑆1; 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑠𝑒𝑞
𝑒
)

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)

𝑆𝑡 : (𝑝, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑆𝑓 : (𝑝, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑖𝑓 𝑆 𝑡ℎ𝑒𝑛 𝑆𝑡 𝑒𝑙𝑠𝑒 𝑆𝑓 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑖𝑓
𝑒
)

𝑆1[𝑆2/𝑥] : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝜆𝑥 ⋅ 𝑆1)𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑎𝑝𝑝𝑙
𝑒
)

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 𝑆𝑡 : (𝑝

󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

𝑤ℎ𝑖𝑙𝑒 𝑆 𝑑𝑜 𝑆𝑡 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑤ℎ𝑙
𝑒
)

𝑓𝑑(𝑛𝑎𝑚𝑒) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑛𝑎𝑚𝑒 : (𝑝, 𝑟𝑠, 𝑠𝑒)→
𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑛𝑎𝑚𝑒
𝑒
)

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝜆𝑥 ⋅ 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→
𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑎𝑏𝑠
𝑒
)

(𝜆𝑥 ⋅ 𝑆
󸀠
)𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→

𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑙𝑒𝑡𝑟𝑒𝑐 𝑥 = 𝑆 𝑖𝑛 𝑆
󸀠
: (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑙𝑒𝑡𝑟𝑒𝑐
𝑒
)

𝑛𝑒𝑤
𝑙
: 𝑝→

𝑚
(𝐴
󸀠
, 𝑝
󸀠
)

𝑛𝑒𝑤𝑙 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

(𝑛𝑒𝑤
𝑒
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝

󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑐𝑜𝑛V𝑒𝑟𝑡𝑒)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : 𝑝 → (𝐴
󸀠
, 𝑝
󸀠
)

𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴2, 𝑝2, 𝑎𝑠2, 𝑠𝑒2)
𝑆1 : (𝑝2, 𝑎𝑠2, 𝑠𝑒2)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠

󸀠
, 𝑠𝑒
󸀠
)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑡𝑟𝑎𝑛𝑠
𝑒
)

(𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
, 𝑠𝑒
󸀠

1
) ≤ (𝑝1, 𝑎𝑠1, 𝑠𝑒1)

𝑆 : (𝑝1, 𝑎𝑠1, 𝑠𝑒1)→ 𝑚(𝑝2, 𝑎𝑠2, 𝑠𝑒2)

(𝑝2, 𝑎𝑠2, 𝑠𝑒2) ≤ (𝑝
󸀠

2
, 𝑟𝑠
󸀠

2
, 𝑠𝑒
󸀠

2
)

𝑆 : (𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
, 𝑠𝑒1)→ 𝑚(𝑝

󸀠

2
, 𝑟𝑠
󸀠

2
, 𝑠𝑒
󸀠

2
)

(𝑐𝑠𝑞
𝑒
)

𝐷𝑒𝑓𝑠 : 0 ↷ 𝑓𝑑 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝐷𝑒𝑓𝑠 : 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

(𝑝𝑟𝑔
𝑒
)

Algorithm 2: Inference rules of the semiexpectation type system.

were calculated by the previous type system. 𝑆󸀠 is the opti-
mization of 𝑆 and 𝑛𝑠 is a sequence of assignments that links
optimized statements with the names of their unoptimized
versions.

Algorithms 3 and 4 present inference rules for the fre-
quent statements and dereferences elimination. We note the
following on the inference rules. A big deal of optimization is
achieved by the three rules for ∗𝑆. These rules are (∗

𝑓

1
), (∗
𝑓

2
),

and (∗
𝑓

3
). The rule (∗

𝑓

1
) takes care of the case where ∗𝑆 is

ready and is replaceable by its name under the function 𝑠𝑛.

The rule (∗
𝑓

2
) treats the case where ∗𝑆 is semiexpectable and

is not ready before calculating the statement. In this case, a
statement name of ∗𝑆 is used. The rule (∗

𝑓

3
) considers the

case where ∗𝑆 is neither semiexpectable at the program point
after execution nor ready before calculating the statement. In
this case, the statement ∗𝑆 does not get changed. Similarly,
the three rules (𝑖𝑓

𝑜𝑝(1)
), (𝑖
𝑓

𝑜𝑝(2)
), and (𝑖

𝑓

𝑜𝑝(3)
) treat different cases

for arithmetic statements.The Boolean statements are treated
with rules quite similar to that of arithmetic statements. The
rule (𝑤ℎ𝑙

𝑓
) reuses frequent substatements of the guard. This
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𝑛 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑛 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛)

𝑥 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑥 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑥)

∗𝑆 ∈ 𝑟𝑠 ∗ 𝑆 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

∗𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑒 ∩ {∗𝑆, 𝑔}))→
𝑚
{

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆, 𝑔} , 𝑠𝑒

󸀠󸀠
) , 𝐴

󸀠
= {𝑔} ;

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆} , 𝑠𝑒

󸀠󸀠
) ,

󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󵄨󵄨
󵄨
󵄨

̸= 1 .

