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Abstract. This paper presents new approaches to common parsing algorithms.
The new approach utilizes the concept of inference rule. Therefore the new ap-
proach is simple, yet powerful enough to overcome the performance of traditional
techniques. The new approach is basically composed of systems of inference
rules.

Mathematical proofs of the equivalence between proposed systems and clas-
sical algorithms are outlined in the paper. The proposed technique provides a
correctness verification (a derivation of inference rules) for each parsing process.
These verifications are required in modern applications such as mobile comput-
ing. Results of experimental proving the efficiency of the proposed systems and
their produced verifications are shown in the paper.

Keywords: Inference rules, LL(1) parsers, Operator-precedence passers, LR
parsers, Parsing.

1 Introduction

The parsing process [14,5] aims at analyzing and checking the structure of a given
input (computer program) with respect to a specific grammar. Each grammar can typ-
ically produce an infinite number of sentences (programs). However grammars [28,8]
have finite sizes. Therefore a grammar abstracts briefly an infinite number of program
architectures of a specific type (structural, functional, object-oriented, etc).

Parsing is very critical for several reasons [21]. Parsing process is essential for fur-
ther processing of parsed objects (programs). For example in natural languages pro-
cessing, recognizing the verb of a sentence facilitates the sentence translation. Parsing
process is also important to understand grammars which summarize our realization of
a class of programs. Error-recovering parsers [29] are important tools for correcting
some program faults. Theoretical foundations of parsing excuse it from being described
as esoteric or as a mathematical discipline. Using string cutting and pasting, parsing can
be realized and applied.

Parsing techniques [28,8] are classified into two categories; top-down and bottom-
up. A parsing technique that tries to establish a derivation for the input program starting
from the start symbol is classified as a top-down algorithm. If a parsing technique starts
with the input program and rolls back trying to establish the derivation in the reverse
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order until reaching the start symbol, the technique is then described as bottom-up.
Derivations produced by a bottom-up (top-down) algorithm are right-most (left-most).
In top-down (bottom-up) parsers, parse trees are constructed from the top (bottom)
downwards (upwards). Common examples of top-down and bottom- up parsers are
LL(1) and LR(1) [3], respectively.

Some applications like proof-carrying code [23,17] and mobile computing [30] re-
quire the parser to associate each parse tree with a correctness proof. This proof ensures
the validity of the tree. Unfortunately most of existing parsers are algorithmic in their
style and hence build the parse tree but not the correctness proof. Proposing new sit-
tings for common parsing algorithms so that correctness proofs are among outputs of
these algorithms (rather than parse trees) is a requirement of many modern computing
applications.

This paper introduces new models for common existing parsing techniques such as
LL(1), operator-precedence, SLR, LR(1), and LALR. The proposed models are built
mainly of inference rules whose outputs in this case are pairs of parse trees and cor-
rectness proofs. Rather than providing the required correctness proofs, the new models
are faster than their corresponding ones as is confirmed by experimental results. Math-
ematical proofs of the equivalence between each proposed model and its corresponding
original parsing technique are outlined in the paper. The proposed models are supported
with illustrative parsing examples that are detailed.

Motivation

Systems of inference rules were found very useful for optimization phases of compil-
ers [11,12]. This is so as they provide compact correctness proofs for optimizations.
These proofs are required by applications like proof-carrying code and mobile com-
puting. The motivation of this paper is the need for parsing techniques that associate
each parsing process with a simply-structured correctness proof. The research behind
this paper reveals that parsing techniques having the form of inference rules are the
perfect choice to build the required proofs. The resulting proofs have the shape of rule
derivations as in Figures 2 and 5.

Contributions

Contributions of the paper are the following:

1. A new approach to LL parsing techniques in the form of system of inference rules.
The new approach was found more efficient than the traditional one.

2. A new setting for operator-precedence parsers.
3. A novel technique to achieve LR parsing methods.

Paper Outline

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Section 3 presents the new technique for LL(1) parsers. The systems of inference rules
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for LR parsers and operator-precedence parsers are shown in Sections 4.1 and 4.2, re-
spectively. Each of Sections 3, 4.1, and 4.2 includes mathematical proofs of the correct-
ness of its proposed technique. Section 5 shows the experimental results. A conclusion
to the paper is in Section 6.

