
ImNet: An Imperative Network Programming Language

Mohamed A. El-Zawawy1,2,∗
1College of Computer and Information Sciences

Al Imam Mohammad Ibn Saud Islamic University
(IMSIU)
Riyadh

Kingdom of Saudi Arabia

2Department of Mathematics
Faculty of Science
Cairo University

Giza 12613
Egypt

maelzawawy@cu.edu.eg

Adel I. AlSalem
College of Computer and Information Sciences

Al Imam Mohammad Ibn Saud Islamic University
(IMSIU)
Riyadh

Kingdom of Saudi Arabia
alsalem@ccis.imamu.edu.sa

Abstract: One of the most recent architectures of networks is Software-Defined Networks (SDNs) using a con-
troller appliance to control the set of switches on the network. The controlling process includes installing or
uninstalling packet-processing rules on flow tables of switches.
This paper presents a high-level imperative network programming language, called ImNet, to facilitate writing
efficient, yet simple, programs executed by controller to manage switches. ImNet is simply-structured, expressive,
compositional, and imperative. This paper also introduces an operational semantics to ImNet. Detailed examples
of programs (with their operational semantics) constructed in ImNet are illustrated in the paper as well.

Key–Words: Network programming languages, controller-switch architecture, operational semantics, syntax, Im-
Net.

1 Introduction
A network is a group of appliances connected
to exchange data. Among these appliances are
switches forwarding data depending on MAC ad-
dresses, routers forwarding data depending on IP ad-
dresses, and firewalls taking care of forbidden data.
The network appliances are connected using a model
that efficiently allows forwarding, storing, ignoring,
tagging, and providing statistics about data moving in
the network. Some of the network appliances, like
routers [21, 16], are special in their functionality as
they have some control over the network. This enables
routers to compute and determine routes of data in the
network. Of course different networks have different
characteristics and abilities.

In 2011, the Open Networking Foundation [33],
suggested removing the control owned by different
network appliances and adding, instead, a general-
purpose appliance, controller, to program different
network appliances and querying data flowing in the
network. The impact of this simple suggestion is
huge; giant networks do not need special-purpose,

∗Corresponding author.

complex, expensive switches any more. In such net-
works, cheap programmable switches can be used and
programmed to configure and optimize networks via
writing programs [20] running on controllers.

Software-Defined Networks (SDNs) [10] are net-
works established using the controller-switch archi-
tecture. A precise implementation of this architecture
is OpenFlow [2] used to achieve various network-wide
applications such as monitoring data flow, balancing
switch load, network management, controlling appli-
ances access, detection of service absence, host mo-
bility, and forwarding data center. Therefore SDNs
caused the appearance of network programming lan-
guages [18, 19, 17, 11].

This paper presents ImNet, an imperative high-
level network programming language. ImNet ex-
presses commands enabling controllers to program
other network appliances including switches. ImNet
has a clear and simply-structured syntax based on
classical concepts of imperative programming that al-
lows building rich and robust network application in
a natural way. ImNet can be realized as a gener-
alization of Frenetic [24] which is a functional net-
work programming language. This is clear by the fact

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 149

that the core of programs written in ImNet and Fre-
netic is based on a query result in the form of stream
of values (packets, switches IDs, etc.). Commands
for treating packets in ImNet include constructing and
installing (adding to flow tables of switches) switch
rules. ImNet supports building simple programs to ex-
press complex dynamic functionalities like load bal-
ancing and authentication. ImNet programs can also
analyze packets and historical traffic patterns.

Motivation
The motivation of this paper is the lack of a simple
syntax for an imperative network programming lan-
guage. Yet, a stronger motivation is that most ex-
isting network programming languages are not sup-
ported theoretically (using operational semantics, type
systems, program logics like FloydHoare logic,etc.).

Contributions
Contributions of this paper are the following.