󴁃󴀢 (𝑛𝑠, 𝑠𝑛 (∗𝑆))

(∗
𝑓

1
)

∗𝑆 ∉ 𝑟𝑠 ∗ 𝑆 ∈ 𝑠𝑒
󸀠

∗ 𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

∗𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑒 ∩ {∗𝑆, 𝑔})) → 𝑚 {

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆, 𝑔} , 𝑠𝑒

󸀠󸀠
) , 𝐴

󸀠
= {𝑔} ;

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆} , 𝑠𝑒

󸀠󸀠
) ,

󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󵄨󵄨
󵄨
󵄨

̸= 1 .

󴁃󴀢 (𝑛𝑠; 𝑠𝑛 (∗𝑆) := ∗𝑆
󸀠
, 𝑠𝑛 (∗𝑆))

(∗
𝑓

2
)

∗𝑆 ∉ 𝑟𝑠 ∗ 𝑆 ∉ 𝑠𝑒
󸀠

∗ 𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

∗𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑒 ∩ {∗𝑆, 𝑔})) → 𝑚 {

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆, 𝑔} , 𝑠𝑒

󸀠󸀠
) , 𝐴

󸀠
= {𝑔} ;

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
∪ {∗𝑆} , 𝑠𝑒

󸀠󸀠
) ,

󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󵄨󵄨
󵄨
󵄨

̸= 1 .

󴁃󴀢 (𝑛𝑠, ∗𝑆
󸀠
)

(∗
𝑓

3
)

𝑆1 𝑖op 𝑆2 ∈ 𝑟𝑠

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠2, 𝑆

󸀠

2
)

𝑆1 𝑖op 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {𝑆1 𝑖𝑜𝑝 𝑆2})) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑖op 𝑆2} , 𝑠𝑒

󸀠
)

󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2, 𝑠𝑛(𝑆1 𝑖𝑜𝑝 𝑆2))

(𝑖
𝑓

op(1))

𝑆1 𝑖op 𝑆2 ∉ 𝑟𝑠 𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑆1 𝑖op 𝑆2 ∈ 𝑠𝑒
󸀠

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠2, 𝑆

󸀠

2
)

𝑆1 𝑖op 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {𝑆1 𝑖𝑜𝑝 𝑆2})) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑖op 𝑆2} , 𝑠𝑒

󸀠
)

󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2; 𝑠𝑛 (𝑆1 𝑖op 𝑆2) := (𝑆
󸀠

1
𝑖op 𝑆
󸀠

2
) , 𝑠𝑛 (𝑆1 𝑖op 𝑆2))

(𝑖
𝑓

op(2))

𝑆1 𝑖op 𝑆2 ∉ 𝑟𝑠 𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑆1 𝑖op 𝑆2 ∉ 𝑠𝑒
󸀠

𝑆2 : (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) → 𝑚 (𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠2, 𝑆

󸀠

2
)

𝑆1 𝑖op 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {𝑆1 𝑖op 𝑆2})) → 𝑚 (0, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {𝑆1 𝑖op 𝑆2} , 𝑠𝑒

󸀠
)

󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2, 𝑆
󸀠

1
𝑖op 𝑆
󸀠

2
)

(𝑖
𝑓

𝑜𝑝(3)
)

𝑠𝑘𝑖𝑝 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(0, 𝑝, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑠𝑘𝑖𝑝)

𝑥 := 𝑆 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴

󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑠𝑛, 𝑆

󸀠
)

𝑥 := 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡 | 𝑥 ∈ 𝑓𝑟𝑒𝑒 (𝑆)} , 𝑠𝑒

󸀠󸀠
) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠; 𝑥 := 𝑆

󸀠
)

(:=
𝑓
)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴1, 𝑝1, 𝑎𝑠1, 𝑠𝑒1) 󴁃󴀢 (𝑛𝑠1, 𝑆
󸀠

1
)

𝑆2 : (𝑝1, 𝑎𝑠1, 𝑠𝑒1)→ 𝑚(𝐴2, 𝑝2, 𝑎𝑠2, 𝑠𝑒2) 󴁃󴀢 (𝑛𝑠2, 𝑆
󸀠

2
)

𝑆1 ← 𝑆2 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑆1 ← 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑎𝑠2 \ (𝐴

󸀠
∪ {𝑆 | 𝑆 : 𝑝→ 𝑚(𝐴 𝑠,—)&𝐴𝑠 ∩ 𝐴

󸀠
̸= 0}), 𝑠𝑒2)

󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠1; 𝑛𝑠2; 𝑆
󸀠

1
← 𝑆
󸀠

2
)

(←
𝑓
)

𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑆
2
: (𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) →
𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠

2
, 𝑆
󸀠

2
)

𝑆1; 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2, 𝑆

󸀠

1
; 𝑆
󸀠

2
)

(𝑠𝑒𝑞
𝑓
)

Algorithm 3: Inference rules for the frequent statements and dereferences elimination (1).

is done via adding 𝑛𝑠 in the positions clarified in the rule.
Remaining rules of system are self-explanatory.

For expressing the soundness, we introduce the following
definition.

