
Probabilistic Alias Analysis for Parallel Programming in SSA
Forms

Mohamed A. El-Zawawy1 and Mohammad N. Alanazi2
1,2College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Kingdom of Saudi Arabia

1Department of Mathematics, Faculty of Science
Cairo University

Giza 12613, Egypt
Email1: maelzawawy@cu.edu.eg

Email2: alanazi@ccis.imamu.edu.sa

Abstract— Static alias analysis of different type of pro-
gramming languages has been drawing researcher attention.
However most of the results of existing techniques for alias
analysis are not precise enough compared to needs of
modern compilers. Probabilistic versions of these results,
in which result elements are associated with occurrence
probabilities, are required in optimizations techniques of
modern compilers.

This paper presents a new probabilistic approach for alias
analysis of parallel programs. The treated parallelism model
is that of SPMD where in SPMD, a program is executed
using a fixed number of program threads running on dis-
tributed machines on different data. The analyzed programs
are assumed to be in the static single assignment (SSA)
form which is a program representation form facilitating
program analysis. The proposed technique has the form
of simply-strictured system of inference rules. This enables
using the system in applications like Proof-Carrying Code
(PPC) which is a general technique for proving the safety
characteristics of modern programs.

Keywords: Probabilistic Analysis, Alias Analysis, Parallel Pro-
gramming, SSA Forms.

1. Introduction
Considerable efforts of research have been devoted to

achieve the static alias analysis of different type of pro-
gramming languages. Algorithms for calculating alias rela-
tionships for all program points exist for basic programming
techniques. Classically, alias relationships fall in two groups:
definitely-alias relationships and possibly-alias relationships.
The former is typically true for all possible execution paths
and the later might typically be true for some of the possible
execution paths. However the information calculated by most
existing algorithms for alias analysis is not precise enough
compared to the needs of modern compilers. This is so as
modern compilers need finer alias-information to be able

to achieve tasks like code specialization and data specula-
tion. In other words information calculated by most alias
analysis techniques do not help compilers to do aggressive
optimizations. More specifically, possibly-alias relationships
is not rich enough to inform the comfier about the possibility
that constraints for the executions. Hence compilers are
somehow forced to follow a conservative way and assume
the conditions validity for all execution paths [1], [2], [3].

A dominant programming technique of parallelism for
large-scale machines equipped with distributed-memories
is the single program, multiple data (SPMD) model. In
SPMD, a program is executed using a fixed number of
program threads running on distributed machines on differ-
ent data [4]. SPMD can be executed on low-overhead and
simple dynamic systems and is convenient for expressing
parallelism concepts. This parallelism model is used by
message-sending architectures such as MPI. SPMD is also
adapted by languages whose address spaces are globally
partitioned (PGAS) such as UPC, Co-Array Fortran, and
Titanium. Specific deadlocks can be prevented using the
SPDM model which can also be used to achieve probabilistic
data races and specific program optimizations [5], [6].

Static single assignment (SSA) [7], [8] is a program repre-
sentation form facilitating program analysis. SSA forms are
important for software re-engineering and compiler construc-
tion. Program analysis needs data-flow information about
points of the program being analyzed. Such information is
necessary for program compilation and re-engineering and
is conveniently collected by SSA. For program variables,
some analyses need to know assignment statements that
could have assigned the used variable content. In Static
single assignment (SSA) form exactly one variable definition
corresponds to a variable use. This is only possible if
the algorithm building the SSA form is allowed to insert
auxiliary definitions if it is possible for different definitions
to get into a specific program point.

A general technique for proving the safety characteristics

of modern programs is Proof-Carrying Code (PCC) [9],
[10]. PCC proofs are needed and typically constructed using
logics annotated with inference rules that are language-
specific. The proofs ensures safety in case there are no bugs
in the inference rules. One type of Proof-Carrying Code
is Foundational Proof-Carrying Code (FPCC) which uses
theories of mathematical logic. The small trusted base of
FPCCs and the fact that they are not tied to any specific
systems make them more secure and robust.