1. A new simply-structured syntax for an impera-
tive network programming language; ImNet.

2. An operational semantics (in the form of states
and inference rules) for constructs of ImNet.

3. Two detailed examples of programs constructed
in ImNet with their precise operation semantics.

Organization
The rest of this paper is organized as following. Sec-
tion 2 presents the syntax and semantics of ImNet. The
proposed semantics is operational and hence consists
of states and inference rules presented in Section 2.
Two detailed examples of programmes built in ImNet
are presented in Section 3. This section also explains
how the two examples can be assigned precise seman-
tics using our proposed operational semantics. Sec-
tion 4 reviews related work and gives directions for
future work. Section 5 concludes the paper.

2 Semantics
This section presents the syntax and semantics of Im-
Net, a high-level programming language for SDN net-
works using switch-controller architecture. Figure 1
shows the syntax of ImNet. Figures 2 and 3 present
the semantics of ImNet constructs. The proposed se-
mantics is operational and its states are defined in the
following definition.

Definition 1 1. t ∈ Types = {int, Switch IDs,
Packet, (Switch IDs, int, bool)}∪{(t1, t2) |
t1, t2 ∈ Types}.

2. v ∈ Values = Natural numbers ∪ Switch IDs ∪
Packets ∪ Switch IDs × Natural numbers ×
Boolean values ∪ {(v1, v2) | v1, v2 ∈ Values}.
The expression v : t denotes that the type of the
value v is t.

3. ev ∈ Events = {(v1, v2, . . . , vn) | ∃t(∀i vi : t)}.

4. Actions= {sendcontroller, sendall, sendout,
change(h,v) }.

5. r ∈ Rules = Patterns × Actions.

6. rl ∈ Rule-lists = {[r1, r2, . . . , rn] | ri ∈ Rules}.

7. ir ∈ Intial-rule-assignment = Switch IDs ×
Rules.

8. σ ∈ Swich-states = Flow-tables =
Switch IDs → Rule-lists.

9. γ ∈ Variable-states = Var → Events∪Rule-lists.

10. s ∈ States = Swich-states × Variable-states ×
Rule-lists.

A program in ImNet is a sequence of queries fol-
lowed by a statement. The result of each query is an
event which is a finite sequence of values. The event
concept is also used in Frenetic. However an event in
Frenetic is an infinite sequence of values. A value is
an integer, a switch ID, a packet, a triple of a switch
ID, an integer, and a Boolean value, or a pair of two
values. Each value has a type of the set Types. In this
paper, we focus on the details of statements as this is
the most interesting part in a network programming
language.

Possible actions taken by a certain switch on a
certain packet are sendcontroller, sendall, sendout, or
change(h,v). The action sendcontroller sends a packet
to the controller to take care of it. The action sendall
sends the packet to all other switches. The action
sendout sends the packet out of the switch through
a certain port. The action change(h,v) modifies the
header field h of the packet to the new value v.

A rule in our semantics is a pair of pattern and ac-
tion where pattern is a form that concretely describes
a set of packets and action is the action to be taken
on elements of this set of packets. Rules are stored
in tables (called flow tables) of switches. Intial-rule-
assignment represents an initial assignment of rules to
flow tables of switches.

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 150

x ∈ lVar Q ∈ Queries

et ∈ Eventrans ::= Lift(x, λt.f(t)) | ApplyLft(x, λt.f(t)) | ApplyRit(x, λt.f(t)) |
Merge(x1, x2) | MixFst(A, x2, x3) | MixSnd(A, x2, x3) |
Filter(x, λ.f(t)) | Once(x) | MakForwRule(x) | MakeRule(x)

S ∈ Stmts ::= x := et | S1;S2 | AddRules(x) | Register | Send(x)

D ∈ Defs ::= ϵ | x := Q | DD.

p ∈ Progs ::= D ≫ S.

Figure 1: ImNet Syntax.

A state in the proposed operational semantics is
a triple (σ, γ, ir). In this triple γ captures the cur-
rent state of the program variables and hence is a map
from the set of variables to the set of events and rule
lists. This is so because in ImNet variables may con-
tain events or rule lists. The symbol σ captures the
current state of flow tables of switches and hence is
a map from switches IDs to rule lists. Finally, ir is
an initial assignment of rules assigned to switches but
have not been registered yet (have not been added to
γ yet).