Definition 5. Suppose that 𝛿 is a state defined on the set of
locations, Loc ([6, Definition 4]). Suppose also that 𝛿∗ is a
state defined on 𝐿𝑜𝑐 ∪ 𝑆𝑡𝑚𝑡-𝑛𝑎𝑚𝑒𝑠. The expression 𝛿 ≡ 𝑠𝑒𝛿∗

denotes the fact that 𝛿 and 𝛿∗ are equivalent with respect to
the semiexpectation type se.More precisely 𝛿≡ 𝑠𝑒𝛿∗ if and only
if

(1) for all 𝑗 ∈ 𝐿𝑜𝑐. 𝛿(𝑗) = 𝛿∗(𝑗), and
(2) for all 𝑆 ∈ 𝑠𝑒. (𝑆, 𝛿)󴁄󴀼𝑚(V, 𝛿

󸀠
) ⇒ 𝛿∗(𝑠𝑛(𝑆)) = V.

The soundness of frequent statements and dereferences
eliminationmeans that the original and optimized programs
are equivalent in the following sense:

(i) the states of the two programs coincide on the Loc,
and

(ii) if a statement is both ready and semiexpectable, then
its semantics in the original-program state equals
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𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝑆𝑡 : (𝑝, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠𝑡, 𝑆

󸀠

𝑡
)

𝑆𝑓 : (𝑝, 𝑟𝑠
󸀠󸀠
, 𝑠𝑒
󸀠󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠𝑓, 𝑆

󸀠

𝑓
)

𝑖𝑓 𝑆 𝑡ℎ𝑒𝑛 𝑆𝑡 𝑒𝑙𝑠𝑒 𝑆𝑓 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠; 𝑖𝑓 𝑆

󸀠
𝑡ℎ𝑒𝑛 𝑛𝑠𝑡; 𝑆

󸀠

𝑡
𝑒𝑙𝑠𝑒 𝑛𝑠𝑓; 𝑆

󸀠

𝑓
)

(𝑖𝑓
𝑓
)

(𝜆𝑥 ⋅ 𝑆1)[𝑆2/𝑥] : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝜆𝑥 ⋅ 𝑆1)𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝑎𝑝𝑝𝑙
𝑓
)

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → (𝐴
󸀠󸀠
, 𝑝
󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
) 𝑆𝑡 : (𝑝

󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (𝑛𝑠𝑡, 𝑆

󸀠

𝑡
)

𝑤ℎ𝑖𝑙𝑒 𝑆 𝑑𝑜 𝑆𝑡 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠; 𝑤ℎ𝑖𝑙𝑒 𝑆

󸀠
𝑑𝑜 (𝑛𝑠𝑡; 𝑆

󸀠

𝑡
; 𝑛𝑠))

(𝑤ℎ𝑙
𝑓
)

𝑓𝑑(𝑛𝑎𝑚𝑒) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝑛𝑎𝑚𝑒 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝑛𝑎𝑚𝑒
𝑓
)

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝜆𝑥 ⋅ 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠; 𝜆𝑥 ⋅ 𝑆

󸀠
)

(𝑎𝑏𝑠
𝑓
)

𝑛𝑒𝑤𝑙 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑛𝑒𝑤
𝑙
: (𝑝, 𝑟𝑠, 𝑠𝑒)→

𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑒𝑤

𝑙
)

(𝑛𝑒𝑤
𝑓
)

(𝜆𝑥 ⋅ 𝑆
󸀠
)𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→

𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠󸀠
)

𝑙𝑒𝑡𝑟𝑒𝑐 𝑥 = 𝑆 𝑖𝑛 𝑆
󸀠
: (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠󸀠
)

(𝑙𝑒𝑡𝑟𝑒𝑐
𝑓
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝

󸀠󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆, 𝑛) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑛𝑠; 𝑐𝑜𝑛V𝑒𝑟𝑡 (𝑆󸀠, 𝑛))

(𝑐𝑜𝑛V𝑒𝑟𝑡𝑓)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : 𝑝 → (𝐴
󸀠
, 𝑝
󸀠
)

𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴2, 𝑝2, 𝑎𝑠2, 𝑠𝑒2) 󴁃󴀢 (𝑛𝑠2, 𝑆
󸀠

2
)

𝑆1 : (𝑝2, 𝑎𝑠2, 𝑠𝑒2)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆1 𝑓𝑟𝑜𝑚 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑆

󸀠

1
𝑓𝑟𝑜𝑚 𝑆

󸀠

2
)

(𝑡𝑟𝑎𝑛𝑠
𝑓
)

(𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
, 𝑠𝑒
󸀠

1
) ≤ (𝑝1, 𝑎𝑠1, 𝑝𝑎1)

(𝑝2, 𝑎𝑠2, 𝑝𝑎2) ≤ (𝑝
󸀠

2
, 𝑟𝑠
󸀠

2
, 𝑠𝑒
󸀠

2
)

𝑆 : (𝑝
1
, 𝑎𝑠
1
, 𝑝𝑎
1
)→
𝑚
(𝑝
2
, 𝑎𝑠
2
, 𝑝𝑎
2
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝑆 : (𝑝
󸀠

1
, 𝑟𝑠
󸀠

1
, 𝑝𝑎1)→ 𝑚(𝑝

󸀠

2
, 𝑟𝑠
󸀠

2
, 𝑠𝑒
󸀠

2
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝑐𝑠𝑞
𝑓
)

𝐷𝑒𝑓𝑠 : 0 ↷ 𝑓𝑑 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝐷𝑒𝑓𝑠 : 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 𝐷𝑒𝑓𝑠 : 𝑛𝑠; 𝑆

󸀠
(𝑝𝑟𝑔
𝑓
)

Algorithm 4: Inference rules for the frequent statements and dereferences elimination (2).

the value of its corresponding name in optimized-
program state.

