
Frequent Statement and De-reference Elimination
for Distributed Programs

Mohamed A. El-Zawawy1,2

1 College of Computer and Information Sciences,
Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2 Department of Mathematics, Faculty of Science, Cairo University

Giza 12613, Egypt
maelzawawy@cu.edu.eg

Abstract. This paper introduces a new approach for the analysis of frequent
statement and de-reference elimination for distributed programs run on parallel
machines equipped with hierarchical memories. The address space of the lan-
guage studied in the paper is globally partitioned. This language allows program-
mers to define data layout and threads which can write to and read from other
thread memories.

Simply structured type systems are the tools of the techniques presented in
this paper which presents three type systems. The first type system defines for
program points of a given distributed program sets of calculated (ready) state-
ments and memory accesses. The second type system uses an enriched version
of types of the first type system and determines which of the specified statements
and memory accesses are used later in the program. The third type system uses
the information gather so far to eliminate unnecessary statement computations
and memory accesses (the analysis of frequent statement and de-reference elimi-
nation).

Two advantages of our work over related work are the following. The hierar-
chical style of concurrent parallel computers is similar to the memory model used
in this paper. In our approach, each analysis result is assigned a type derivation
(serves as a correctness proof).

Keywords: Ready statement and memory access analysis, semi-expectation
analysis, frequent statement and de-reference elimination analysis, certified code,
distributed programs, semantics of programming languages, operational seman-
tics, type systems.

1 Introduction

Distributed programming is about building a software that has concurrent processes co-
operating in achieving some task. For a problem specification, the type, number, and
the way of interaction of processes needed to solve the problem is decided beforehand.
Then a supercomputer can be computationally simulated by a group of workstations
to carry different processes. A group of supercomputers can in turn be combined to

B. Murgante et al. (Eds.): ICCSA 2013, Part III, LNCS 7973, pp. 82–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Frequent Statement and De-reference Elimination for Distributed Programs 83

provide a computing power greater than that provided by any single machine. This
enormous computing power provided by distributed systems is why the distributed-
programming style [1,20,30] is quite important and attractive. Among examples of dis-
tributed programming languages (DPLs), based on machines having multi-core proces-
sors and using partitioned-global model, are Titanium which is based on Java, Unified
Parallel C (UPC), Chapel, and X10.

Recomputing a non-trivial statement and re-accessing a memory location are waste
of time and power if the value of the statement and the content of the location have not
been changed. The purpose of frequent statement and de-reference elimination anal-
ysis is to save such wasted power and time. This is an interesting analysis because it
involves connecting statement and de-reference calculations to program points where
these calculation values may be reused. The analysis also requires doing changes to the
program points at the ends of these connections. Such changes to program points have
to be done carefully so that they do not destroy the compositionality. Our approach to
treat this analysis is a type system [6,4,15,5,11] built on a combination of two analyses;
one of them builds on the results of the other one.

For different programming languages, in previous work [14,3,6,4,15,5,8,9,7,16,10],
we have proved that the type-systems style is certainly an adaptable approach for
achieving many static analyses. This paper proves that this style is flexibly useful to
the involved and important problem of frequent statement and de-reference elimination
of distributed programs.

This paper introduces a new technique for frequent statement and de-reference elim-
ination for distributed programs run on hierarchical memories. Simply structured type
systems are the main tools of our technique. The proposed technique is presented using
a language (the appendix- Figure 3) equipped with basic commands for distributed ex-
ecution of programs and for pointer manipulations. The single program multiply data
(SPMD) model is the execution archetypal used in this paper. On different data of differ-
ent machines this archetypal runs the same program. The analysis of frequent statement
and de-reference elimination for distributed programs is achieved in three steps each
of which is done using a type system. The first of these steps achieves ready statement
and memory access analysis. The second step deals with semi-expectation analysis and
builds on the type system of the first step. The third type systems takes care of the anal-
ysis of frequent statement and de-reference elimination and is built on the type system
of the second step.

Motivation

The left-hand-side of Figure 1 presents a motivating example of our work. We note that
lines 4 and 6 de-reference a ∗b which has already been de-referenced in line 2 with no
changes to values of a and b in the path from 2 to 6. This is a waste of computational
power and time (accessing a secondary storage). One objective of the research in this
paper is avoid such waste by transforming the program into that in the right-hand-side
of the figure. This is not all; we need to do that in a way that provides a correctness
proof for each such transformation. We adopt a style (type systems) that provides these
proofs (type derivations).

84 M.A. El-Zawawy

0. l � c ∗d;k� a ∗b;
1. x� a ∗b+c ∗d; x� k+ l;
2. x� convert (∗(a ∗b),2); x� convert (∗k,2);
3. y� transmit c ∗d f rom 3; y� transmit l f rom 3;
4. if (∗(a ∗b) = ∗(c ∗d)) if (∗k = ∗l)
5. then y� transmit ∗(c ∗d) f rom 2; then y� transmit ∗(c ∗d) f rom 2;
6. else x� convert (∗(a ∗b),2); else x� convert (∗(a ∗b),2);

Fig. 1. A motivating example

Contributions

Contributions of this paper are new techniques, in the form of type systems, for:

1. The analysis of ready statement and memory access for distributed programs.
2. The analysis of semi-expectation for distributed programs.
3. The analysis of frequent statement and de-reference elimination of distributed pro-

grams.

Organization. Organization in the rest of the paper is as following. Section 2 presents
the type system achieving the analysis of ready statement and memory access for dis-
tributed programs. The analysis of semi-expectation as an enrichment of the type system
presented in Section 2 is outlined in Section 3. The main type system carrying the anal-
ysis of frequent statement and de-reference elimination is contained in Section 4. Re-
lated and future work are briefed in Section 5. An appendix to the paper briefly reviews
our language syntax, memory model, and operational semantics which are presented in
more details in [7].

2 Ready Statement and Memory Access Analysis

If the value of a statement and the content of a memory location have not been changed,
then the compiler should not recompute the statement or re-access the location. The pur-
pose of Frequent Statement and De-reference Elimination is to save the wasted power
and time involved in these repeated computations. This is not a trivial task; compared
to other program analyses, it is a bit complex. This task is done in stages. The first stage
is to analyze the given program to recognize ready statements and memory locations.