There are five type of statements in ImNet. The
assignment statement x := ef assigns the result of an
event transformer (et) to the variable x. The statement
AddRules(x) adds the switch rules stored in x to the
reservoir of initially assigned rules. These are rules
that are assigned to switches but are not added to flow
tables yet. The statement Register makes the initial as-
signments permeant by adding them to flow tables of
switches. The statement Send(x) sends specific pack-
ets to be treated in a certain way at certain switches.
To keep a record of actions takes on packets on differ-
ent switches we assume a map called history from the
set of switches IDs to the set of lists of pairs of pack-
ets and taken actions. This map is used in the Rule
(Sends). Operational semantics of these statements
are given in Figure 3. Judgement of inference rules in
this figure have the form S : (σ, γ, ir) → (σ′, γ′, ir′).
This judgement reads as following. If the execution
of S in the state (σ, γ, ir) ends then the execution
reaches the state (σ′, γ′, ir′).

Inference rules in Figure 3 use that in Figure 2
to get the semantics of the other important construct
of ImNet which is event transformers (et). Judge-
ments of Figure 2 have the form et : γ → u
meaning that the semantics of the transformer et in
the variable state γ is u. The event transformer
Lift(x, λt.f(t)) applies the map λt.f(t) to values of
the event in x (Rule (Lifts)). The event transformer
Filter(x, λ.f(t)) filters the event in x using the map
λt.f(t) (Rule (Filters)). From a given set of actions

A and two events x1 and x2 the event transformers
MixFst(A, x1, x2) and MixSnd(A, x1, x2) create lists
of rules (Rules (Mixs1) and (Mixs2)).

3 Controller Programs
This section presents two examples of programs con-
structed using the syntax of ImNet (Figure 1). The first
example constructs rules based on information stored
in the variable x and then installs the established rules
to flow tables of switches stored in z. This program
has the following statements.

y = MakeRule(x);

z = Lift(z, λt.(t, y));

AddRules(z);

Register;

The first statement of the program makes a rule
for each value of the event stored in x. Then the sec-
ond statement assigns these rules to switch IDs in the
event stored in z. The third statement stores the rule
assignment of z in ir as an initial rule assignment.
The last statement of the program adds the established
rules to the flow tables of switches. Figure 4 shows
the operational semantics of this program using the
semantics of the previous section.

The second example constructs forwarding rules
based on source IPs of arriving packets and then in-
stalls the established rules to flow tables of switch IDs
stored in z. This program has the following state-
ments.

y = SourceIps;

y = ApplyLft(y, λt.(t, port(t)));

y = Lift(y, λt.(t, switch(t, z));

y = MakForwRule(y);

AddRules(y);

Register;

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 151

vi : t γ(x) = (v1, v2, . . . , vn)
(Lifts)

Lift(x, λt.f(t)) : γ → (f(v1), f(v2), . . . , f(vn))

γ(x1) = (v1, v2, . . . , vn) γ(x2) = (w1, w2, . . . , wn)
(Merges)

Merge(x1, x2) : γ → ((v1, w1), (v2, w2), . . . , (vn, wn))

γ(x) = (v1, v2, . . . , vn) A = {i | f(vi) = true}
(Filters)

Filter(x, λ.f(t)) : γ → (. . . , vi, . . . | i ∈ A)

vi : t γ(x) = ((v1, v
′
1), (v2, v

′
2), . . . , (vn, v

′
n))

(Apps
1)

ApplyLft(x, λt.f(t)) : γ → ((f(v1), v
′
1), (f(v2), v

′
2), . . . , (f(vn), v

′
n))

v′i : t γ(x) = ((v1, v
′
1), (v2, v

′
2), . . . , (vn, v

′
n))

(Apps
2)

ApplyRit(x, λt.f(t)) : γ → ((v1, f(v
′
1)), (v2, f(v

′
2)), . . . , (vn, f(v

′
n)))

type(x) ∈ Types
(Onces)