This gives an intuition to the previous definition. The follow-
ing soundness theorem is proved by a structure induction.

Theorem6. Suppose that 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢

(𝑛𝑠, 𝑆
󸀠
) and 𝛿 ≡ 𝑠𝑒𝛿∗. Then

(i) (𝑆, 𝛿)󴁄󴀼𝑚(V, 𝛿
󸀠
) ⇒ ∃𝛿

󸀠

∗
. 𝛿
󸀠
≡se󸀠𝛿
󸀠

∗
and (𝑆

󸀠
, 𝛿∗)󴁄󴀼𝑚(V,

𝛿
󸀠

∗
);

(ii) (𝑆
󸀠
, 𝛿∗)󴁄󴀼m(V, 𝛿󸀠

∗
) ⇒ ∃𝛿

󸀠
. 𝛿
󸀠
≡se󸀠𝛿
󸀠

∗
and (𝑆, 𝛿)󴁄󴀼𝑚(V,

𝛿
󸀠
).

5. Frequent Statement and Dereference
Elimination of OODP Programs

This section generalizes the type systems of previous sections
to cover object-oriented distributed programs. Hence, a
new model for object-oriented distributed programs and
necessary changes to proposed type systems for the analysis of

frequent statement and dereference elimination are presented
in this section. Object-oriented concepts such as subtyping
and inheritance are included in the model language (dubbed
OODP) whose syntax is shown in Figure 3.

In line with OOP concepts, local variables are contained
in functions and live while their functions are live. While
parameters of function are represented using local variables,
a class’s internal state is contained in its instance variables.
A class is a container for a set of function definitions. Each
function 𝑓 has parameter 𝑝𝑓, a main statement 𝑆𝑓, and a
statement 𝑆𝑓 representing value returned by the function.
Hence an OODP program is a set of classes followed by
a “main” function. Figure 4 presents semantic spaces and
naming conventions used in the rest of the paper.

As shown in the previous sections, the analysis of fre-
quent statement and dereference elimination for imperative
distributed programs is achieved in three steps. In the
following, we show necessary changes to the three type
systems presented so far to cover object-oriented distributed
programs.

For each program point, ready statements and memory
locations (Definition 1) are computed by the analysis of
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(model values) d ∈ D

ℳ = {1,2, . . . , 𝛿} (the set of machine identifiers) m ∈ ℳ

𝒞 (the set of class names) C,D ∈ 𝒞

lVar (the set of local variables on each machine) o ∈ lVar

gVar = lVar × ℳ (the set of global variables on all machines) (o, m) ∈ gVar
iVarC (instance variables of C)
lAddrs (the set of local addresses on each machine) 𝛼 ∈ lAddrs

gAddrs = lAddrs × ℳ (the set of global addresses on all machine) (𝛼, m) ∈ gAddrs

(the set of stacks) s ∈ 𝒮

(the set of objects contents) IC ∈ 𝒪

(the set of heaps) h ∈ ℋ
States = 𝒮 × ℋ (a memory state) (s, h) ∈ States

this (the current active object)
FunNames (the set of function names) f ∈ FunNames

FunC (functions of C)
(functions definitions) FC ∈

f (pf, Sf, ef)
C D (C is a subclass of a class D)
≤ (the ref. tran. closure of )

(the set of all locations) l ∈ Loc

↦

≪

≪

Loc = gAddrs ∪ gVar ∪ (∪C∈𝒞,�∈iVar𝐶 {(C, �)})

𝒟 = Z ∪ gAddrs ∪ {true, false, ⊥}

𝒮 = {s | s : gVar→p𝒟}

𝒪 = {IC | IC : iVarC →p𝒟}

ℋ = gAddrs →p 𝒪

Fun-defC = FunC → LVar × Stmt × AExpr Fun-defC

� ∈ iVarC

Figure 4: Semantic spaces and naming conventions.

ready statements and memory locations. Adding rules of
Algorithm 5 to that of Algorithm 1 results in a type system
that calculates this analysis for object-oriented distributed
programs of Figure 3. Using semantics notions of Figure 4,
Definitions 1, 3, and 5 are applicable and convenient for the
analyses in this section for the language OODP.