2 Related Work

Generalized LR (GLR) parsers [25,18] are used to handle ambiguous grammars whose
parsing tables compilation may last for minutes for large grammars. These parsers
are not convenient for natural-language grammars because parsing tables can become
very large. For natural languages more specific parsers [9,20] were designed. Such
parsers, typically, support PM context-free grammars. Some attempts [10,2,13] towards
parsers for visual languages were done. However problems with parsing visual lan-
guages include that parsing tables need to be recomputed with each grammar. Most
parsers [24,19] using no parsing tables are inefficient and restricted to a small cate-
gories of grammars.

In dependent grammars [22,7], semantic values are associated with variables. There-
fore these grammars are convenient for constrain parsing [6,15]. Common attributes
not covered by context-free grammars, like intended indentations and field lengths in
data types of programming languages are determined by dependent grammars. Re-
searchers have been trying to extend classical parsing algorithms to support dependent
parsing [16,32]. For example, in [16] a point-free algorithm language for dependent
grammars is proposed. The language algorithms are similar to classical algorithms for
context-free parsing. Hence the point-free language acts as a tool to get point-free gram-
mars from classical dependent ones.

Boolean grammars [27,26] are grammars equipped with operations that are explicitly
set-theoretic and used to express rules formally defined by equations of the language
equations. Boolean grammars are extensions of context-free grammars. Much research
was done to extend algorithms of the later grammars to that of the former ones. Other at-
tempts were done to generalize LR parsing algorithm to cover Boolean grammars. This
extension included traditional LR operations, Reduce and Shift, and a new third oper-
ation called, Invalidate. This third action reverses a prior reduction. The generalization
idea was to make the algorithm complectly different from its prototype.

Although classical top-down parsers [21,29] simplicity and ability to treat empty
rules, they can not treat many sorts of left-recursions. In the same time, it is not preferred
to normalize a left-recursion grammar as the rules semantic-structure gets affected. On
the other hand, bottom-up parsers [21,29] are able to treat left-recursion but not empty
rules. The research in [31,4] proposed a deterministic cancelation parser whose struc-
ture is recursive-descent. This parser can manipulate left-recursions and empty rules
via a combination of bottom-up and top-down applications towards building the parse
tree. The challenge of these parsers is to manipulate all sorts of left-recursions, such as
hidden and indirect left recursions.

Unfortunately, none of the parsers reviewed above associates each parsing process
with a justification or a correctness proof. Therefore all these parsers are not applicable
in modern applications of mobile computing and proof-carrying code.
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3 New Approach for Top-Down Parsers: LL(1)

LL(1) [3] is a top-down parsing algorithm. For a given input string and starting from the
start symbol of the given grammar, top-down parsers tries to create a parse tree using
depth-first methods. Hence top-down parsers can be realized as searching methods for
leftmost derivations for input strings. LL(1) is predictive in the sense that it is able to
decide the rule to apply based only on the currently processed nonterminal and follow-
ing input symbol. This is only possibly if the grammar has a specific form called LL(1).
The LL(1) parser uses a stack and a parse table called LL(1)-table. The stack stores the
productions that the parser is to apply.

The LL(1)-table columns correspond to terminals of the grammar plus an extra col-
umn for the $ symbol (the marker for the input symbol end). Rows of LL(1)-table
correspond to nonterminals of the LL(1) grammar. Each cell of the LL(1)-table is either
empty or including a single grammar production. Therefore the table includes the parser
actions to be taken based on the top value of the stack and the current input symbol.

(Base)
ε : ε→ $

a ∈ first(T) (N→ T) ∈ P aα : TM→ $
(Predict1)

aα : NM→ $

a ∈ follow(N) N → ε aα : M→ $
(Predict2)

aα : NM→ $

α : β→ $
(Match)

aα : aβ→ $

Fig. 1. Inference rules for LL(1) parser

Figure 1 presents a new model for the LL(1) functionality in the form of a system
of inference rules. The following definition is necessary for linking the semantics and
the use of inference rules in Figure 1 to functionality of LL(1). The definition is also
necessary for proving equivalence between the original model and our new one.

Definition 1. Let (S,N,T,P) be a LL(1) grammar. Then LL(1)-infer is the set of strings
w ∈ T+ such that w : S → $ is derivable in the system of inference rules of Figure 1.
Moreover path(w,ll(1)) is the string derivation obtained by applying the grammar rules
in the derivation of w : S → $. This rule applications is intended to respect the order
of the rule appearances in the direction bottom-up of the derivation.