Once(x) : γ → (x, x, . . . , x︸ ︷︷ ︸
n times

)

γ(x1) = (v11 , v
1
2 , . . . , v

1
n) γ(x2) = (v21 , v

2
2 , . . . , v

2
n) A1 = A ∪ {v11} ∀i > 1.Ai = Ai−1 ∪ {v1i }

(Mixs
1)

MixFst(A, x1, x2) : γ → ((A1, v
2
1), (A2, v

2
2), . . . , (An, v

2
n))

γ(x1) = (v11 , v
1
2 , . . . , v

1
n) γ(x2) = (v21 , v

2
2 , . . . , v

2
n) A1 = A ∪ {v21} ∀i > 1.Ai = Ai−1 ∪ {v2i }

(Mixs
2)

MixSnd(A, x1, x2) : γ → ((v11 , A1), (v
1
2 , A2), . . . , (v

1
n, An))

γ(x) = ((v11 , a1, v
3
1), (v

1
2 , a2, v

2
2), . . . , (v

1
n, an, v

2
n))

(MFRs)
MakForwRule(x) : γ → [(v11 , (v

3
1 , sendout(v

2
1))), (v

1
2 , (v

3
2 , sendout(v

2
2))), . . . , (v

1
n, (v

3
n, sendout(v

2
n)))]

γ(x) = ((v11 , a1, v
2
1), (v

1
2 , a2, v

2
2), . . . , (v

1
n, an, v

2
n))

(MkRls)
MakeRule(x) : γ → [(v11 , a1(v

1
2)), (v

2
1 , a2(v

2
2)), . . . , (v

i
n, an(v

n
2))]

Figure 2: Operational semantics for event functions of ImNet

The first statement of the program assumes a
function SourceIps that returns source IPs of arriving
packets and stores them in the form of an event in y.
The second statement transfers event of y into event
of pairs of IPs and port numbers through which pack-
ets will be forwarded. The third statement augments
values of event in y with switch IDs from the event
stored in z. The fourth statement makes a forward
rule for each value of the event stored in y. Then the
fifth statement stores the rule assignment of y in ir as
an initial rule assignment. The last statement of the
program adds the established rules to the flow tables
of switches. Figure 5 shows the operational semantics
of this program using the semantics of the previous
section.

4 Related and Future Work
This section presents work most related to that pre-
sented in the current paper.

One of the early attempts to develop software-

defined networking (SDN) is NOX [9] based on ideas
from [8] and 4D [7]. On the switch-level, NOX uses
explicit and callbacks rules for packet-processing. Ex-
amples of applications that benefitted from NOX are
load balancer [6] and the work in [4, 5]. Many di-
rections for improving platforms of programming net-
works include Maestro [2] and Onix [3], which uses
distribution and parallelization to provide better per-
formance and scalability.

A famous programming language for networks is
Frenetic [24, 25] which has two main components.
The first component is a collection of operators that
are source-level. The operators aim at establishing
and treating streams of network traffic. These op-
erators also are built on concepts of functional pro-
gramming (FP) and query languages of declarative
database. Moreover the operators support a modular
design, a cost control, a race-free semantics, a single-
tier programming, and a declarative design. The sec-
ond component of Frenetic is a run-time system. This
system facilitates all of the actions of adding and re-

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 152

et : γ → u
(Assgns)

x := et : (σ, γ, ir) → (σ, γ[x 7→ u], ir)

S1 : (σ, γ, ir) → (σ′′, γ′′, ir′′) S2 : (σ′′, γ′′, ir′′) → (σ′, γ′, ir′)
(seqs)

S1;S2 : (σ, γ, ir) → (σ′, γ′, ir′)

γ(x) ∈ Intial-rule-assignment
(Addrls)

AddRules(x) : (σ, γ, ir) → (σ, γ, ir ∪ γ(x))

(Regs)
Register : (σ, γ, ir) → (σ ∪ ir, γ, ∅)