The analysis of ready statements and memory locations calculates for every program
point the set of statements and memory locations that are ready at that point in the sense
of Definition 1. This section presents a type system (ready type system) to achieve this
analysis for distributed programs.

Definition 1. 1. At a program point pt, a statement S is ready if each computational
path to pt:
(a) contains an evaluation of S at some point (say pt′) and
(b) does not modify S (changing value of any of S’s variables) between pt′ and pt.

Frequent Statement and De-reference Elimination for Distributed Programs 85

2. At a program point pt, a memory location l is ready if each computational path to
pt:
(a) reads l at some point (say pt′) and
(b) does not modify content of l between pt′ and pt.

The ready analysis is a forward analysis that takes as an input a set of statements and
memory locations (the ready set of the first program point). It is sensible to let this set be
the empty set. The set of types of our ready type system has the form: points-to-types×
P(Stmt+∪gAddrs), where

1. Stmt+ is the set of nontrivial statements (Figure 3 – the paper appendix),
2. gAddrs is the set of global addresses on our machine. This set is defined precisely

in the appendix of this paper, and
3. points-to-types is a set of points-to types (typically have the form of maps

from the union of variables and global addresses to the power set of global ad-
dresses [6,4,15,5]).

The subtyping relation has the form ≤p × ⊇ where ≤p is the order relation on the
points-to types and ⊇ is the order relation on P(Stmt+ ∪ gAddrs). A state on an ex-
ecution path is of type rs ∈ P(Stmt+ ∪ gAddrs) if all elements of rs are ready at this
state according to Definition 1. Judgments of the ready type system have the form
S : (p,rs)→m (A′, p′,rs′). The symbols p and p′ denote the points-to types of the pre
and post states of executing S. The set A′ denotes the set of addresses that S may evalu-
ate to. We assume that all such pointer information are given along with the statement S.
Techniques like [6,4,15,5] are available to compute the pointer information. For a given
statement along with pointer information and a ready pre-type rs, we present a type
system to calculate a post ready-type rs′ such that S : (p,rs)→m (A′, p′,rs′). The type
derivation of this typing process is a proof for the correctness of the ready information.
The meaning of the judgment is that if elements of rs are ready before executing S, then
elements of rs′ are ready after executing S.

The inference rules of the ready type system are as follows:

n : p→m (A′, p′)

n : (p,rs)→m (A′, p′ ,rs)

S1 : (p,rs)→m (A′′, p′′ ,rs′′)
S2 : (p′′,rs′′)→m (A′, p′ ,rs′)

(irop)
S1 iop S2 : (p,rs)→m (∅, p′,rs′ ∪ {S1 iop S2})

x : p→m (A′, p′)

x : (p,rs)→m (A′, p′ ,rs)

S1 : (p,rs)→m (A′′, p′′ ,rs′′)
S2 : (p′′,rs′′)→m (A′, p′ ,rs′)

(br
op)

S1 bop S2 : (p,rs)→m (∅, p′ ,rs′ ∪ {S1 bop S2})

∗S : p→m (A′, p′) S : (p,rs)→m (A′′, p′′ ,rs′′)
(∗r)

∗S : (p,rs)→m

{
(A′, p′ ,rs′′ ∪ {∗S,g}), A′′ = {g};
(A′, p′ ,rs′′ ∪ {∗S}), |A′′| � 1.

skip : (p,rs)→m (∅, p,rs)

x� S : p→m (A′, p′) S : (p,rs)→m (A′′, p′′ ,rs′′)
(�r)

x� S : (p,rs)→m (A′, p′ ,rs′′ \ {S ∈ Stmt | x ∈ free(S)})
S1← S2 : p→m (A′, p′)
S1 : (p,rs)→m (A1, p1 ,as1)

S2 : (p1,as1)→m (A2, p2 ,as2)
(←r)

S1← S2 : (p,rs)→m (A′, p′ ,as2 \ (A′ ∪ {S | S : p→m (As,) & As∩A′ � ∅}))

S1 : (p,rs)→m (A′′, p′′ ,rs′′)
S2 : (p′′ ,rs′′)→m (A′, p′ ,rs′)

(seqr)
S1;S2 : (p,rs)→m (A′, p′ ,rs′)

S : (p,rs)→m (A′′, p′′ ,rs′′)
St : (p,rs′′)→m (A′, p′ ,rs′)
Sf : (p,rs′′)→m (A′, p′ ,rs′)

(ifr)
if S then St else S f : (p,rs)→m (A′, p′ ,rs′)

86 M.A. El-Zawawy

S1[S2/x] : (p,rs)→m (A′, p′ ,rs′)
(applr)

(λx.S1)S2 : (p,rs)→m (A′, p′ ,rs′)

S : (p,rs)→ (A′′, p′′ ,rs′)
St : (p′′,rs′)→m (A′, p′ ,rs)

(whlr)
while S do St : (p,rs)→m (A′, p′ ,rs′)

S : (p,rs)→m (A′, p′ ,rs′)
(absr)

λx.S : (p,rs)→m (A′, p′ ,rs′)

f d(name) : (p,rs)→m (A′, p′ ,rs′)
(namer)

name : (p,rs)→m (A′, p′ ,rs′)

(λx.S′)S : (p,rs)→m (A′, p′ ,rs′)
(letrecr)

letrec x = S in S′ : (p,rs)→m (A′, p′ ,rs′)

newl : p→m (A′, p′)
(newr)

newl : (p,rs)→m (A′, p′ ,rs)

convert (S,n) : p→m (A′, p′)
S : (p,rs)→m (A, p′′,rs′)

(convertr)
convert (S,n) : (p,rs)→m (A′, p′ ,rs′)

transmit S1 from S2 : p→ (A′, p′)
S2 : (p,rs)→m (A2, p2 ,as2)
S1 : (p2,as2)→m (A1, p1 ,rs′)

(transr)
transmit S1 from S2 : (p,rs)→m (A′, p′ ,rs′)

(p′1,rs′1) ≤ (p1,as1)
S : (p1,as1)→m (p2,as2)

(p2,as2) ≤ (p′2,rs′2) (csqr)
S : (p′1,rs′1)→m (p′2,rs′2)

Defs : ∅� f d S : (p,rs)→m (A′, p′ ,rs′)
(prgr)