This paper presents a new technique for probabilistic
alias analysis of parallel programs. The technique has the
form of simply-strictured system of inference rules. The
information calculated by the proposed technique are precise
enough compared to information needed by modern compil-
ers for compilations, re-engineering, aggressive-optimization
processes. The proposed technique is designed to work
on the common and robust data-flow representation; SSA
forms of parallel programs. The use of inference systems
in the proposed technique makes it straightforward for our
technique to produce justifications needed by Foundational
Proof-Carrying Code (FPCCs). The proofs have the form of
inference rules derivations that are efficiently transferable.
The parallelism model treated in this paper is that of single
program, multiple data (SPMD) in which the same program
is executed on different machines on different sets of data.

Motivation
The paper is motivated by need for a precise probabilistic

alias analysis for SPMD programs running on a hierarchy
of distributed machines. The required technique is supposed
to associate each analysis result with a correctness proof (in
the form of type derivations) to be used in proof-carrying
code applications.

Contributions
The contribution of the paper is a new approach for

probabilistic alias analysis of SPMD programs running on
SSA forms of programs and producing justifications with
analysis results.

Paper Outline
The outline of this paper is as follows. Section 2 presents

the langauge model, SSA-DisLang, of the paper. This section
also presents an informal semantics to the langauge con-
structs. The main content of Section 2 is the new technique
of the probabilistic alias analysis of SPMD programs. Sec-
tion 4 concludes the paper and suggests directions for future
work.

2. Probabilistic Alias analysis for SPMD
This section presents a new technique for probabilistic

alias analysis of parallel programs. The parallelism model
used here is that of SPMD where the same program is
executed on distrusted machines havering different data.

However communications between the distributed machines
is allowed in a predefined contexts. For example a command
running on machine 1 may request machine 3 to evaluate a
specific expression using data of machine 3 and to return
the result to machine 1.

The syntax of the langauge used to present the new prob-
abilistic alias analysis technique is shown in Figure 1. We
call the langauge mode SSA-DisLang for ease of reference.
A program in SSA-DisLang consists of a sequence of state-
ments where statements are of wide diversity. Statements use
(distributed) expressions, DExpr. The machines to run SSA-
DisLang programs are typically organized in a hierarchy.
The distributed expressions include the following:

• malloc() : allocates a dynamic array in memory and
return its base address.

• run (e,m) : evaluates the distributed expression e on
machine m and return the result.

• reform(alis m, int m) e : casts the location denoted by
the distributed expression e as an integer rather than a
pointer to a memory location on machine m.

• reform (int mj , int mi)) e : casts the location denoted
by the distributed expression e as a pointer a memory
location on machine mi rather than as a pointer to a
memory location on machine mj .

Our proposed technique assumes that the given program,
that is to be be analyzed for its probabilistic alias competent,
has the static single assignments form. Therefore the input
program would contain annotations (added by any efficient
SSA such as algorithm [11]). The program annotations will
have the form of new statements added to the original
program. Therefore statements of SSA-DisLang include the
following:

• l := e : this is a classical assignment command. How-
ever the design of the langauge allows using this
command to assign a value evaluated at a machine
to a location on a different machine of the machines
hierarchy.

• run (S,m) : allows evaluates a specific command S
on a specific machine m regardless of the executing
machine. This command is necessary when some com-
mands are convenient only to run on data of certain
machine of the hierarchy. The command is also used
when security is a concern as S would not have access
to all machines.

• xi := f(xj , xk) : this command is to be added by the
supposed SSA algorithm and it semantics is that vari-
able xi were created specifically for avoiding multiple
assignments to variable x. The range of this definition
if form definition of variable xj to that of variable xk.

• xi := md(xj) : this is the second sort of annotations
SSA-DisLang programs. The semantics of this statement
is that it is highly likely that variable xi is used to
define variable xj . Recall that our main technique of the
paper cares about possibility of assignments to occur in

x ∈ lVar, iop ∈ Iop, bop ∈ Bop, and m ∈ M ⊆ M
l ∈ Loc ::= x | l → y | [l].

e ∈ DExpr ::= l | e1 iop e2 | &l | malloc() | run (e,m) |
reform(alis m, int m) e | reform (int mj , int mi)) e.

S ∈ Stmts ::= l := e | run (S,m) | S1;S2 | xi := f(xj , xk) | xi := md(xj) |
mu(xj) | if e then St else Sf | while e do St.