γ(x) = ((v11 , v
2
1 , v

3
1), (v

1
2 , v

2
2 , v

3
2), . . . , (v

1
n, v

2
n, v

3
n)) ∀i.(vi2, vi3) ∈ history(vi1)

(Sends)
Send(x) : (σ, γ, ir) → (σ, γ, ir)

Figure 3: Operational semantics statements of ImNet

moving low-level rules to and from flow tables of
switches. One advantage of ImNet, the language pre-
sented in this paper, over Frenetic is that ImNet is im-
perative. Therefore ImNet paves the way to the ap-
pearance of other types of network programming lan-
guages such as object-oriented network programming
langues and context-oriented network programming
languages.

Other examples to program network components
though high-level languages are NDLog and Net-
Core [1]. NetCore provides an integrated view of the
whole network. NDLog is designed in an explicitly
distributed fashion.

As an extension of Datalog, NDLog [22, 23] was
presented to determine and code protocols of rout-
ing [21], overlay networks, and concepts like hash ta-
bles of distributed systems. ImNet (presented in this
paper), Frenetic, and NDLog can be classified as high-
level network programming languages. While NDLog
main focus is overlay networks and routing protocols,
Frenetic (in a functional way) and ImNet (in an im-
perative way) focus on implementing packet process-
ing such as modifying header fields. Therefore ImNet
equips a network programmer with a modular view
of the network which is not provided by NDLog and
Frenetic. This is supported by the fact that a program
in NDLog is a single query that is calculated on each
router of the network.

The switch component [30] of networks can
be programmed via many interfaces such as Open-
Flow platform. Examples of other platforms include
Shangri-La [31] and FPL-3E [32], RouteBricks [29],
Click modular router [26], Snortran [27] and Bro [28].
The idea in Shangri-La [31] and FPL-3E [32] is to
produce certain hardware for packet-processing from
high-level programs that achieves packet-processing.
In RouteBricks [29], stock machines are used to

improve performance of program switches. As a
modular approach, the platform of Click modular
router [26], enables programming network compo-
nents. This system focuses on software switches in
the form of Linux kernel code. For the sake of in-
trusions detection and preserving network security,
Snortran [27] and Bro [28] enable coding monitoring
strategies and robust packet-filtering. One advantage
of ImNet, the language presented in this paper, over
all the related work is that ImNet overcomes the dis-
advantage of most similar languages of focusing on
controlling a single device.

There are many interning directions for future
work. One such direction is develop methods for
static analysis of network programming languages.
Obviously associating these analyses with correctness
proofs, in the spirit of [12, 13, 15, 14], will have many
network applications.

5 Conclusion

Software-Defined Networks (SDNs) is a recent archi-
tectures of networks in which a controller device pro-
grams other network devices (specially switches) via a
sequence of installing and uninstalling rules to mem-
ories of these devices.

In this paper, we presented a high-level imper-
ative network programming language, called ImNet,
to facilitate the job of controller through efficient, yet
simple, programs. ImNet has the advantages of sim-
plicity, expressivity, propositionally, and being imper-
ative. The paper also introduced a concrete opera-
tional semantics to meanings of ImNet constructs. De-
tailed examples of using ImNet and the operational se-
mantics were also illustrated in the paper.

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 153

(∅, {z 7→ {id1, id2}, x 7→ {((srcport(80), sendall,), (inport(1), sendcontroller,))}, [])
y = MakeRule(x);
(∅, {z 7→ {id1, id2}, x 7→ {((srcport(80), sendall,), (inport(1), sendcontroller,))},
y 7→ {(srcport(80), [sendall]), (inport(1), [sendcontroller])}}, ∅)
z = Lift(z, λt.(t, y));
(∅, {z 7→ {(id1, γ(y)), (id2, γ(y))},
x 7→ {((srcport(80), sendall,), (inport(1), sendcontroller,))},
y 7→ {(srcport(80), [sendall]), (inport(1), [sendcontroller])}}, ∅)
AddRules(z);
(∅, {z 7→ {(id1, γ(y)), (id2, γ(y))},
x 7→ {((srcport(80), sendall,), (inport(1), sendcontroller,))},
y 7→ {(srcport(80), [sendall]), (inport(1), [sendcontroller])}}, {(id1, γ(y)), (id2, γ(y))})
Register;
({(id1, γ(y)), (id2, γ(y))}, {z 7→ {(id1, γ(y)), (id2, γ(y))},
x 7→ {((srcport(80), sendall,), (inport(1), sendcontroller,))},
y 7→ {(srcport(80), [sendall]), (inport(1), [sendcontroller])}}, ∅)