Our proposed model works as follows. For a given string w, we start by trying to
derive w : S → $ using the system of inference rules. This is equivalent to the start
of the LL(1) algorithm; reading the first token of input and pushing on the stack the
start symbol. In the LL(1) method and using the LL(1)-table, there are three possible
cases for the input token, a, and the top stack symbol x. In the first case x = a = $,
meaning that w is correct. This case is modeled through the rule (Base). In the second
case, x = a � $, the algorithm pops x and moves to next input token. This is achieved
via the rule (Match). In the third case x is a nonterminal and x � a. In this case, the
LL(1)-table is referenced at the cell (x, a) towards a rule application. There are three
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possible sub-cases for this case. The first subcase happens when the cell (x, a) is empty
meaning that it is not possible to construct the derivation and hence w is wrong. The
second subcase happens when there is a rule at in the cell (x, a) and the left hand side
of the rule is not empty. The application of this rule is achieved by the rule (Predict1).
The third subcase happens when the left hand side of the rule is empty. This subcase is
treated via the rule (Predict2).

The following theorem proves the equivalence between our proposed model and the
original (one which does not provide the correctness verifications).

Theorem 1. Let (S,N,T,P) be a LL(1) grammar and w ∈ T+. Then w ∈ LL(1) − infer
if and only if w is accepted by the LL(1)-algorithm. Moreover the left-most derivation
obtained by the LL(1)-algorithm is the same as path(w,ll(1)).

Proof. The LL(1)-algorithm has the following cases:

– The case (Match) meaning a symbol a is on the top of the stack and is also the first
symbol of the current input string. In this case, the LL(1) algorithm removes a from
the stack and input. Also in this case, the rule (Match) of Figure 1 applies and does
the same action as the LL(1)-algorithm.

– The case (Predict1): meaning the top of the stack is a nonterminal symbol x and
the first symbol of the current input string is a terminal symbol a. In this case, the
algorithm references the LL(1)-table at location (x, a) towards a rule application
and pushes into the stack the r.h.s. of rule. Suppose this rule is N → T. In this case
a ∈ first(T) and the rule (Predict1) of Figure 1 applies and does the same action as
the LL(1)-algorithm.

– The case (Predict2): this case is similar to the previous one except that T = ε. In this
case a ∈ follow(N) and the LL(1)-algorithm removes N form the stack. Clearly, in
this case, the rule (Predict2) of Figure 1 applies and does the same action as the
LL(1)-algorithm.

– The case (Accept), in this case the stack and input have only $. This case is covered
by the rule (Base) of Figure 1.

The following two lemmas formalize the relationship between parse trees obtained
in our prosed model of inference rules and that obtained using the original LL(1)-
algorithm. The lemmas are easily proved by a structure induction on the inference-rule
derivations.

Lemma 1. Let (S,N,T,P) be a LL(1) grammar and w ∈ LL(1) − infer. Then path(w)
is left-most.

Lemma 2. Let (S,N,T,P) be an LL(1) grammar. Then for w ∈ T+,

S⇒+ w ⇐⇒ w : S→ $.

For the grammar consists of the rules:

S→ aBa,B→ bB, and B→ ε.
The upper part of Figure 2 shows the derivation for proving the correctness of the state-
ment abba using inference rules of Figure 1. The obtained derivation is the following:

S =⇒lm aBa =⇒lm abBa =⇒lm abbBa =⇒lm abba.
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4 New Approaches for Bottom-Up Parsers

As suggested by their names, bottom-up parsers [3] work oppositely to top-down
parsers. Starting with the input string, a bottom-up parser proceeds upwards from leaves
to the start symbol. Hence a bottom-up parser works backwards and applies the gram-
mar rules in a reverse direction until arriving at the start symbol. This reverse application
amounts to finding a substring of the stack content that coincides with the r.h.s. of some
production of the grammar. Then the l.h.s. of this production replaces the found sub-
string. Hence a reduction takes place. The idea is to keep reducing until arriving at the
start symbol, therefore the string is correct, otherwise it is not correct. In the following,
we show how common bottom-up parsers (LR and operator-precedence parsers) can be
modeled using systems of inference rules.