Fig. 1: Programming Language Model; SSA-DisLang

P (x) = {(a1, p1), . . . , (an, pn)} i = max(p1, . . . , pn)
(xp)

x : P →l ai

P (l) = {(a1, p1), . . . , (an, pn)} P (y) = {(b1, q1), . . . , (bm, qm)}
i = max{pj × qj | aj ∈ P (y)⌉1} (→p)

(l → y) : P →l bi

P (l) = {(a1, p1), . . . , (an, pn)} foralli.P (ai) = {(bi1, qi1), . . . , (bim, qim)}
i = max{pi × qij | 1 ≤ i ≤ n&1 ≤ j ≤ m}

([l]p)
[l] : P →l bi

Fig. 2: Probabilistic Alias Analysis (PAA): Locations.

e : P → ae probability of arriving at this memory point ≥ pt
(reformp

1)
reform(alis m → int m) e : P →l ae

probability of arriving at this memory point < pt
(reformp

2)
reform(alis m → int m) e : P →l ⊥

e : P → ae probability of arriving at this memory point ≥ pt
(reformp

3)
reform (int mj → int mi)) e : P →l ae

probability of arriving at this memory point < pt
(reformp

4)
reform (int mj → int mi)) e : P →l ⊥

e : P → ae b = reform(_, int m)ae
(runpe)

run (e,m) : P →l b

ai is a fresh memory location on machine mi

(malloc)p
malloc() : P →l ai

e1 : P → ae1 e2 : P → ae2
(+p)

e1 iop e2 : P →l ae1 + ae2

Fig. 3: Probabilistic Alias Analysis (PAA): Distributed Expressions.

percentages; it is not a 0/1 technique.
• mu(xj): this is the third and last sort of annotations

SSA-DisLang programs. The semantics of this com-
mand is that variable xj is highly likely to be used in
the following de-reference command of the program.

Figures 2, 3, and 4 present elements of our proposed
technique for probabilistic alias analysis of SSA-DisLang
programs. The proposed technique has the form of a type
system which consists of set of alias types denoted by P
and set of inference rules presented in the technique figures.
An alias type is a partial map. The domain of this partial
map is a subset of the set of all variables (denoting registers)
allowed to be used on different machines of the distributed
hierarchy plus the set of all addresses of memories of
machines on hierarchy. The codomain of the alias type is the
power set of the set of all probabilistic pairs. A probabilistic
pair is a pair of variable (register) or a memory location and
a number p such hat 0 ≤ p ≤ 1.

Judgment produced by the system have the forms e : P →
a and S : P → P ′. The judgement e : P → a means
that evaluating the expression e in a memory state of the
type P results in the memory address a. The semantics of
the judgement e : P → a is that running S in a memory
state of the type P results (if ends) in a memory state of
the type P ′. The proposed technique is meant to be used
as follows. given a distributed program S, one constructs
(using inference rules of the system) an alias type P ′ such
that S : ⊥ → P ′. The base type is the partial map with an
empty domain is denoted by ⊥. The construction of P ′ is
a type derivation process and results in annotating program
with the required probabilistic alias information.

Inference rules for distributed expressions are shown in
figure 3. Some comments on the rules are in order. The rules
for reform expressions only considers the address evaluated
from e if there is a considerable probability (probability
threshold > pth) of arriving at the concerned program point.

Inference rules for statements are shown in figure 4. Some
comments on the rules are in order. The rule ([]p3) uses
the base address of the array denoted by l and the address
returned for e by the inference rules of expressions. The
image of these addresses under the pre-type also contribute
to calculating the post type of the de-reference statement.

The soundness of our proposed technique is guarantied by
the following theorem. The theorem requests the existence of
robust operational semantics for the langauge SSA-DisLang.
Many semantics candidates exist. Due to lack of space we
only reference to the semantics in this paper. From the
authors’s experience and based on some experiments, the
simplicity of the theorem proof deeply relies on the choice
of the langauge semantics.

Theorem 1: Suppose that S is a SSA-DisLang program
and S : ⊥ → P ′. Suppose also that using a convenient
operational semantics for SSA-DisLang, the execution of S
is captured as S : M → M ′. Then the final memory state

M ′ is of the the probabilistic alias type P ′.