Comments on the inference rules are in order. The rules
of Algorithm 5 suppose the existence of a class analysis that
calculates the set of classes that a statement may reference.
The judgments of the proposed analysis have the form 𝑆 :

𝑝 → 𝐶𝑠. The intuition of such judgments is that the pointer
information are used to calculate the set𝐶𝑠. In the rule (:=𝑟

𝑆⋅V),
ready substatements of 𝑆1 and 𝑆2 are added to 𝑟𝑠 to produce
𝑟𝑠
󸀠. Then for any class 𝐶 that 𝑆1 may reference, statements

involving 𝐶 ⋅ V are removed from 𝑟𝑠
󸀠. In the rule (:=

𝑟

𝑜⋅𝑓
), 𝐶𝑠

includes classes that 𝑜2 may reference. For all functions
named 𝑓 in classes of 𝐶𝑠, the body and return statements
are enumerated in the set {𝑆1, . . . , 𝑆𝑚}. Ready substatements
of these statements are added to 𝑟𝑠 to produce 𝑟𝑠𝑚+1. Then all
statements involving 𝑜1 are removed from 𝑟𝑠𝑚+1.

Using semantics notations of Figure 4, soundness of the
type system of Algorithm 5 is stated as follows.

Theorem 7. Suppose that (𝑆, 𝑠, ℎ) → (𝑉, 𝑠
󸀠
, ℎ
󸀠
), 𝑆 : (𝑝, 𝑟𝑠) →

(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
) and the items of 𝑟𝑠 are ready at the point corre-

sponding to (𝑠, ℎ) on the execution path. Then the items of 𝑟𝑠󸀠
are ready at the point corresponding to (𝑠

󸀠
, ℎ
󸀠
) on the execution

path.

The goals of main analysis of this section forOODP are as
follows.

Introducing new variables to maintain values of frequent
statements and dereferences and then reusing these values
instead of recomputing the statements and reaccessing the
memory.

To achieve this goal the ready information needs to be
enriched with information of semiexpectable.

Adding rules ofAlgorithm 6 to that ofAlgorithm 2 results
in a type system that calculates the analysis of semiexpectation
for object-oriented distributed programs of Figure 3. Some
comments on the inference rules of Algorithm 6 are in order.
In the rule (:=

𝑒

𝑆⋅V), starting with the posttype 𝑠𝑒
󸀠, the pretype

𝑠𝑒
󸀠󸀠 is calculated for the statement 𝑆2. Then 𝑠𝑒

󸀠 is used as a
posttype for 𝑆1 to get the main pretype 𝑠𝑒. Similarly to (:=

𝑟

𝑜⋅𝑓
),

the rule (:=
𝑒

𝑜⋅𝑓
) enumerates body and return statements

of convenient functions. Then sequentially 𝑠𝑒 is calculated
starting from 𝑠𝑒

󸀠. The remaining rules mimic the rules of the
ready type system.

Using semantics notations of Figure 4, soundness of the
type system of Algorithm 6 is stated as follows.

Theorem 8. Suppose that (𝑆, 𝑠, ℎ) → (𝑉, 𝑠
󸀠
, ℎ
󸀠
), 𝑆 : (𝑝, 𝑟𝑠,

𝑠𝑒) → (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
), and the items of 𝑠𝑒󸀠 are semiexpectable

at the point corresponding to (𝑠
󸀠
, ℎ
󸀠
) on the execution path.

Then the items of 𝑠𝑒 are semiexpectable at the point correspond-
ing to (𝑠, ℎ) on the execution path.

Adding rules of Algorithm 7 to that of Algorithm 3 results
in the main type system achieving the analysis of frequent
statement and dereference elimination for object-oriented
distributed programs of Figure 3. We note the following
on the inference rules. Optimization is based on rules for
(𝐶)𝑆; ((𝐶)𝑆

𝑓

1
), ((𝐶)𝑆

𝑓

2
), and ((𝐶)𝑆

𝑓

3
). The case that (𝐶)𝑆 is

ready and is replaceable by its name under the function
𝑠𝑛 is treated by ((𝐶)𝑆

𝑓

1
). The case (𝐶)𝑆 is semiexpectable

but not ready before calculating the statement is treated by
((𝐶)𝑆
𝑓

2
). The rule ((𝐶)𝑆

𝑓

3
) takes care of the case, where (𝐶)𝑆 is

neither ready before the calculation nor semiexpectable after
execution.
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𝑜 ⋅ V : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑜 ⋅ V : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠)

this : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

this : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠)

𝑆 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝐶)𝑆 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {(𝐶)𝑆})

𝑆1 ⋅ V := 𝑆2 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆1 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1)

𝑆1 : 𝑝 → 𝐶𝑠 𝑆2 : (𝑝1, 𝑟𝑠1)→ 𝑚(𝐴2, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

𝑆1 ⋅ V := 𝑆2 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝐶 ∈ 𝐶𝑠 ∧ 𝐶 ⋅ V ∈ 𝑓𝑟𝑒𝑒(𝑆)})

(:=
𝑟

𝑆⋅V)

𝑜1 := 𝑜2 ⋅ 𝑓(𝑆) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) {𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐶 ∈ 𝐶𝑠 ∧ 𝐹𝐶(𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴1, 𝑝1, 𝑟𝑠1)
𝑜2 : 𝑝 → 𝐶𝑠 𝑆𝑖 : (𝑝𝑖, 𝑟𝑠𝑖)→ 𝑚(𝐴 𝑖+1, 𝑝𝑖+1, 𝑟𝑠𝑖+1)