Defs : S : (p,rs)→m (A′, p′ ,rs′)

Comments on the inference rules are in order. We note that numbers, variables, and
the allocating statement (new) do not affect the ready pre-type. In line with semantic
rules (irop) and (br

op) (the paper’s appendix), nontrivial arithmetic and boolean state-
ments and their nontrivial sub-statements are made ready. The direct assignment rule
(�r) expresses that after executing the assignment the sub-statements of r.h.s. become
ready and that all statements involving x become unready as the value of x may become
different. The rule (∗r) reflects the fact that the statement ∗S becomes ready after ex-
ecuting the de-reference. Moreover if S evaluates to a single address according to the
underlying pointer analysis, then this address becomes ready as well. However if S eval-
uates to a large set of addresses (more than one), then we are not sure which of these
addresses is the concerned one and hence can not conclude any readiness information
about addresses. The rule (←r) adds the sub-statements of S1 and S2 to the ready pre-
type. Since the content of address referenced by S1 is possibly changed after executing
the statement, all statements involving de-referencing this address are removed from
the set of ready items. Remaining rules are self-explanatory. The Boolean statements
true and false have inference rules similar to that of n.

All in all, the information provided by type derivations obtained using this and the
following type systems is classified into two sorts. The first sort is about knowing the
program point at which a particular statement becomes ready. The second sort of infor-
mation is about the program point at a which a pre-computed value of a ready statement
can be replaced with the statement.

Now we recall the assumption that our distributed system consists of |M| machines.
For a given statement S and a given machine m, the type system given above calculates
for each program point of S, the set of ready items. The following rule can be used to
combine the information calculated for each machine to get a new ready information
for each program point. The new ready information is valid on any of the |M|machines.

∀m ∈M. S : (sup{p, pj | j � i},sup{rs,rs j | j � i})→m (Am, pm ,rsm)
(main-rs)

S : (p,rs)→M (∪iAi,sup{p1 , . . . , pn},sup{rs1, . . . ,rsn})

Frequent Statement and De-reference Elimination for Distributed Programs 87

The rule above supposes we have a suitable notion for join of pointer types.
It is not hard to prove the soundness of the above type system:

Theorem 1. Suppose that (S,δ)→ (V,δ ′), S : (p,rs)→ (A′, p′,rs′) and the items of
rs are ready at the point corresponding to δ on the execution path. Then the items of rs′
are ready at the point corresponding to δ ′ on the execution path.

3 Semi-expectation Analysis

The aim of frequent statement elimination is to introduce new variables to accommo-
date values of frequent statements and reusing these values rather than recomputing the
statements. Analogously, the aim of frequent de-references elimination is to introduce
new variables to accommodate values of frequent de-references and reusing these val-
ues rather than re-accessing the memory. The information gathered so far by the ready
type system introduced in the previous section is not enough to achieve frequent state-
ments and de-references elimination. We need to enrich the ready information, assigned
to each program point, with a new information called semi-expectable information:

Definition 2. 1. At a program point p, a statement S is semi-expectable if there is a
computational path from p that:
(a) contains an evaluation of S at some point (say p′), where S is ready at p′, and
(b) does not evaluate S between p′ and p.

2. At a program point p, a memory location l is semi-expectable if each computational
path to p:
(a) reads l at some point (say p′) where l is ready at p′, and
(b) does not read l between p′ and p.

The semi-expectation analysis is a backward analysis that takes as an input a set of
statements and memory locations (the semi-expectable set of the last program point). It
is sensible to let this set be the empty set. The following example gives an intuition for
the previous definition:

i f (. . .) then a� y+ t else b� ∗r; c� (y+ t)/ ∗ r.
Neither the statement y+ t nor the statement ∗r is ready after the if statement because
they are not computed in all branches. Hence it is not true to replace these statements
with variables towards optimizing the last statement of the example. The job of the type
system presented in this section is to provide us with this sort of information. More
precisely, as the statements y+ t and ∗r are not ready after the if statement, the second
statement of the example does not make them semi-expectable.

The semi-expectation analysis assigns for each program point the set of items that
are semi-expectable. The analysis is based on the readiness analysis and is backward.
The set of types of the semi-expectation type system has the form: points-to-types×
P(Stmt+∪gAddrs)×P(Stmt+∪gAddrs). The subtyping relation has the form ≤p × ⊇
×⊇. A state on an execution path is of type se ∈P(Stmt+∪gAddrs) if all elements of se
are semi-expectable according to Definition 2. Judgments of the semi-expectation type
system have the form S : (p,rs,se)→m (A′, p′,rs′,se′). For a given statement along with

88 M.A. El-Zawawy

pointer information, readiness information, and a semi-expectation type se′, we present
a type system to calculate a pre semi-expectable-type se such that S : (p,rs,se)→m

(A′, p′,rs′,se′). The type derivation of this typing process is a proof for the correctness
of the semi-expectable information. The meaning of the judgment is that if elements
of se′ are semi-expectable after executing S, then elements of se must have been semi-
expectable before executing S.

The inference rules of the semi-expectation type system are as follows:

n : p→m (A′, p′)

n : (p,rs,se)→m (A′, p′ ,rs,se)

x : p→m (A′, p′)

x : (p,rs,se)→m (A′, p′ ,rs,se)

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′) S2 : (p′′,rs′′,se′′)→m (A′, p′ ,rs′,se′)
(ieop)

S1 iop S2 : (p,rs,se∪ (rs∩{S1 iop S2}))→m (∅, p′ ,rs′ ∪ {S1 iop S2},se′)

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′) S2 : (p′′ ,rs′′,se′′)→m (A′, p′ ,rs′,se′)
(be

op)
S1 bop S2 : (p,rs,se)→m (∅, p′ ,rs′ ∪ {S1 bop S2},se′)

∗S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)
(∗e)

∗S : (p,rs,se∪ (re∩{∗S,g}))→m

{
(A′, p′ ,rs′′ ∪ {∗S,g},se′′), A′ = {g};
(A′, p′ ,rs′′ ∪ {∗S},se′′), |A′| � 1.

skip : (p,rs,se)→m (∅, p,rs,se)

x� S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)
(�e)

x� S : (p,rs,se)→m (A′, p′ ,rs′′ \ {S ∈ Stmt | x ∈ free(S)},se′′)