3. Related Work
The changing associations characteristics property of

pointers makes the points-to analysis a complicated prob-
lem [3]. Much research [12], [13], [14], [15] have been
developed to solve the pointer analysis problem. Each of
these techniques evaluates either points-to or aliases rela-
tionships at program points. Points-to and aliases relation-
ships are classified into two classes: definitely-aliases (or
must-points-to) relationships and may-points-to (or possibly-
aliases relationships). While the later relationships are true
on some executions, the former relationships are true on all
executions. Wether possibly-aliases or may-points-to rela-
tionships are true on most executions or on few executions
is not measurable by most of these techniques. For specific
transformations and optimizations these missed information
are beneficial. Few attempts were made to fill this gap.

Using traditional data-flow analysis, in [16], [17] a the-
oretical formulation is presented to compute measurable
information. More specifically, this work evaluates, for each
program point, the predicted count that specific conditions
may hold. Aiming at evaluating, among array references,
the probabilities of aliases, [18], [19], [20] presents a prob-
abilistic technique for memory disambiguation. A proba-
bilistic, interprocedural, contextsensitive, and flow-sensitive
techniques for alias analysis were proposed in [3], [11], [21].
On alias relationships, these technique evaluate measurable
information. MachSUIF and SUIF compiler infrastructures
provided the bases for the implementation of these tech-
niques. The probabilities of pointer induced, loop carried,
and data dependence relationships were evaluated in [22],
[23]. Using sparse matrices, as efficient linear transfer func-
tions, [24], [25] modeled probabilistic alias analysis. The
results of this research were proved accurate. [26] presents
an algorithm to evaluate measurable alias information. A
technique for memory disambiguation, evolution of prob-
abilities that pairs of memory pointers point at the same
memory location, is presented in [26].

For array optimizations and analysis, probabilistic tech-
niques for memory disambiguation were proposed [18].
These techniques typically present data speculations [27]
necessary for modern architectures of computers.

For distributed parallel machines with shared-memory,
an important problem is that of compiler optimizations for
programs that are pointer-based. This is so as the host pro-
cessor of an object can be determined using data distribution
analysis [28] and affinity analysis [29].

In, pointer-based programs, a reference is referencing a
group of objects with may-points-to. For such cases, tradi-
tional affinity analysis [30] can be integrated with traditional
pointer analysis. The result of this integration is a technique
that evaluates the parts of objects on a processor’s list

P (xj) = (xi, a) P (xi) = (xk, _)
(mdp)

xi := md(xj) : P →s P [xi 7→ {(xk, a), (xj , 1− a)}]

pj(pk) is the probability of executing the path from definition of xj(xk) to that of xi

(fip)
xi := fi(xj , xk) : P →s P [xi 7→ {(xj , pj), (xk, pk)}]

a is the base address of array l
(&1)

x := &l : P →s P [x 7→ {(a, 1)}]
(mup)

mu(xj) : P →s P

a1, a2 are the base addresses of arrays l1 and l2
i is the index of y in l2 (&p

2)
l1 → y := &l2 : P →s P [a1 7→ {(a2 + i, 1)}]

a1, a2 are the base addresses of arrays l1 and l2
P (a1) = {(b1, p1), . . . , (bn, pn)} (&p

3)
[l1] := &l2 : P →s P [b1 7→ {(a2, p1)}, . . . , bn 7→ {(a2, pn)}]

l ̸= [. . .]
al is the base addresses of array l

e : P → ae
P (ae) = {(b1, p1), . . . , (bn, pn)} ([]p1)

l := [e] : P →s P [al 7→ {(b1, p1), . . . , (bn, pn)}]

e ̸= [. . .]
al is the base addresses of array l
e : P → ae

P (ae) = {(b1, p1), . . . , (bn, pn)}
P (al) = {(c1, q1), . . . , (cm, qm)}

([]p2)
[l] := e : P →s P [ci 7→ {(b1,min(p1, q1)), . . . , (bn,min(pn, qn))} | 1 ≤ i ≤ m]

al is the base addresses of array l
e : P → ae

P (ae) = {(b1, p1), . . . , (bn, pn)}
∀i.p(bi) = {(di1, ti1), . . . , (qik, t

i
k)}

P (al) = {(c1, q1), . . . , (cm, qm)}
([]p3)