4.1 LR Parsers Family

LR parsers [3] work as following. Fixing handles depends on the stack content and
hence on the context of the parsing process. The LR parsers do not push tokens only into
the stack, but push as well state numbers in alternation with tokens. The state numbers
describe the stack content. The state on the top of the stack determines whether the next
action is to move (shift) a new state to the stack (for the next symbol of input) or is to
reduce.

Two tables are used by LR parsers; an action table and a goto table. For the action
table, columns correspond to terminals and rows correspond to state numbers. For the
goto table, columns correspond to nonterminals and rows correspond to state numbers.
The entry of the action table at the intersection (s, a) determines the action to be taken
when the next terminal is a and s is the state on the top of the stack. Figure 3 models
possible actions in the form of inference rules. One possible action is to shift and is
modeled by the rule (Shift). Another action is to reduce and is modeled by the rule (Re-
duce). The accept case is modeled by the rule (Base). In case of error, it is not possible
to find a derivation for the given input string. The goto-table entry at the intersection
(s, x) determines the state to be inserted into the stack after reducing x when the top of
stack is s.

For a given string w, if it is possible to derive w$ : 0 → S using inference rules
of Figure 3, then w is correct (accepted), otherwise it is wrong. This is corresponding

(n, $) = accept
(Base)

$ : βn→ S

goto(n1, a) = sn2 α : βn1an2 → S
(Shift)

aα : βn1 → S

goto(n1, a) = r by (T→ γ)
# − terminals(γ) = m

deduct(βn1, 2m) = δn2

goto(n2,T) = n3

aα : δTn3 → S
(Reduce)

aα : βn1 → S

Fig. 3. Inference rules for SLR, LR(1), and LALR parsers
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to pushing the state 0 into the stack and continuing in the shift-reduce process until
reaching an accept or a reject.

Definition 2 recalls important concepts of grammars. Definition 3 introduces neces-
sary concepts towards proving soundness of inference rules of Figure 3.

Definition 2. – A LR parser using SLR parsing table for a grammar G is called a
SLR parser for G.

– If a grammar G has a SLR parsing table, it is called SLR-grammar.1

Definition 3. Let (S,N,T,P) be a SLR grammar. Then der-stg is the set of strings w ∈
T+ such that w : 0$ → S is derivable in the system of inference rules of Figure 3.
Moreover way(w,slr) is the string derivation obtained by applying the grammar rules
in the obtained derivation. This rule applications is intended to respect the order of the
rules appearances in the direction bottom-up of the derivation.

The following theorem proves the soundness of the proposed model and its equiva-
lence to the original SLR model.

Theorem 2. Let (S,N,T,P) be a SLR grammar and w ∈ T+. Then w ∈ der-stg if
and only if w is accepted by the SLR-algorithm. Moreover the right-most derivation
obtained by the SLR-algorithm is the same as way(w,slr).

Proof. The SLR algorithm has the following possible actions cases:

– The shift action: in this case the intersection of the number, n1, at the top of the
stack and the symbol a at the beginning of the input, in the SLR table, is sn2. In this
case the SLR-algorithm pushes a followed by n2 into the stack. Also in this case,
the rule (Shift) of Figure 3 applies and does the same action as the SLR-algorithm.

– The reduce action: in this case the intersection of the number n1 at the top of the
stack and the symbol a at the beginning of the input, in the SLR-table, is r by
T → γ. In this case, a number (twice the number of symbols in γ) of elements is
removed from the stack and T is added to the stack. If n2 is the number prior to T
in the stack, then the intersection of T and n2 in the goto table is added to the stack.
In this case, the rule (Reduce) of Figure 3 applies and does the same action as the
SLR-algorithm.

– The case of an acceptance which is equivalent to applying the rule Base.

The relationship between parse trees resulting from our prosed system of inference
rules and that resulting from original SLR-algorithm are formalized by the following
two lemmas. A straightforward structure induction on the inference-rule derivations
completes the lemma proofs.

Lemma 3. Let (S,N,T,P) be a SLR-grammar and w ∈ der-stg. Then way(w,slr) is a
right-most derivation.

1 Recall that every SLR grammar is unambiguous, but not every unambiguous grammar is SLR
grammar [3].
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Lemma 4. Let (S,N,T,P) be a SLR-grammar. Then for w ∈ T+,

S⇒+ w ⇐⇒ w$ : 0→ S.