S1← S2 : p→m (A′, p′)
S1 : (p,rs,se)→m (A1, p1 ,as1,se1)

S2 : (p1,as1,se1)→m (A2, p2 ,as2,se2)
(←e)

S1← S2 : (p,rs,se)→m (A′, p′ ,as2 \ (A′ ∪ {S | S : p→m (As,) & As∩A′ � ∅}),se2)

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)
S2 : (p′′ ,rs′′,se′′)→m (A′, p′ ,rs′,se′)

(seqe)
S1;S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)

S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)
St : (p,rs′′,se′′)→m (A′, p′ ,rs′,se′)
Sf : (p,rs′′,se′′)→m (A′, p′ ,rs′,se′)

(ife)
if S then St else S f : (p,rs,se)→m (A′, p′ ,rs′,se′)

S1[S2/x] : (p,rs,se)→m (A′, p′ ,rs′,se′)
(apple)

(λx.S1)S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)

S : (p,rs,se)→ (A′′, p′′ ,rs′,se′) St : (p′′ ,rs′,se′)→m (A′, p′ ,rs,se)
(whle)

while S do St : (p,rs,se)→m (A′, p′ ,rs′,se′)

f d(name) : (p,rs,se)→m (A′, p′ ,rs′,se′)
(namee)

name : (p,rs,se)→m (A′, p′ ,rs′,se′)

S : (p,rs,se)→m (A′, p′ ,rs′,se′)
(abse)

λx.S : (p,rs,se)→m (A′, p′ ,rs′,se′)

(λx.S′)S : (p,rs,se)→m (A′, p′ ,rs′,se′)
(letrece)

letrec x = S in S′ : (p,rs,se)→m (A′, p′ ,rs′,se′)

newl : p→m (A′, p′)
(newe)

newl : (p,rs,se)→m (A′, p′ ,rs,se)

convert (S,n) : p→m (A′, p′) S : (p,rs,se)→m (A, p′′ ,rs′,se′)
(converte)

convert (S,n) : (p,rs,se)→m (A′, p′ ,rs′,se′)

transmit S1 from S2 : p→ (A′, p′)
S2 : (p,rs,se)→m (A2, p2 ,as2,se2)

S1 : (p2,as2,se2)→m (A1, p1 ,rs′,se′)
(transe)

transmit S1 from S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)

Frequent Statement and De-reference Elimination for Distributed Programs 89

(p′1,rs′1,se′1) ≤ (p1,as1,se1)
S : (p1,as1,se1)→m (p2,as2,se2)

(p2,as2,se2) ≤ (p′2,rs′2,se′2) (csqe)
S : (p′1,rs′1,se1)→m (p′2,rs′2,se′2)

Defs : ∅� f d S : (p,rs,se)→m (A, p′,rs′,se′)
(prge)

Defs : S : (p,rs,se)→m (A, p′,rs′,se′)

Some comments on the inference rules are in order. In the rule (ieop), given the post
type se′, we calculate the pre-type se′′ for the statement S2. Then the resulting pre-type
is used as a post-type for the statement S1 to calculate the pre-type se. In line with
Definition 2, the arithmetic statement S1 iop S2 is added to se only if it belongs to rs.
Similar explanations illustrate the rule (∗e). The remaining rules mimic the rules of the
ready type system.

Now we recall the assumption that our distributed system consists of |M| machines.
For a given statement S and a given machine m, the type system given above calculates
for each program point of S, the set of semi-expectable items. Now the following rule
can be used to combine the information calculated for each machine to get a new semi-
expectable information for each program point. The new semi-expectable information
is valid on any of the |M| machines.

∀m ∈M. S : (sup{p, pj | j � i},sup{rs,rs j | j � i},sem)→m (Am, pm ,rsm, inf{se′ ,se j | j � i})
(main-rs)

S : (p,rs, inf{se1, . . . ,se|M|})→M (∪iAi,sup{p1 , . . . , p|M| },sup{rs1, . . . ,rs|M|},se′)

The difference in the way that this rule treats the semi-expectable information and
the way ready information is treated is explained by the fact that the ready analysis is
forward while the the semi-expectation analysis is backward.

It is not hard to prove the soundness of the above type system:

Theorem 2. Suppose that (S,δ) → (V,δ ′), S : (p,rs,se) → (A′, p′,rs′,se′) and the
items of se′ are semi-expectable at the point corresponding to δ ′ on the execution path.
Then the items of se are semi-expectable at the point corresponding to δ on the execu-
tion path.

4 Frequent Statement and De-reference Elimination

This section presents a type system that is an enrichment of the type system presented
in the previous section. The type system of this section achieves the frequent statement
and de-reference elimination. The type system uses a function sn : S+→ Stmt-names
that assigns each nontrivial statement a name. These names are meant to carry values
of frequent statements and de-references. The judgments of our type system have the
form S : (p,rs,se)→m (A′, p′,rs′,se′)� (ns,S′). The type information (p,rs,se) and
(A′, p′,rs′,se′) were calculated by the previous type system. S′ is the optimization of
S and ns is a sequence of assignments that links optimized statements with the names
of their un-optimized versions. The inference rules for the frequent statements and de-
references elimination are as follows:

n : p→m (A′, p′)

n : (p,rs,se)→m (A′, p′ ,rs,se)� (skip,n)

x : p→m (A′, p′)

x : (p,rs,se)→m (A′, p′ ,rs,se)� (skip,x)

90 M.A. El-Zawawy

∗S ∈ as ∗S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns,S′)
(∗ f

1)

∗S : (p,rs,se∪ (re∩{∗S,g}))→m

{
(A′, p′ ,rs′′ ∪ {∗S,g},se′′), A′ = {g};
(A′, p′ ,rs′′ ∪ {∗S},se′′), |A′| � 1. � (ns,sn(∗S))

∗S � as ∗S ∈ se′ ∗S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns,S′)
(∗ f

2)

∗S : (p,rs,se∪ (re∩{∗S,g}))→m

{
(A′, p′ ,rs′′ ∪ {∗S,g},se′′), A′ = {g};
(A′, p′ ,rs′′ ∪ {∗S},se′′), |A′| � 1.
� (ns;sn(∗S)� ∗S′ ,sn(∗S))