[l] := [e] : P →s P [ci 7→ {(di1,min(p1, q1 × ti1)), . . . , (q
i
k,min(pn, qn × tik))} | 1 ≤ i ≤ m]

e ̸= [. . .] l ̸= [. . .] e ̸= & . . .
al is the base addresses of array l

e : P → ae
P (ae) = {(b1, p1), . . . , (bn, pn)} (:=p)

l := e : P →s P [al 7→ {(b1, p1), . . . , (bn, pn)}]

S1 : P →s P ′′

S2 : P ′′ →s P ′
(;p)

S1;S2 : P →s P ′

S : P →s P ′

(runps)
run (S,m) : P →s P ′

St : P →s Pt Sf : Pf →s P ′

(ifp)
if e then St else Sf : P →s Pt

⊎
Pf

n is the exepcted execution time of St St : P →s Pt

(whlp)
while e do St : P →s

⊎
n

Pt

Fig. 4: Probabilistic Alias Analysis (PAA): Statements.

of task executions. This is necessary for many program
optimizations.

There are many examples of aggressive optimizations
such as data speculations, speculative multithreading (thread
partitioning), and code specialization [31], [32]. To boost
performance of modern architectures, these optimizations are
typically achieved by compilers. Compilers can only do such
tasks if they are able to measure the possibility of dynamic
pointer associations. Using interval analysis, irreducible flow
graphs, and the elimination technique, intraprocedural anal-
ysis can be used to handle pointer analysis of programs [33].
Extensions to such techniques to cover context-sensitive
analysis that is interprocedural is achievable as well.

Examples of analysis for speculative multithreading model
include thread partitioning [34], [35], [36]. Such analy-
sis boosts compilers performance via running speculative
threads in case of low possibilities for conflicts. In this sce-
nario for threads with high possibilities are turned off [22].

4. Conclusion and Future Work
This paper presented a new technique for probabilistic

alias analysis of SPMD programs. The new approach has
the form of system of inference rules. This has direct
applications in proof-carrying code area of research. The
proposed technique also has the advantage of assuming SSA
forms of analyzed programs.

Directions for future work include the following. Pro-
ducing probabilistic techniques for important analyses (such
as dead-code elimination) for SPMD programs that uses
the results of the analysis proposed in this paper would
be an important contribution. Producing other analyses for
the langauge model of this paper in the spirit of [37],
[38], [39] is another direction for future work. There is
also a need for precise probabilistic operational semantics
for SPMD programs. This semantics would be important
to accurately measure probabilities of statements executions
and probabilities of executions order.

5. Acknowledgment
The authors acknowledge the support (grants numbers

340918 & 330911) of the deanship of scientific research of
Al Imam Mohammad Ibn Saud Islamic University (IMSIU).

References
[1] U. P. Khedker, A. Mycroft, and P. S. Rawat, “Liveness-based pointer

analysis,” in SAS, ser. Lecture Notes in Computer Science, A. Miné
and D. Schmidt, Eds., vol. 7460. Springer, 2012, pp. 265–282.

[2] M. A. El-Zawawy, “Flow sensitive-insensitive pointer analysis based
memory safety for multithreaded programs,” in ICCSA (5), ser. Lec-
ture Notes in Computer Science, B. Murgante, O. Gervasi, A. Iglesias,
D. Taniar, and B. O. Apduhan, Eds., vol. 6786. Springer, 2011, pp.
355–369.

[3] P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee, “Interprocedural
probabilistic pointer analysis,” IEEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 10, pp. 893–907, 2004.

[4] P. Pacheco, An Introduction to Parallel Programming. Elsevier, 2011,
1 edition (2011).

[5] H. Li, G. Fox, G. von Laszewski, and A. Chauhan, “Co-processing
spmd computation on cpus and gpus cluster,” in CLUSTER. IEEE,
2013, pp. 1–10.

[6] M. Tsuji, M. Sato, M. R. Hugues, and S. G. Petiton, “Multiple-spmd
programming environment based on pgas and workflow toward post-
petascale computing,” in ICPP. IEEE, 2013, pp. 480–485.