Consider the following grammar.

E→ E + E,E→ T,T → T ∗ F,T→ F, F→ (E), and F→ id.

Figure 5 presents a derivation for proving the correctness of the statement id ∗ id + id
using inference rules of Figure 3. The following is the obtained derivation.

E =⇒rm E + T =⇒rm E + F =⇒rm E + id =⇒rm T ∗ F + id =⇒rm

T ∗ id + id =⇒rm F ∗ id + id =⇒rm id ∗ id + id.

Remark 1. All results above about SLR-grammars and parsers are correct and applica-
ble for LR(1)-grammars and parsers and for LALR-grammars and parsers.

4.2 Operator-Precedence Parsing

Operator-precedence parsing [29] is a simple parsing technique suitable for particular
grammars. This grammars are operator-grammars characterized by the absence of ε
and consecutive nonterminals in l.h.s. of their productions. A precedence relation is de-
fined on the set of terminals: a < b means that b has higher precedence than a, where
a = b means that b enjoys the same precedence as a. Classical concepts of operators
precedence and associativity determine the convenient precedence relations. The han-
dle of a right-sentential form is determined by the precedence relation. Hence the left
(right) end of the handle is marked by < (>). Figure 4 presents a system of inference
rules to carry the operator-precedence parsing. Hence the parsing process amounts to
a derivation construction. Theorem 3 illustrates the use of the inference rules and their
equivalence to the operator-precedence algorithm.

(Base)
$ : $→ S

a >= b aα : bβ→ S
(Shift)

α : abβ→ S

(T→ a) ∈ P a < b aα : bβ→ S
(Reduce1)

aα : β→ S

(T→ γ1 o γ2) ∈ P o < b oα : bβ→ S
(Reduce2)

oα : β→ S

Fig. 4. Inference Rules for the Operator-Precedence Parser

The following definition introduces necessary concepts towards proving soundness
of inference rules of Figure 4.
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Definition 4. Let (S,N,T,P) be an operator-grammar. Then op-infer is the set of
strings w ∈ T+ such that w has a rule derivation for w$ : $ → S in the system of
inference rules of Figure 4. The string derivation obtained by applying the grammar
rules in the derivation is denoted by path(w, op). Respecting the order of the rules ap-
pearance bottom-up in the derivation is imperative for rule applications.

Theorem 3 proves the soundness of the system of inference rules and the original
operator-precedence algorithm which has the drawback of not providing correctness
proofs.

Theorem 3. Let (S,N,T,P) be an operator-grammar and w ∈ T+. Then w ∈ op-infer
if and only if w is accepted by the operator-precedence algorithm. Moreover the
right-most derivation obtained by the operator-precedence algorithm is the same as
path(w,op).

Proof. The operator-precedence algorithm has the following action cases:

– The case of a shift: this means a symbol b is on the top of the stack and is greater
than or equal to the first symbol, a, of the current input string. The order relation
is obtained via the operator-precedence table. In this case the operator-precedence
algorithm pushes a into the stack. Also in this case, the rule (Shift) of Figure 4
applies and does the same action as the operator-precedence algorithm.

– The case of a reduce: in this case a symbol b is on the top of the stack and is
greater than the first symbol of the current input string. If b is a terminal but not
an operator, then the operator-precedence algorithm discards b from the stack and
records the grammar rule whose right hand side coincides b. For this case, the rule
(Reduce1) of Figure 4 applies and does the same action as the operator-precedence
algorithm. If b is an operator and there is a grammar rule T → γ1 b γ2, then the
operator-precedence discards b from the stack and records the grammar rule. In
this case, the rule (Reduce2) of Figure 4 applies and does the same action as the
operator-precedence algorithm.

– The case of accept, in this case the stack and input have only $. This case is simu-
lated by the rule (Base) of Figure 4.

Parse trees obtained by inference rules of Figure 4 and that obtained by original
operator-precedence algorithm are equivalent by the following two lemmas. The lem-
mas are proved by a straightforward structure induction on the inference-rule deriva-
tions.

Lemma 5. Let (S,N,T,P) be an operator-precedence grammar and w ∈ op-infer. Then
path(w, op) is right-most.