Figure 4: Example 1; an operational semantics of a program written in ImNet

(∅, {z 7→ {id1, id2}}, [])
y = SourceIps;
(∅, {z 7→ {id1, id2},
y 7→ {(ip1, pk1), (ip2, pk2)}}, ∅)
y = ApplyLft(y, λt.(t, port(t)));
(∅, {z 7→ {id1, id2},
y 7→ {(pr1, pk1), (pr2, pk2)}}, ∅)
y = Lift(y, λt.(t, switch(t, z));
(∅, {z 7→ {id1, id2},
y 7→ {(id1, pr1, pk1), (id2, pr2, pk2)}}, ∅)
y = MakForwRule(y);
(∅, {z 7→ {id1, id2},
y 7→ {(id1, (pk1, sendout(pr1)), (id2, (pk2, sendout(pr2)))}}, ∅)
AddRules(y);
(∅, {z 7→ {id1, id2},
y 7→ {(id1, (pk1, sendout(pr1)), (id2, (pk2, sendout(pr2)))}},
{(id1, (pk1, sendout(pr1)), (id2, (pk2, sendout(pr2)))})
Register;
({(id1, (pk1, sendout(pr1)), (id2, (pk2, sendout(pr2)))}, {z 7→ {id1, id2},
y 7→ {(id1, (pk1, sendout(pr1)), (id2, (pk2, sendout(pr2)))}}, ∅)

Figure 5: Example 2; an operational semantics of a program written in ImNet

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 154

References:

[1] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakr-
ishnan. Declarative routing: Extensible rout-
ing with declarative queries. SIGCOMM, 2005,
pp.289-300.

[2] Z. Cai, A. Cox, and T. Ng. Maestro. A system
for scalable OpenFlow control. Technical Report
TR10-08, Rice University, Dec 2010.

[3] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A dis-
tributed control platform for large-scale produc-
tion networks. OSDI, Oct 2010.

[4] N. Handigol, S. Seetharaman, M. Flajslik, N.
McKeown, and R. Johari. Plug-n-Serve. Load-
balancing web traffic using OpenFlow. Demo at
ACM SIGCOMM, Aug 2009.

[5] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yi-
akoumis, P. Sharma, S. Banerjee, and N. McK-
eown. ElasticTree: Saving energy in data center
networks. NSDI, Apr 2010.

[6] R. Wang, D. Butnariu, and J. Rexford.
OpenFlow-based server load balancing gone
wild. Hot-ICE, Mar 2011.

[7] A. Greenberg, G. Hjalmtysson, D. Maltz, A.
Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and
H. Zhang. A clean slate 4D approach to network
control and management. SIGCOMM CCR 35,
October 2005, pp.41-54.

[8] M. Casado, M. Freedman, J. Pettit, J. Luo, N.
Gude, N. McKeown, and S. Shenker. Rethinking
enterprise network control. Trans. on Network-
ing. 17(4), Aug 2009.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.
Casado, N. McKeown, and S. Shenker. NOX:
Towards an operating system for networks. SIG-
COMM CCR 38(3), 2008.

[10] N. Foster, A. Guha, M. Reitblatt, A. Story,
M. Freedman, N. Katta, C. Monsanto, J. Reich,
J. Rexford, C. Schlesinger, D. Walker, R. Harri-
son. Languages for software-defined networks.
IEEE Communications Magazine 51(2), 2013,
pp. 128–134.