∗S � as ∗S � se′ ∗S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns,S′)
(∗ f

3)

∗S : (p,rs,se∪ (re∩{∗S,g}))→m

{
(A′, p′ ,rs′′ ∪ {∗S,g},se′′), A′ = {g};
(A′, p′ ,rs′′ ∪ {∗S},se′′), |A′| � 1. � (ns,∗S′)

S1 iop S2 ∈ re
S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns1,S′1)
S2 : (p′′ ,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (ns2,S′2) (i f

op(1)
)

S1 iop S2 : (p,rs,se∪ (rs∩{S1 iop S2}))→m (∅, p′ ,rs′ ∪ {S1 iop S2},se′)
� (ns1;ns2,sn(S1 iop S2))

S1 iop S2 � as
S1 iop S2 ∈ se′

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns1,S′1)
S2 : (p′′ ,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (ns2,S′2) (i f

op(2)
)

S1 iop S2 : (p,rs,se∪ (rs∩{S1 iop S2}))→m (∅, p′ ,rs′ ∪ {S1 iop S2},se′)
� (ns1;ns2;sn(S1 iop S2)� (S′1 iop S′2),sn(S1 iop S2))

S1 iop S2 � as
S1 iop S2 � se′

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns1,S′1)
S2 : (p′′ ,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (ns2,S′2) (i f

op(3)
)

S1 iop S2 : (p,rs,se∪ (rs∩{S1 iop S2}))→m (∅, p′ ,rs′ ∪ {S1 iop S2},se′)
� (ns1;ns2,S′1 iop S′2)

skip : (p,rs,se)→m (∅, p,rs,se)� (skip,skip)

x� S : p→m (A′, p′) S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (sn,S′)
(� f)

x� S : (p,rs,se)→m (A′, p′ ,rs′′ \ {S ∈ Stmt | x ∈ free(S)},se′′)� (skip,ns;x� S′)

S1 : (p,rs,se)→m (A1, p1 ,as1,se1)� (ns1,S′1)
S2 : (p1,as1,se1)→m (A2, p2 ,as2,se2)� (ns2,S′2)

S1← S2 : p→m (A′, p′)
(← f)

S1← S2 : (p,rs,se)→m (A′, p′ ,as2 \ (A′ ∪ {S | S : p→m (As,) & As∩A′ � ∅}),se2)
� (skip,ns1;ns2;S′1← S′2)

S1 : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns1,S′1)
S2 : (p′′,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (ns2,S′2) (seqf)

S1;S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns1;ns2,S
′
1;S′2)

S : (p,rs,se)→m (A′′, p′′ ,rs′′,se′′)� (ns,S′)
St : (p,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (nst ,S′t)
Sf : (p,rs′′,se′′)→m (A′, p′ ,rs′,se′)� (ns f ,S′f) (if f)

if S then St else S f : (p,rs,se)→m (A′, p′ ,rs′,se′)� (skip,ns; if S′ then nst ;S′t else ns f ;S′f)

(λx.S1)[S2/x] : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′)
(applf)

(λx.S1)S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′)

S : (p,rs,se)→ (A′′, p′′ ,rs′,se′)� (ns,S′) St : (p′′,rs′,se′)→m (A′, p′ ,rs,se)� (nst ,S
′
t)

(whl f)
while S do St : (p,rs,se)→m (A′, p′ ,rs′,se′)� (skip,ns;while S′ do (nst ;S′t ;ns))

f d(name) : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′)
(namef)

name : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′)

S : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′)
(absf)

λx.S : (p,rs,se)→m (A′, p′ ,rs′,se′)� (skip,ns;λx.S′)

Frequent Statement and De-reference Elimination for Distributed Programs 91

newl : p→m (A′, p′)
(newf)

newl : (p,rs,se)→m (A′, p′ ,rs,se)� (skip,newl)

(λx.S′)S : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′′)
(letrecf)

letrec x = S in S′ : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns,S′′)

convert (S,n) : p→m (A′, p′) S : (p,rs,se)→m (A, p′′,rs′,se′)� (ns,S′)
(convert f)

convert (S,n) : (p,rs,se)→m (A′, p′ ,rs′,se′)� (skip,ns;convert (S′,n))

transmit S1 from S2 : p→ (A′, p′)
S2 : (p,rs,se)→m (A2, p2 ,as2,se2)� (ns2,S′2)
S1 : (p2,as2,se2)→m (A1, p1 ,rs′,se′)� (ns1,S′1) (trans f)

transmit S1 from S2 : (p,rs,se)→m (A′, p′ ,rs′,se′)� (ns1;ns2, transmit S′1 from S′2)

(p′1,rs′1,se′1) ≤ (p1,as1, pa1)
(p2,as2, pa2) ≤ (p′2,rs′2,se′2)

S : (p1,as1, pa1)→m (p2,as2, pa2)� (ns,S′)
(csqf)

S : (p′1,rs′1, pa1)→m (p′2,rs′2,se′2)� (ns,S′)

Defs : ∅� f d S : (p,rs,se)→m (A, p′ ,rs′,se′)� (ns,S′)
(prg f)

Defs : S : (p,rs,se)→m (A, p′,rs′,se′)� Defs : ns;S′

We note the following on the inference rules. A big deal of optimization is achieved
by the three rules for ∗S. These rules are (∗ f

1),(∗ f
2), and (∗ f

3). The rule (∗ f
1) takes care

of the case where ∗S is ready and is replaceable by its name under the function sn. The
rule (∗ f

2) treats the case where ∗S is semi-expectable and is not ready before calculating

the statement. In this case, a statement name of ∗S is used. The rule (∗ f
3) considers the

case where ∗S is neither semi-expectable at the program point after execution nor ready
before calculating the statement. In this case, the statement ∗S does not get changed.
Similarly, the three rules (i f

op(1)
),(i f

op(2)
), and (i f

op(3)
) treat different cases for arithmetic

statements. The Boolean statements are treated with rules quite similar to that of arith-
metic statements. The rule (whl f) reuses frequent sub-statements of the guard. This is
done via adding ns in the positions clarified in the rule. Remaining rules of system are
self-explanatory.