𝑜1 := 𝑜2 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)})

(:=
𝑟

𝑜⋅𝑓
)

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1)

𝑡ℎ𝑖𝑠 : 𝑝 → 𝐶𝑠
󸀠

𝑆𝑖 : (𝑝𝑖, 𝑟𝑠𝑖)→ 𝑚(𝐴 𝑖+1, 𝑝𝑖+1, 𝑟𝑠𝑖+1)

{𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐷 ∈ 𝐶𝑠
󸀠
∧ 𝑠𝑢𝑝𝑒𝑟(𝐷, 𝑓) = 𝐶 ∧ 𝐹𝐶(𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)})

(:=
𝑟

𝑠𝑢𝑝𝑒𝑟
)

𝑜 := new 𝐶 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑜 := new 𝐶 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜 ∈ 𝑓𝑟𝑒𝑒(𝑆)})

(:=
𝑟

𝑛𝑒𝑤
)

Algorithm 5: An extension for the ready type system to cover OODP programs.

𝑜 ⋅ V : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑜 ⋅ V : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

this : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

this : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒)

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
)

(𝐶) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {(𝐶)𝑆}))→
𝑚
(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {(𝐶)𝑆}, 𝑠𝑒

󸀠
)

𝑆1 ⋅ V := 𝑆2 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1)

𝑆1 : 𝑝 → 𝐶𝑠 𝑆2 : (𝑝1, 𝑟𝑠1, 𝑠𝑒1)→ 𝑚(𝐴2, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
)

𝑆1 ⋅ V := 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝐶 ∈ 𝐶𝑠 ∧ 𝐶 ⋅ V ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒

󸀠
)

(:=
𝑒

𝑆⋅V)

𝑜1 := 𝑜2 ⋅ 𝑓 (𝑆) : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) {𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐶 ∈ 𝐶𝑠 ∧ 𝐹𝐶 (𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1)
𝑜
2
: 𝑝 → 𝐶𝑠 𝑆

𝑖
: (𝑝
𝑖
, 𝑟𝑠
𝑖
, 𝑠𝑒
𝑖
) →
𝑚
(𝐴
𝑖+1

, 𝑝
𝑖+1

, 𝑟𝑠
𝑖+1

, 𝑠𝑒
𝑖+1

)

𝑜1 := 𝑜2 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒𝑚+1)

(:=
𝑒

𝑜⋅𝑓
)

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓 (𝑆) : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1)

𝑡ℎ𝑖𝑠 : 𝑝 → 𝐶𝑠
󸀠

𝑆𝑖 : (𝑝𝑖, 𝑟𝑠𝑖, 𝑠𝑒𝑖)→ 𝑚(𝐴 𝑖+1, 𝑝𝑖+1, 𝑟𝑠𝑖+1, 𝑠𝑒𝑖+1)

{𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐷 ∈ 𝐶𝑠
󸀠
∧ 𝑠𝑢𝑝𝑒𝑟(𝐷, 𝑓) = 𝐶 ∧ 𝐹𝐶(𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒𝑚+1)

(:=
𝑒

𝑠𝑢𝑝𝑒𝑟
)

𝑜 := new𝐶 : 𝑝→
𝑚
(𝐴
󸀠
, 𝑝
󸀠
)

𝑜 := new𝐶 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒)

(:=
𝑒

𝑛𝑒𝑤
)

Algorithm 6: An extension for the semi-expectation type system.

The following definition generalizes Definition 5 and is
necessary to express soundness.

Definition 9. Suppose that (𝑠, ℎ) is a state defined on the
set of locations Loc ([6, Definition 4]). Suppose also that
(𝑠∗, ℎ∗) is a state defined on𝐿𝑜𝑐∪𝑆𝑡𝑚𝑡-𝑛𝑎𝑚𝑒𝑠.The expression
(𝑠, ℎ) ≡ 𝑠𝑒(𝑠∗, ℎ∗) denotes the fact that (𝑠, ℎ) and (𝑠∗, ℎ∗) are
equivalent with respect to the semiexpectation type se. More
precisely (𝑠, ℎ) ≡ 𝑠𝑒(𝑠∗, ℎ∗) if and only if

(1) for all 𝑙 ∈ 𝐿𝑜𝑐. 𝑠(𝑙) = 𝑠∗(𝑙), and
(2) for all 𝑆 ∈ 𝑠𝑒. (𝑆, 𝑠, ℎ)→𝑚(V, 𝑠

󸀠
, ℎ
󸀠
) ⇒ 𝑠∗(𝑠𝑛(𝑆)) = V.

Using semantics notations of Figure 4, soundness of the
type system of Algorithm 7 is stated as follows.

