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Abstract. This paper presents a new technique for detection of probabilistic dan-
gling references in multi-core programs. The technique has the form of a simply
structured type system and provides a suitable framework for proof-carrying code
applications like mobile code applications that have limited resources. The type
derivation of each individual analysis serves as a proof for the correctness of the
analysis. The type system is designed to analyze parallel programs with struc-
tured concurrent constructs: fork-join constructs, conditionally spawned cores,
and parallel loops.

For a given program S, a probabilistic threshold pms, and a probabilistic ref-
erence analysis for S, if S is well-typed in our proposed type system then all
computational paths with probabilities greater than or equal to pms will contain
no dangling pointers at run time. The soundness of the presented type system is
proved in this paper with respect to a probabilistic operational semantics to our
model language.

1 Introduction

Multi-core (multithreading) [36] is one of the main programming styles today. The use
of multiple cores (threads) has many advantages; simplifying the process of structuring
huge software systems, hiding the delay caused by commands waiting for resources,
and boosting the performance of applications executed on multiprocessors. However the
interactions between different cores complicate the compilation and analysis of multi-
core programs.

One of the vital and attractive attributes of multi-core programs is memory safety
(mainly including dangling-references detection) [9]. The importance that memory
safety enjoys is justified by several facts including the fact that the absence of memory
safety can cause the execution of programs to abort. This absence can be maliciously
used to cause security breaches like in many recent cases. However low-level paral-
lel programming languages, used to write most existing parallel-software applications,
scarify safety for the sake of improving performance. Violating memory safety takes
several forms including memory leaks, buffer overflows, and dangling pointers. Among
causes for memory safety violations are explicit allocation and deallocation, pointer
arithmetic, casting, and the interactions between multiple cores (threads).
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Memory safety [9] is a critical compiler analysis used to decide whether a given
piece of code contains memory violations (basically including dangling references). A
conventional memory-safety analysis deduces whether a given program (i) is definitely
safe (all program execution paths are safe), (ii) is definitely not safe (all program paths
contain memory violations), or (iii) maybe safe (some paths are not definitely safe). A
probabilistic memory-safety [30] analysis is a program analysis that decides for a given
program S and a probability ε whether all execution paths with probabilities greater
than or equal to ε are definitely memory-safe. On the one hand most traditional com-
piler optimizations count on precise memory-safety checks, and to ensure correctness
cannot optimize in the ”maybe” case which is the prevalent case. But on the other hand
new speculative optimizations [34] can aggressively take advantage of the prevalent
”maybe” case, especially in the presence of a probabilistic memory-safety (dangling-
references) analysis.

Reference analysis [11,9,10,13,14,12] of a program calculates for each program
point a reference (points-to) relationship that captures information about the memory
addresses that may be referenced by (pointed-at) by program references (pointers). A
probabilistic reference analysis [34,10] statically anticipates the likelihood of every ref-
erence relationship at each program point. An absolute memory-safety analysis follows
an absolute reference analysis i.e. builds on the result of an absolute reference analysis.
It is also the case that probabilistic memory-safety analysis follows or builds on the
result of a probabilistic reference analysis.

This paper presents a new approach for detecting dangling references in multi-core
programs. The proposed technique is probabilistic in its nature. For a given program
S, probability threshold ε, and the result pts of a probabilistic reference analysis for
S (like that in [10]), the proposed technique decides wether execution paths of S with
probabilities greater than or equal to ε are memory safe (dangling-references free) with
respect to pts. The proposed technique is flow-sensitive.