[7] W. Amme, T. S. Heinze, and J. von Ronne, “Intermediate represen-
tations of mobile code,” Informatica (Slovenia), vol. 32, no. 1, pp.
1–25, 2008.

[8] W. Amme, N. Dalton, M. Franz, and J. von Ronne, “Safetsa: A
type safe and referentially secure mobile-code representation based
on static single assignment form,” in PLDI, M. Burke and M. L.
Soffa, Eds. ACM, 2001, pp. 137–147.

[9] F. Pfenning, L. Caires, and B. Toninho, “Proof-carrying code in
a session-typed process calculus,” in CPP, ser. Lecture Notes in
Computer Science, J.-P. Jouannaud and Z. Shao, Eds., vol. 7086.
Springer, 2011, pp. 21–36.

[10] R. Jobredeaux, H. Herencia-Zapana, N. A. Neogi, and E. Feron,
“Developing proof carrying code to formally assure termination in
fault tolerant distributed controls systems,” in CDC. IEEE, 2012,
pp. 1816–1821.

[11] M.-Y. Hung, P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee,
“Support of probabilistic pointer analysis in the ssa form,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2366–2379, 2012.

[12] Y. Ben-Asher and N. Rotem, “Using memory profile analysis for
automatic synthesis of pointers code,” ACM Trans. Embedded Comput.
Syst., vol. 12, no. 3, p. 68, 2013.

[13] S. Staiger-Stöhr, “Practical integrated analysis of pointers, dataflow
and control flow,” ACM Trans. Program. Lang. Syst., vol. 35, no. 1,
p. 5, 2013.

[14] L. Li, C. Cifuentes, and N. Keynes, “Precise and scalable context-
sensitive pointer analysis via value flow graph,” in ISMM, P. Cheng
and E. Petrank, Eds. ACM, 2013, pp. 85–96.

[15] B. Huang, X. Ling, and G. Wu, “Field-sensitive function pointer
analysis using field propagation for state graph extraction,” JSW,
vol. 8, no. 7, pp. 1592–1603, 2013.

[16] Q. Shao, Y. D. Chen, and L. Zhang, “An extension of three-parameter
burr iii distribution for low-flow frequency analysis,” Computational
Statistics & Data Analysis, vol. 52, no. 3, pp. 1304–1314, 2008.

[17] F. Miwakeichi, P. A. Valdes-Sosa, E. Aubert-Vazquez, J. B. Bayard,
J. Watanabe, H. Mizuhara, and Y. Yamaguchi, “Decomposing eeg data
into space-time-frequency components using parallel factor analysis
and its relation with cerebral blood flow,” in ICONIP (1), ser. Lecture
Notes in Computer Science, M. Ishikawa, K. Doya, H. Miyamoto,
and T. Yamakawa, Eds., vol. 4984. Springer, 2007, pp. 802–810.

[18] R. D.-C. Ju, J.-F. Collard, and K. Oukbir, “Probabilistic memory
disambiguation and its application to data speculation,” SIGARCH
Computer Architecture News, vol. 27, no. 1, pp. 27–30, 1999.

[19] B. Guo, Y. Wu, C. Wang, M. J. Bridges, G. Ottoni, N. Vach-
harajani, J. Chang, and D. I. August, “Selective runtime memory
disambiguation in a dynamic binary translator,” in CC, ser. Lecture
Notes in Computer Science, A. Mycroft and A. Zeller, Eds., vol. 3923.
Springer, 2006, pp. 65–79.

[20] C. Fang, S. Carr, S. Önder, and Z. Wang, “Feedback-directed memory
disambiguation through store distance analysis,” in ICS, G. K. Egan
and Y. Muraoka, Eds. ACM, 2006, pp. 278–287.

[21] A. D. Pierro, C. Hankin, and H. Wiklicky, “A systematic approach
to probabilistic pointer analysis,” in APLAS, ser. Lecture Notes in
Computer Science, Z. Shao, Ed., vol. 4807. Springer, 2007, pp.
335–350.

[22] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee,
“Compiler support for speculative multithreading architecture with
probabilistic points-to analysis,” in PPOPP, R. Eigenmann and M. C.
Rinard, Eds. ACM, 2003, pp. 25–36.