Theorem 10. Suppose that 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠,

𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
) and (𝑠, ℎ) ≡ 𝑠𝑒(𝑠∗, ℎ∗). Then

(i) (𝑆, 𝑠, ℎ)→𝑚(V, 𝑠
󸀠
, ℎ
󸀠
) ⇒ ∃(𝑠

󸀠

∗
, ℎ
󸀠

∗
). (𝑠󸀠, ℎ󸀠) ≡ 𝑠𝑒󸀠(𝑠󸀠∗, ℎ

󸀠

∗
)

and (𝑆
󸀠
, 𝑠∗, ℎ∗)→𝑚(V, 𝑠

󸀠

∗
, ℎ
󸀠

∗
);

(ii) (𝑆
󸀠
, 𝑠∗, ℎ∗)→𝑚(V, 𝑠

󸀠

∗
, ℎ
󸀠

∗
) ⇒ ∃(𝑠

󸀠
, ℎ
󸀠
). (𝑠󸀠, ℎ󸀠) ≡ 𝑠𝑒󸀠(𝑠󸀠∗,

ℎ
󸀠

∗
) and (𝑆, 𝑠, ℎ)→𝑚(V, 𝑠

󸀠
, ℎ
󸀠
).
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𝑜 ⋅ V : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
)

𝑜 ⋅ V : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (skip , 𝑜 ⋅ V)

this : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

this : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠, 𝑠𝑒) 󴁃󴀢 (skip , this)

(𝐶) 𝑆 ∈ 𝑟𝑠 𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝐶) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {(𝐶) 𝑆})) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {(𝐶) 𝑆} , 𝑠𝑒

󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑛𝑠 ((𝐶) 𝑆))

((𝐶) 𝑆
𝑓

1
)

(𝐶) 𝑆 ∉ 𝑠𝑒
󸀠
\ 𝑟𝑠 𝑆 : (𝑝, 𝑟𝑠)→ 𝑚(𝐴

󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝐶) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {(𝐶) 𝑆})) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {(𝐶) 𝑆} , 𝑠𝑒

󸀠
)

󴁃󴀢 (𝑛𝑠; 𝑛𝑠 ((𝐶) 𝑆) = (𝐶) 𝑆
󸀠
, 𝑛𝑠 ((𝐶) 𝑆))

((𝐶) 𝑆
𝑓

2
)

(𝐶) 𝑆 ∉ 𝑟𝑠 ∪ 𝑠𝑒
󸀠

𝑆 : (𝑝, 𝑟𝑠) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

(𝐶) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒 ∪ (𝑟𝑠 ∩ {(𝐶) 𝑆})) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
∪ {(𝐶) 𝑆} , 𝑠𝑒

󸀠
) 󴁃󴀢 (𝑛𝑠, (𝐶) 𝑆

󸀠
)

((𝐶) 𝑆
𝑓

3
)

𝑆1 ⋅ V := 𝑆2 : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆1 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1) 󴁃󴀢 (𝑛𝑠1, 𝑆

󸀠

1
)

𝑆1 : 𝑝 → 𝐶𝑠 𝑆2 : (𝑝1, 𝑟𝑠1, 𝑠𝑒1)→ 𝑚(𝐴2, 𝑝
󸀠
, 𝑟𝑠
󸀠
, 𝑠𝑒
󸀠
) 󴁃󴀢 (𝑛𝑠2, 𝑆

󸀠

2
)

𝑆1 ⋅ V := 𝑆2 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠
󸀠
\ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝐶 ∈ 𝐶𝑠 ∧ 𝐶 ⋅ V ∈ 𝑓𝑟𝑒𝑒 (𝑆)} , 𝑠𝑒

󸀠
)

󴁃󴀢 (𝑛𝑠1; 𝑛𝑠2, 𝑆
󸀠

1
⋅ V := 𝑆

󸀠

2
)

(:=
𝑓

𝑆⋅V)

𝑜1 := 𝑜2 ⋅ 𝑓(𝑆) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑜2 : 𝑝 → 𝐶𝑠

𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1) 󴁃󴀢 (𝑛𝑠, 𝑆
󸀠
)

{𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐶 ∈ 𝐶𝑠 ∧ 𝐹𝐶 (𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑆
𝑖
: (𝑝
𝑖
, 𝑟𝑠
𝑖
, 𝑠𝑒
𝑖
) →
𝑚
(𝐴
𝑖+1

, 𝑝
𝑖+1

, 𝑟𝑠
𝑖+1

, 𝑠𝑒
𝑖+1

) 󴁃󴀢 (𝑛𝑠
𝑖
, 𝑆
󸀠

𝑖
)

𝑜1 := 𝑜2 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒𝑚+1)

󴁃󴀢 (𝑛𝑠; 𝑛𝑠1; . . . ; 𝑛𝑠𝑚, 𝑜1 := 𝑜2 ⋅ 𝑓(𝑆
󸀠
))

(:=
𝑓

𝑜⋅𝑓
)

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆) : 𝑝→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
) 𝑆 : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴1, 𝑝1, 𝑟𝑠1, 𝑠𝑒1) 󴁃󴀢 (𝑛𝑠, 𝑆

󸀠
)

𝑡ℎ𝑖𝑠 : 𝑝 → 𝐶𝑠
󸀠

𝑆𝑖 : (𝑝𝑖, 𝑟𝑠𝑖, 𝑠𝑒𝑖)→ 𝑚(𝐴 𝑖+1, 𝑝𝑖+1, 𝑟𝑠𝑖+1, 𝑠𝑒𝑖+1) 󴁃󴀢 (𝑛𝑠𝑖, 𝑆
󸀠

𝑖
)