[11] T. Bain, P. Campbell, J. Karlsson. Modeling
growth and dynamics of neural networks via
message passing in Erlang: neural models have a
natural home in message passing functional pro-
gramming languages. Erlang Workshop, 2011,
pp. 94-97.

[12] M. El-Zawawy. Flow sensitive-insensitive
pointer analysis based memory safety for
multithreaded programs. In: Murgante, B.,
Gervasi, O., Iglesias, A., Taniar, D., Apduhan,

B.O. (eds.) ICCSA, Part V. LNCS, vol. 6786,
Springer, Heidelberg (2011), pp. 355-369.

[13] M. El-Zawawy. Probabilistic pointer analysis
for multithreaded programs. ScienceAsia 37(4),
2011, pp. 344-354.

[14] M. El-Zawawy. Detection of Probabilistic Dan-
gling References in Multi-core Programs Using
Proof-Supported Tools. ICCSA 2013, pp. 516–
530.

[15] M. El-Zawawy. Frequent Statement and De-
reference Elimination for Distributed Programs.
ICCSA, 2013, pp. 82–97.

[16] T. Suzuki, K. Pinte, T. Cutsem, W. De Meuter, A.
Yonezawa. Programming language support for
routing in pervasive networks. PerCom Work-
shops, 2011, pp. 226–232.

[17] A. Elsts, L. Selavo. A user-centric approach
to wireless sensor network programming lan-
guages. SESENA 2012, pp. 29–30.

[18] C. Monsanto, N. Foster, R. Harrison, D. Walker.
A compiler and run-time system for network
programming languages. POPL 2012, pp. 217–
230.

[19] S. Hong, Y. Joung. Meso: an object-oriented
programming language for building strongly-
typed internet-based network applications. SAC
2013, pp.1579–1586.

[20] J. Rexford. Programming languages for pro-
grammable networks. POPL 2012, pp. 215–216.

[21] H. Arneson, C. Langbort. A linear program-
ming approach to routing control in networks
of constrained linear positive systems. Automat-
ica 48(5), 2012, pp. 800-807.

[22] B. Loo, T. Condie, J. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declara-
tive overlays. SIGOPS 39(5), 2005, pp 75-90.

[23] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakr-
ishnan. Declarative routing: Extensible routing
with declarative queries. SIGCOMM, 2005, pp.
289-300.

[24] N. Foster, R. Harrison, M. Meola, M. Freed-
man, J. Rexford, and D. Walker. Frenetic: A
high-level langauge for OpenFlow networks.
PRESTO, Nov 2010.

[25] N. Foster,R. Harrison, M. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A Network Programming Language.the
16th ACM SIGPLAN international conference
on Functional programming,2011 pp. 279–291.

[26] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The Click modular router. ACM
Transactions on Computer Systems 18(3), Aug
2000, pp 263-297.

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 155

[27] S. Egorov and G. Savchuk. SNORTRAN: An
Optimizing Compiler for Snort Rules. Fidelis
Security Systems, 2002.

[28] V. Paxson. Bro: A system for detecting net-
work intruders in realtime. Computer Net-
works 31(2324), Dec 1999, pp. 2435-2463.

[29] M. Dobrescu, N. Egi, K. Argyraki, B. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. RouteBricks: Exploiting par-
allelism to scale software routers. SOSP, Oct
2009.

[30] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM CCR 38(2), 2008,
pp. 69-74.

[31] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu,
and R. Ju. Shangri-la: Achieving high per-
formance from compiled network applications
while enabling ease of programming. PLDI, Jun
2005, pp 224-236.

[32] M. Cristea, C. Zissulescu, E. Deprettere, and
H. Bos. FPL-3E: Towards language support for
reconfigurable packet processing. SAMOS, Jul
2005, pp 201-212.

[33] The Open Networking Foundation, Mar 2011.
See http:// www.opennetworkingfoundation.org/

Modern Computer Applications in Science and Education

ISBN: 978-960-474-363-6 156