Lemma 6. Let (S,N,T,P) be an operator-precedence grammar. Then for w ∈ T+,

S⇒+ w ⇐⇒ w$ : $→ S.

Consider the grammar:

E→ E+E,E→ E−E,E→ E ∗E,E→ E/E,E→ EE,E→ (E),E→ −E, and E→ id
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# Symbols LL(1) LL(1)-Inf Proof Size
15 71.0 ms 52.0 ms 3.1 KB
30 122.0 ms 98.0 ms 5.7 KB
50 143.0 ms 112.0 ms 8.9 KB

# Symbols SLR SLR-Inf Proof Size
15 83.0 ms 57.0 ms 3.5 KB
30 143.0 ms 112.0 ms 6.5 KB
50 195.0 ms 134.0 ms 9.8 KB

# Symbols Operator-Precedence OP-Inf Proof Size
15 62.0 ms 46.0 ms 2.0 KB
30 93.0 ms 73.0 ms 4.3 KB
50 147.0 ms 129.0 ms 7.6 KB

Fig. 6. Experiential Results

The lower derivation of Figure 2 presents a derivation for proving the correctness of
the statement id+ id ∗ id using inference rules of Figure 4. The following is the obtained
derivation.

E =⇒rm E + E =⇒rm E + E ∗ E =⇒rm E + E ∗ id =⇒rm E + id ∗ id =⇒rm id ∗ id + id.

5 Implementation and Evaluation

Timing experimenters were performed to evaluate LL(1)-Inf, SLR-Inf, and OP-Inf and
to compare them to LL(1), SLR, Operator-precedence parsing algorithms, respectively.
All the algorithms were implemented in C + +. The experiments were run on a Linux
system whose processor is Intel(R)-Core2(TM)-i5-CPU(2.53GHz) and whose RAM is
4GB. Computed beforehand parse tables were stored and used internally in all exper-
iments. In order to have realistic comparisons, some modifications were done to pro-
posed methods to simulate overhead of lexical analysis and startup penalty of running
compilers. The proposed algorithms as well as the original ones were run on string of
different sizes (15, 30, 50 symbols). The same grammars used in Sections 3, 4.1, 4.2
to illustrate LL(1)-Inf, SLR-Inf, and OP-Inf, respectively, were used to build the test
strings.

The experimental results are shown in Figure 6. For the sake of accuracy, all readings
are averaged using results of 20 runs. Parameters used to measure the performance
are timings and the size of produced correctness proofs. The second parameter, the
proof size, is quite an important parameter. One of the main advantages of proposed
techniques in this paper over their corresponding ones is the association of each parsing
result with a correctness proof in the form of inference-rule derivations. This proof is to
be delivered with the parsing result. In applications like proof-carrying code and mobil
computing, this proof is to be communicated. Hence it is quite important to ensure that
these proofs are of convenient sizes.

As expected and confirmed by experimental results, the proposed techniques are
faster than their original corresponding ones. Moreover, the sizes of the proofs are
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convenient compared to the lengths of the used strings. This guaranties scalability of
the proposed techniques.

6 Conclusion

This paper revealed that using systems of inference rules for achieving the parsing prob-
lem is a convenient choice for many modern applications. The relative simplicity of in-
ference rules required to express parsing algorithms (as it is confirmed in this paper for
like LL(1), LR(1), and operator-precedence parsers) attracts compiler designers to use
them instead of tractional algorithmic way. The paper showed mathematical proofs for
the equivalence between proposed systems of inference rules and their classical corre-
sponding algorithms. Results of carried experiments, endorsing the efficiency of the use
of inference rules, were shown in the paper. The paper also presented detailed examples
of using proposed systems of inference rules.
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9. de Piñerez Reyes, R.E.G., Frias, J.F.D.: Building a discourse parser for informal mathemati-

cal discourse in the context of a controlled natural language. In: Gelbukh, A. (ed.) CICLing
2013, Part I. LNCS, vol. 7816, pp. 533–544. Springer, Heidelberg (2013)

10. Deufemia, V., Paolino, L., de Lumley, H.: Petroglyph recognition using self-organizing maps
and fuzzy visual language parsing. In: ICTAI, pp. 852–859. IEEE (2012)

11. El-Zawawy, M.A.: Detection of probabilistic dangling references in multi-core programs
using proof-supported tools. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen,
H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975,
pp. 516–530. Springer, Heidelberg (2013)