For expressing the soundness, we introduce the following definition:

Definition 3. Suppose that δ is a state defined on the set of locations, Loc (Defi-
nition 4). Suppose also that δ∗ is a state defined on Loc∪ Stmt-names. The expres-
sion δ ≡se δ∗ denotes the fact that δ and δ∗ are equivalent with respect to the semi-
expectation type se. More precisely δ ≡se δ∗ iff:

1. ∀ j ∈ Loc. δ (j) = δ∗(j), and
2. ∀S ∈ se. (S,δ)�m (v,δ ′) =⇒ δ∗(sn(S)) = v.

The soundness of frequent statements and de-references elimination means that the
original and optimized programs are equivalent in the following sense:

– The states of the two programs coincide on the Loc, and
– If a statement is both ready and semi-expectable, then its semantics in the original-

program state equals the value of its corresponding name in optimized-program
state.

92 M.A. El-Zawawy

This gives an intuition to the previous definition. The following soundness theorem is
proved by a structure induction.

Theorem 3. Suppose that S : (p,rs,se)→m (A′, p′,rs′,se′)� (ns,S′) and δ ≡se δ∗.
Then

– (S,δ)�m (v,δ ′) =⇒∃δ ′∗ . δ ′ ≡se′ δ ′∗ and (S′,δ∗)�m (v,δ ′∗).
– (S′,δ∗)�m (v,δ ′∗) =⇒∃δ ′. δ ′ ≡se′ δ ′∗ and (S,δ)�m (v,δ ′).

5 Related and Future Work

The techniques of common sub-expression elimination (CSE) [18,17] are among the
most closed to our work. In [27], a type system for CSE of the while language is in-
troduced. The work presented in our paper can be realized as a generalization of that
presented in [27]. The generality of our work is evident in our language model which
is much richer with distributed and pointer commands. Consequently, the operational
semantics that we measure the soundness of our system against is much more involved
than that used in [27]. Using new opportunities appearing while scheduling of control-
intensive designs, the work in [25] introduces a technique that dynamically eliminates
CSE. To optimize polynomial expressions (important for applications like domains,
computer graphics, and signal processing), the paper [19] generalizes algebraic tech-
niques originally designed for multilevel logic synthesis. This generalization uses fac-
toring and eliminating common subexpressions.

The association of a correctness proof with each result of the static analysis is im-
portant and needed by applications like proof-carrying code and certified code. The
work presented in this paper has the advantage over most related work of constructing
these proofs. Adding to the value of using type systems, the proofs constructed in our
proposed approach have the form of type derivations. The work in [6,4,15,5,8,9,7,16]
presents many examples of other static analyses that are in the form of type systems.

In [21], a technique for flow-insensitive pointer analysis of programs that run on
parallel and hierarchical machines and that share memory is introduced. Via a two-
level hierarchy, [22] and [23] present constraint-based approaches to evaluate locality
information and sharing attributes of references. Our language model is a generalization
of models presented in [21,22].

Much research acclivities [21,24] was devoted to analyze distributed programs. This
is motivated by the importance of distributed programming as a main stream of pro-
gramming today. The examining and capturing of causal and concurrent relationships
are among important issues to many distributed systems applications. In [28], an anal-
ysis that examines the source code of each process constructs an inclusive graph, POG,
of the possible behaviors of systems. Data racing bugs [2] can be a side effect of the par-
allel access of cores of a multi-core process to a physically distributed memory. In [2] a
technique, called DRARS, is proposed for avoidance and replay of this data race. Paral-
lel programs on DSM or multi-core systems, can be debugged using DRARS. The clas-
sical problems of satisfiability decidability and algorithmic decidability are approached
in [29] on the distributed-programs model of message sending. In this work, distributed
programs are represented by communicating via buffers.

Frequent Statement and De-reference Elimination for Distributed Programs 93

Mathematical domains (sets) and maps between domains mathematically represent
data structures and programs in the area of denotational semantics. For future work, it
is interesting to study the possibility of translating concepts of frequent statement and
de-reference elimination to the side of denotational semantics [14,3]. This translation
has the impact of easing achieving theoretical studies about frequent statement and de-
reference elimination. Established theoretical results may then be translated back to
the side of data structures and programs. Similarly, we also intend to test the gains of
applying the type systems approach on the problems treated by our work in [10,12,13].

6 Conclusion

This paper introduces a new technique for the analysis of frequent statement and de-
reference elimination for distributed programs running on parallel machines equipped
with hierarchical memories. Type systems are the tools of the techniques presented in
this paper which presents three type systems. The first type system defines for program
points of a given distributed program sets of calculated (ready) statements and memory
accesses. The second type system determines which of the ready statements and mem-
ory accesses are used later in the program. The third type system eliminates unnecessary
statement computations and memory accesses.

References

1. Barpanda, S.S., Mohapatra, D.P.: Dynamic slicing of distributed object-oriented programs.
IET Software 5(5), 425–433 (2011)

2. Chiu, Y.-C., Shieh, C.-K., Huang, T.-C., Liang, T.-Y., Chu, K.-C.: Data race avoidance and
replay scheme for developing and debugging parallel programs on distributed shared memory
systems. Parallel Computing 37(1), 11–25 (2011)

3. El-Zawawy, M.A.: Semantic spaces in Priestley form. PhD thesis, University of Birmingham,
UK (January 2007)

4. El-Zawawy, M.A.: Flow sensitive-insensitive pointer analysis based memory safety for mul-
tithreaded programs. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 355–369. Springer, Heidelberg (2011)

5. El-Zawawy, M.A.: Probabilistic pointer analysis for multithreaded programs. ScienceA-
sia 37(4), 344–354 (2011)

6. El-Zawawy, M.A.: Program optimization based pointer analysis and live stack-heap analysis.
International Journal of Computer Science Issues 8(2), 98–107 (2011)

7. El-Zawawy, M.A.: Abstraction analysis and certified flow and context sensitive points-to
relation for distributed programs. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N.,
Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336,
pp. 83–99. Springer, Heidelberg (2012)

8. El-Zawawy, M.A.: Dead code elimination based pointer analysis for multithreaded programs.
Journal of the Egyptian Mathematical Society 20(1), 28–37 (2012)

9. El-Zawawy, M.A.: Heap slicing using type systems. In: Murgante, B., Gervasi, O., Misra,
S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III.
LNCS, vol. 7335, pp. 592–606. Springer, Heidelberg (2012)