{𝑆1, . . . , 𝑆𝑚} = {𝑆𝑓, 𝑆𝑟 | ∃𝐷 ∈ 𝐶𝑠
󸀠
∧ 𝑠𝑢𝑝𝑒𝑟(𝐷, 𝑓) = 𝐶 ∧ 𝐹𝐶(𝑓) = (𝑝, 𝑆𝑓, 𝑆𝑟)}

𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆) : (𝑝, 𝑟𝑠, 𝑠𝑒)→ 𝑚(𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠𝑚+1 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜1 ∈ 𝑓𝑟𝑒𝑒(𝑆)}, 𝑠𝑒𝑚+1)

󴁃󴀢 (𝑛𝑠; 𝑛𝑠1; . . . ; 𝑛𝑠𝑚, 𝑜1 := 𝑠𝑢𝑝𝑒𝑟 ⋅ 𝑓(𝑆
󸀠
))

(:=
𝑓

𝑠𝑢𝑝𝑒𝑟
)

𝑜 := new𝐶 : 𝑝→ 𝑚 (𝐴
󸀠
, 𝑝
󸀠
)

𝑜 := new𝐶 : (𝑝, 𝑟𝑠, 𝑠𝑒) → 𝑚 (𝐴
󸀠
, 𝑝
󸀠
, 𝑟𝑠 \ {𝑆 ∈ 𝑆𝑡𝑚𝑡𝑠 | 𝑜 ∈ 𝑓𝑟𝑒𝑒 (𝑆)} , 𝑠𝑒) 󴁃󴀢 (𝑠𝑘𝑖𝑝, 𝑜 := new𝐶)

(:=
𝑓

𝑛𝑒𝑤
)

Algorithm 7: An extension for the frequent statements and de-references elimination type system.

6. Related Work

The techniques of common subexpression elimination (CSE)
[8, 9] are closed to our work. In [10], a type system for
CSE of the while language is introduced. The work presented
in our paper can be realized as a generalization of that
presented in [10]. The generality of our work is evident in
our language models which are much richer with distributed,
pointer, and object-oriented commands. Consequently, the
operational semantics that we measure the soundness of our
system against aremuchmore involved than that used in [10].
Using newopportunities appearingwhile scheduling control-
intensive designs, the work in [11] introduces a technique that
dynamically eliminates CSE. To optimize polynomial expres-
sions (important for applications like domains, computer
graphics, and signal processing), the paper [12] generalizes
algebraic techniques originally designed for multilevel logic
synthesis. The generalization in [12] uses factoring to elimi-
nate common subexpressions of polynomial expressions.

There are many analyses for optimizing object-oriented
programs. In [13] evolutionary multiobjective optimization
methods are used to present a Class-Based Elitist Genetic
Algorithm (CBEGA) for testing OOP. A new method to

optimize OOP for field access in concurrent object-oriented
programs is presented in [14]. This work utilizes the cor-
rectness concept that concurrency control must be used by
programmers. A new model concurrency abstraction is pre-
sented in [15].This model has the advantage of separating the
specification of the synchronization code from the method
bodies.

The association of a correctness proof with each result
of the static analysis is important and needed by applica-
tions like proof-carrying code and certified code. The work
presented in this paper has the advantage over most related
work of constructing these proofs. Adding to the value of
using type systems, the proofs constructed in our proposed
approach have the form of type derivations. The work in
[4, 16, 17] presentsmany examples of other static analyses that
are in the form of type systems.

In [18], a technique for flow-insensitive pointer analysis of
programs that run on parallel and hierarchical machines and
that share memory is introduced. Via a two-level hierarchy,
[19, 20] present constraint-based approaches to evaluate
locality information and sharing attributes of references. Our
language model is a generalization of models presented in
[18, 19].
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Much research acclivities [18, 21] was devoted to analyze
distributed programs.This is motivated by the importance of
distributed programming as a main stream of programming
today.The examining and capturing of causal and concurrent
relationships are among important issues tomany distributed
systems applications. In [22], an analysis that examines the
source code of each process constructs an inclusive graph,
POG, of the possible behaviors of systems. Data racing bugs
[23] can be a side effect of the parallel access of cores of
a multicore process to a physically distributed memory. In
[23] a technique, called DRARS, is proposed for avoidance
and replay of this data race. Parallel programs on DSM
or multicore systems can be debugged using DRARS. The
classical problems of satisfiability decidability and algorith-
mic decidability are approached in [24] on the distributed-
programsmodel ofmessage sending. In this work, distributed
programs are represented by communicating via buffers.

7. Conclusion

This paper introduces new techniques for the analysis of
frequent statement and dereference elimination for imperative
and object-oriented distributed programs running on parallel
machines equipped with hierarchical memories. Type sys-
tems are the tools of the techniques presented in this paper.
The first sort of proposed type systems defines for program
points of a distributed program sets of calculated (ready)
statements andmemory accesses. The second sort determines
which of the ready statements and memory accesses are used
later in the program. The final sort eliminates unnecessary
statement computations andmemory accesses.
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