12. El-Zawawy, M.A.: Distributed data and programs slicing. Life Science Journal 10(4), 1361–
1369 (2013)



14 M.A. El-Zawawy

13. Ferrucci, F., Tortora, G., Tucci, M., Vitiello, G.: A predictive parser for visual languages
specified by relation grammars. In: VL, pp. 245–252 (1994)

14. Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide, 2nd edn. Springer, Hei-
delberg (2007)

15. Hulden, M.: Constraint grammar parsing with left and right sequential finite transducers. In:
Constant, M., Maletti, A., Savary, A. (eds.) FSMNLP, ACL Anthology, pp. 39–47. Associa-
tion for Computational Linguistics (2011)

16. Jim, T., Mandelbaum, Y.: A new method for dependent parsing. In: Barthe, G. (ed.) ESOP
2011. LNCS, vol. 6602, pp. 378–397. Springer, Heidelberg (2011)

17. Jobredeaux, R., Herencia-Zapana, H., Neogi, N.A., Feron, E.: Developing proof carrying
code to formally assure termination in fault tolerant distributed controls systems. In: CDC,
pp. 1816–1821. IEEE (2012)

18. Kats, L.C.L., de Jonge, M., Nilsson-Nyman, E., Visser, E.: Providing rapid feedback in gen-
erated modular language environments: adding error recovery to scannerless generalized-lr
parsing. In: Arora, S., Leavens, G.T. (eds.) OOPSLA, pp. 445–464. ACM (2009)

19. Koo, T., Collins, M.: Efficient third-order dependency parsers. In: Hajic, J., Carberry, S.,
Clark, S. (eds.) ACL, pp. 1–11. The Association for Computer Linguistics (2010)

20. Lei, T., Long, F., Barzilay, R., Rinard, M.C.: From natural language specifications to program
input parsers. In: ACL (1), pp. 1294–1303. The Association for Computer Linguistics (2013)

21. Linz, P.: An Introduction to Formal Languages and Automata, 5th edn. Jones & Bartlett
Learning, Burlington, MA 01803, USA (2011)

22. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Dependently typed attribute grammars. In:
Hage, J., Morazán, M.T. (eds.) IFL. LNCS, vol. 6647, pp. 105–120. Springer, Heidelberg
(2011)

23. Necula, G.C.: Proof-carrying code. In: Avan Tilborg, H.C., Jajodia, S. (eds.) Encyclopedia
of Cryptography and Security, 2nd edn., pp. 984–986. Springer, Heidelberg (2011)

24. Nederhof, M.-J., Bertsch, E.: An innovative finite state concept for recognition and parsing
of context-free languages. Natural Language Engineering 2(4), 381–382 (1996)

25. Okhotin, A.: Generalized lr parsing algorithm for boolean grammars. Int. J. Found. Comput.
Sci. 17(3), 629–664 (2006)

26. Okhotin, A.: Recursive descent parsing for boolean grammars. Acta Inf. 44(3-4), 167–189
(2007)

27. Okhotin, A.: Parsing by matrix multiplication generalized to boolean grammars. Theor. Com-
put. Sci. 516, 101–120 (2014)

28. Scott, M.L.: Programming Language Pragmatics, 3rd edn. Morgan Kaufmann, Waltham
(2009)

29. Sippu, S., Soisalon-Soininen, E.: Parsing Theory: Volume II LR(k) and LL(k) Parsing, 1st
edn. Springer, Heidelberg (2013)

30. Yang, Y., Ma, M.: Sustainable mobile computing. Computing 96(2), 85–86 (2014)
31. Younessi, O., Bahrololoomi, M.H., Yazdani, A.: The extension of deterministic cancellation

parser to directly handle indirect and hidden left recursion. In: CCECE [1], pp. 1–4
32. Zhou, G., Zhao, J.: Joint inference for heterogeneous dependency parsing. In: ACL (2), pp.

104–109. The Association for Computer Linguistics (2013)


	Proof-Carrying Model for Parsing Techniques
	1 Introduction
	2 Related Work
	3 New Approach for Top-Down Parsers: LL(1)
	4 New Approaches for Bottom-Up Parsers
	4.1 LR Parsers Family
	4.2 Operator-Precedence Parsing

	5 Implementation and Evaluation
	6 Conclusion
	References