10. El-Zawawy, M.A.: Recognition of logically related regions based heap abstraction. Journal
of the Egyptian Mathematical Society 20(2) (September 2012)

94 M.A. El-Zawawy

11. El-Zawawy, M.A.: Detection of probabilistic dangling references in multi-core programs
using proof-supported tools. In: Murgante, B., et al. (eds.) ICCSA 2013, Part III. LNCS,
vol. 7973, Springer, Heidelberg (2013)

12. El-Zawawy, M.A., Daoud, N.M.: Dynamic verification for file safety of multithreaded pro-
grams. IJCSNS International Journal of Computer Science and Network Security 12(5),
14–20 (2012)

13. El-Zawawy, M.A., Daoud, N.M.: New error-recovery techniques for faulty-calls of functions.
Computer and Information Science 5(3), 67–75 (2012)

14. El-Zawawy, M.A., Jung, A.: Priestley duality for strong proximity lattices. Electr. Notes
Theor. Comput. Sci. 158, 199–217 (2006)

15. El-Zawawy, M.A., Nayel, H.A.: Partial redundancy elimination for multi-threaded programs.
IJCSNS International Journal of Computer Science and Network Security 11(10), 127–133
(2011)

16. El-Zawawy, M.A., Nayel, H.A.: Type systems based data race detector. IJCSNS International
Journal of Computer Science and Network Security 5(4), 53–60 (2012)

17. Gopalakrishnan, S., Kalla, P.: Algebraic techniques to enhance common sub-expression elim-
ination for polynomial system synthesis. In: DATE, pp. 1452–1457. IEEE (2009)

18. Ho, H., Szwarc, V., Kwasniewski, T.A.: Low complexity reconfigurable dsp circuit imple-
mentations based on common sub-expression elimination. Signal Processing Systems 61(3),
353–365 (2010)

19. Hosangadi, A., Fallah, F., Kastner, R.: Optimizing polynomial expressions by algebraic fac-
torization and common subexpression elimination. IEEE Trans. on CAD of Integrated Cir-
cuits and Systems 25(10), 2012–2022 (2006)

20. Seragiotto Jr., C.: Thomas Fahringer. Performance analysis for distributed and parallel java
programs with aksum. In: CCGRID, pp. 1024–1031. IEEE Computer Society (2005)

21. Kamil, A., Yelick, K.A.: Hierarchical pointer analysis for distributed programs. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 281–297. Springer, Heidelberg
(2007)

22. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: POPL, pp. 199–213
(2000)

23. Liblit, B., Aiken, A., Yelick, K.A.: Type systems for distributed data sharing. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 273–294. Springer, Heidelberg (2003)

24. Lindberg, P., Leingang, J., Lysaker, D., Khan, S.U., Li, J.: Comparison and analysis of eight
scheduling heuristics for the optimization of energy consumption and makespan in large-
scale distributed systems. The Journal of Supercomputing 59(1), 323–360 (2012)

25. Nicolau, A., Dutt, N.D., Gupta, R., Savoiu, N., Reshadi, M., Gupta, S.: Dynamic common
sub-expression elimination during scheduling in high-level synthesis. In: ISSS, pp. 261–266.
IEEE Computer Society (2002)

26. Onbay, T.U., Kantarci, A.: Design and implementation of a distributed teleradiaography sys-
tem: Dipacs. Computer Methods and Programs in Biomedicine 104(2), 235–242 (2011)

27. Saabas, A., Uustalu, T.: Program and proof optimizations with type systems. Journal of Logic
and Algebraic Programming 77(1-2), 131–154 (2008); The 16th Nordic Workshop on the
Prgramming Theory (NWPT 2006)

28. Simmons, S., Edwards, D., Kearns, P.: Communication analysis of distributed programs.
Scientific Programming 14(2), 151–170 (2006)

29. Toporkov, V.V.: Dataflow analysis of distributed programs using generalized marked nets. In:
DepCoS-RELCOMEX, pp. 73–80. IEEE Computer Society (2007)

30. Truong, H.L., Fahringer, T.: Soft computing approach to performance analysis of parallel and
distributed programs. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 50–60. Springer, Heidelberg (2005)

Frequent Statement and De-reference Elimination for Distributed Programs 95

Appendix: Memory Model, Language, and Operational Semantics

This appendix briefly reviews our language syntax, memory model, and operational se-
mantics which are presented in more details in [7]. Hierarchical [24,26] memory models
are typically used in parallel computers (Figure 2).

Fig. 2. Hierarchy memory

In PGAS languages, each pointer is assigned the memory-hierarchy level that the
pointer may reference. Two-levels hierarchy is shown in Figure 2 in which τ is a core
pointer and may point to addresses on core 1 and υ is a node pointer. These pointer
domains are represented via assigning a width (number) to each pointer. Increasing
hierarchy levels is the trend in hardware research. Hence benefiting from the hierar-
chy [24,26] is very important for software.

name � ’string of characters’.

S ∈ Stmts� n | true | false | x | S1 iop S2 | S1 bop S2 | ∗S | skip | name | x� S | S1← S2 |
S1;S2 | if S then St else S f | while S do St | λx.S | S1S2 | letrec x = S in S′ |
newl | convert (S,n) | transmit S1 from S2.

Defs� (name = S);Defs | ε.
Program � Defs : S.

where
x ∈ lVar, an infinite set of variables, n ∈Z (integers), iop ∈ Iop (integer-valued binary operations),
and bop ∈ Bop (Boolean-valued binary operations).

Fig. 3. The programming language whiled

Figure 3 presents the syntax of Whiled [21,22] used to present the results of this
paper. Whiled has pointer, parallelism, and function constructions [24,26] and supports
the SPMD parallelism model in which the same code is executed on all machines. The

96 M.A. El-Zawawy

hierarchy height of memory is denoted by h. Therefore, pointer widths are in [1,h]. The
language uses a fixed set of variables, lVar, each of which is machine-private. For each
program, the semantics specifies a map fd of the domain Function-defs:

f d ∈ Function-defs = ’strings of characters’→ Stmts.

This map is defined using the following inference rules:

(fd1)
ε : f d� f d

Defs : f d[name �→ S]� f d′
(fd2)

(name = S);Defs : f d� f d′

The semantics introduces transition relations�m; between pairs of statements and
states and pairs of values and states. The following definition introduces components
used in the inference rules of the semantics.