[23] A. Zhai, J. G. Steffan, C. B. Colohan, and T. C. Mowry, “Compiler
and hardware support for reducing the synchronization of speculative
threads,” TACO, vol. 5, no. 1, 2008.

[24] J. D. Silva and J. G. Steffan, “A probabilistic pointer analysis for

speculative optimizations,” in ASPLOS, J. P. Shen and M. Martonosi,
Eds. ACM, 2006, pp. 416–425.

[25] S. Roy and Y. N. Srikant, “The hot path ssa form: Extending the
static single assignment form for speculative optimizations,” in CC,
ser. Lecture Notes in Computer Science, R. Gupta, Ed., vol. 6011.
Springer, 2010, pp. 304–323.

[26] Y.-M. Lu and P.-S. Chen, “Probabilistic alias analysis of executable
code,” International Journal of Parallel Programming, vol. 39, no. 6,
pp. 663–693, 2011.

[27] L. Xiang and M. L. Scott, “Compiler aided manual speculation for
high performance concurrent data structures,” in PPOPP, A. Nicolau,
X. Shen, S. P. Amarasinghe, and R. Vuduc, Eds. ACM, 2013, pp.
47–56.

[28] J. K. Lee, D. Ho, and Y. C. Chuang, “Data distribution analysis and
optimization for pointer-based distributed programs,” in ICPP. IEEE
Computer Society, 1997, pp. 56–63.

[29] M. C. Carlisle and A. Rogers, “Software caching and computation
migration in olden,” J. Parallel Distrib. Comput., vol. 38, no. 2, pp.
248–255, 1996.

[30] T. Pitkäranta, “Affinity analysis of coded data sets,” in EDBT/ICDT
Workshops, ser. ACM International Conference Proceeding Series,
M. Mesiti, T. M. Truta, L. Xiong, S. Müller, H. Naacke, B. Novikov,
G. Raschia, I. Sanz, P. Sens, D. Shaporenkov, and N. Travers, Eds.,
vol. 360. ACM, 2009, pp. 177–184.

[31] R. Zhang, S. Debray, and R. T. Snodgrass, “Micro-specialization:
dynamic code specialization of database management systems,” in
CGO, C. Eidt, A. M. Holler, U. Srinivasan, and S. P. Amarasinghe,
Eds. ACM, 2012, pp. 63–73.

[32] M. A. Khan, “Feedback-directed specialization of code,” Computer
Languages, Systems & Structures, vol. 36, no. 1, pp. 2–15, 2010.

[33] Q. Sun, J. Zhao, and Y. Chen, “Probabilistic points-to analysis for
java,” in CC, ser. Lecture Notes in Computer Science, J. Knoop, Ed.,
vol. 6601. Springer, 2011, pp. 62–81.

[34] B. Liu, Y. Zhao, Y. Li, Y. Sun, and B. Feng, “A thread partitioning
approach for speculative multithreading,” The Journal of Supercom-
puting, vol. 67, no. 3, pp. 778–805, 2014.

[35] Y. Li, Y. Zhao, P. Yin, and Y. Du, “Speculative thread partitioning
using fuzzy c-means clustering,” in CSE, W. Qu, K. Lin, Y. Shen,
W. Shi, D. F. Hsu, X. Jin, F. C. M. Lau, and J. Xu, Eds. IEEE,
2011, pp. 199–206.

[36] W.-J. Kim, K. Cho, and K.-S. Chung, “Multi-threaded syntax element
partitioning for parallel entropy decoding,” IEEE Trans. Consumer
Electronics, vol. 57, no. 2, pp. 897–905, 2011.

[37] M. A. El-Zawawy and H. A. Nayel, “Type systems based data race
detector,” IJCSNS International Journal of Computer Science and
Network Security, vol. 5, no. 4, pp. 53–60, July 2012.

[38] M. A. El-Zawawy and N. M. Daoud, “New error-recovery techniques
for faulty-calls of functions,” Computer and Information Science,
vol. 5, no. 3, pp. 67–75, May 2012.

[39] M. A. El-Zawawy and H. A. Nayel, “Partial redundancy elimination
for multi-threaded programs,” IJCSNS International Journal of Com-
puter Science and Network Security, vol. 11, no. 10, pp. 127–133,
October 2011.