Definition 4. 1. The set of global variables, denotes by gVar, is defined as gVar =
{(m,x) | m ∈M,x ∈ lVar}.

2. The set of global addresses, denotes by gAddrs, is defined as gAddrs = {g =
(l,m,a) | l ∈ L,m ∈M,a ∈ lAddrs}.

3. loc ∈ Loc = gAddrs∪gVar.
4. v ∈ Values =Z∪gAddrs∪{true, false}∪ {λ x.S | S ∈ Stmt}.
5. δ ∈ States = Loc −→ Values.

The symbols M,W, and lAddrs denote the set of machines labels (integers), the set
of width {1, . . . ,h}, and the set of local addresses located on each single machine, re-
spectively. The set of labels of allocation sites is denoted by L.

The semantics judgments have the form (S,δ)�m (v,δ ′) meaning that executing S on
the machine m and in the state δ produces the value v and modifies δ to δ ′. We have
δ [x �→ v]⇐⇒ λ y. if y = x then v else δ (y).

The inference rules of our semantics are as follows:

(n,δ)�m (n,δ) (true,δ)�m (true,δ) (false,δ)�m (false,δ) (x,δ)�m (δ (x),δ)

(λx.S,δ)�m (λx.S,δ)(abs)

(S1,δ)�m (n1,δ ′′) (S2,δ ′′)�m (n2,δ ′)
(int-stmt)

(S1 iop S2,δ)�m

{
(n1 iop n2,δ ′), n1 iop n2 ∈Z;
abort, otherwise.

(S1,δ)�m (b1,δ ′′) (S2,δ ′′)�m (b2,δ ′)
(bo-stmt)

(S1 bop S2,δ)�m

{
(b1 bop b2,δ ′), b1 bop b2 is a Boolean value;
abort, otherwise.

(skip,δ)�m (0,δ)

(S,δ)�m (g,δ ′)
(de-ref)

(∗S,δ)�m

{
(δ ′(g),δ ′), g ∈ gAddrs;
abort, otherwise.

(S,δ)�m abort

(x� S,δ)�m abort

(S,δ)�m (v,δ ′)

(x� S,δ)�m (v,δ ′[x �→ v])

(S1,δ)�m abort

(S1;S2,δ)�m abort

(S1,δ)�m abort or for v � gAddrs. (S1,δ)�m (v,δ ′′)
(←1)

(S1← S2,δ)�m abort

(S1,δ)�m (v,δ ′′)
(S2,δ ′′)�m abort

(←2)
(S1← S2,δ)�m abort

(S1,δ)�m abort

(S1;S2,δ)�m abort

(S1,δ)�m (g,δ ′′)
(S2,δ ′′)�m (v,δ ′′′)

g ∈ gAddrs
(←3)

(S1← S2,δ)�m (v,δ ′′′[g �→ v])

(S1,δ)�m (v1,δ ′′)
(S2,δ ′′)�m (v2,δ ′)

(S1;S2 ,δ)�m (v2,δ ′)

(S1,δ)�m (v1,δ ′′)
(S2,δ ′′)�m abort

(S1;S2 ,δ)�m abort

(S,δ)�m (true,δ ′′)
(St ,δ ′′)�m abort

(if S then St else S f ,δ)�m abort

Frequent Statement and De-reference Elimination for Distributed Programs 97

(S,δ)�m (true,δ ′′)
(St ,δ ′′)�m (v,δ ′)

(if S then St else S f ,δ)�m (v,δ ′)

(S,δ)�m (false,δ ′′)
(Sf ,δ ′′)�m abort

(if S then St else S f ,δ)�m abort

(S,δ)�m (false,δ ′′)
(Sf ,δ ′′)�m (v,δ ′)

(if S then St else S f ,δ)�m (v,δ ′)

(S,δ)�m abort

(if S then St else S f ,δ)�m abort

(S,δ)�m abort

(while S do St ,δ)�m abort

(S,δ)�m (false,δ ′′)

(while S do St ,δ)�m (skip,δ)

(S,δ)�m (true,δ ′′)
(St ,δ ′′)�m abort

(while S do St ,δ)�m abort

(S,δ)�m (true,δ ′′)
(St ,δ ′′)�m (v′′,δ ′′)

(while S do St ,δ ′′)�m (v′,δ ′)

while S do St : (δ , p)�m (v′,δ ′)

(S,δ)�m (true,δ ′′)
(St ,δ ′′)�m (v′′,δ ′′)

(while S do St ,δ ′′)�m abort

(while S do St ,δ)�m abort

(S1,δ)�m (λx.S′1,δ
′′)

(S′1[S2/x],δ ′′)�m (v,δ ′)
(appl)

(S1S2,δ)�m (v,δ ′)

(S,δ)�m (v,δ ′′)
(S′ [v/x],δ ′′)�m (v′,δ ′)

(letrec)
(letrec x = S in S′ ,δ)�m (v′,δ ′)

a ∈ lAddrs
a is fresh on m

(newl ,δ)�m ((l,m,a),δ [(l,m,a) �→ null])

(S,δ)�m (g = (l,m′,a),δ ′)
hdist(m,m′) ≤ n

(conv)
(convert(S,n),δ)�m (g,δ ′)

(f d(name),δ)�m v,δ ′)
(name)

(name,δ)�m (v,δ ′)

(S2,δ)�m (m′,δ ′′)
m′ ∈M (S1,δ ′′)�m′ (v,δ ′) (trans)

(transmit S1 from S2,δ)�m (v,δ ′)

θ : {1,2, . . . , |M|} →M
(S,δ)�θ (1) (v1,δ1)�θ (2) (v2,δ2)�θ (3) . . .�θ (|M|) (v|M|,δ|M|)

(main-sem)
(Defs : S,δ)�M (v|M|,δ|M|)

The semantics of running a program Defs : S on the distributed systems is treated by
the rule (main-sem).

	Frequent Statement and De-reference Elimination for Distributed Programs
	Introduction
	Ready Statement and Memory Access Analysis
	Semi-expectation Analysis
	Frequent Statement and De-reference Elimination
	Related and Future Work
	Conclusion