The algorithmic style [5,1], which relies on data-flow analysis, is typically used
to present static analysis and optimization techniques of multi-core programs.
Another framework for program analyses and optimizations is provided by type
systems [11,9,20,10,13,14,12,21]. While the type-systems style works directly on
the phrase structure of programs, the algorithmic style works on control-flow graphs
(intermediate forms) of programs. One advantage of type-systems approach over
the algorithmic one is that the former provides communicable justifications (type
derivations) for analysis results. Certified code is an example of an area where such
machine-checkable justifications are required. Another advantage of type-systems
style is the relative simplicity of its inference rules. The technique presented in this
paper for memory safety of multi-core programs has the form of a type system. The
key to the proposed approach is to compute a post-type starting with the trivial type
as a pre-type. Then a program that has this post-type is guaranteed to be memory
safe over all computational paths whose probabilities greater than or equal to a given
probabilistic threshold.
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n ∈ Z, x ∈ Var, and ⊕ ∈ {+,−,×}
e ∈ Aexprs� x | n | e1 ⊕ e2

b ∈ Bexprs� true | false | ¬b | e1 = e2 | e1 ≤ e2 | b1 ∧ b2 | b1 ∨ b2

S ∈ Stmts� x � e | x � &y | ∗x � e | x � ∗y | skip | S1; S2 | if b then St else Sf |
while b do St | par{{S1}, . . . , {Sn}} | par-if{(b1,S1), . . . , (bn,Sn)} | par-for{S}.

Fig. 1. Our programming language model

Figure 1 presents the programming language that we study. The set Var is a finite
set of program variables. The language is the simple while language enriched with ba-
sic commands for parallel computations; fork join, conditionally spawned cores, and
parallel loops.

Motivation

Figure 2 presents a motivating example for a probabilistic memory-safety analysis. For
this program we suppose that the condition of if statement in line 1 is true with proba-
bility 0.8. This program has four possible execution paths;

1. the then statement (line 2) followed by the first core (thread) (line 5) followed by
the second core (line 6).

2. the then statement followed by the second core followed by the first core.
3. the else statement (line 3) followed by the first core followed by the second core.
4. the else statement followed by the second core followed by the first core.

The probability of each of the first two paths is 0.4 and that of each of the last two paths
is 0.1. The last two paths are not memory safe as they contain dangling pointers (de-
referencing of a in line 5). However the first two paths are memory safe. The motivation
of our work is to design a technique that for a program like this one and a probabilis-
tic threshold (for example 0.4) decides whether the program paths with probabilities
greater than or equal to 0.4 are memory safe. The desired technique is also required to
associate its decision with a correctness proof.

1. if (a > b)
2. then a � &b
3. else a � 2;
4. par{
5. {b � ∗a}
6. {b � &c}
7. };

Fig. 2. A motivating example for a probabilistic dangling-reference analysis
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Contributions

Contributions of this paper are the following:

1. An original type system carrying a probabilistic analysis for memory safety (mainly
dangling-references detection) of multi-core programs.

2. A formal proof for the soundness of the proposed type system with respect to a
probabilistic operational semantics.

Organization. The rest of the paper is organized as follows. Section 2 presents a
type system for probabilistic memory safety of multi-core programs. This section also
presents a formal correctness proof for the proposed type system with respect to a prob-
abilistic operational semantics presented in an appendix to the paper. Future work and a
survey of related work to memory safety (including the used of type systems in program
analysis, and the analysis of multi-core programs) are discussed in Section 3.

2 Memory Safety

This section presents a new technique for memory safety (including dangling-references
detection) of multi-core programs. The proposed technique is both forward and static
(to be used during compilation time). The technique is also probabilistic in the sense
that for a given program S and a probabilistic threshold (denoted by pms in this paper)
the technique decides whether all computation paths (Definition 4) of S with probabil-
ity greater or equal to pms are memory safe. This sort of information is required and
intensively used in speculative optimizations that are parts of most modern compilers.

Memory safety of programs is a forward program analysis that is typically built on
the result of a reference analysis. For probabilistic memory safety, the underlying ref-
erence analysis has to be probabilistic [34,10] as well. Hence we assume that our input
program S is associated with the probabilistic threshold pms and the result of a prob-
abilistic reference analysis1 for S. To be more precise, we assume that the underlying
probabilistic reference analysis associates each program point with a reference type pts
drawn from a set of probabilistic reference types PTS. A natural formalization of the set
PTS together with a subtyping relation on its types is introduced in [10] and reviewed
in Definition 1. To build the memory safety analysis on robust ground, surely the un-
derlying reference analysis has to be sound with respect to a robust semantics; in our
case the operational semantics of this paper appendix. Suppose that for a statement S,
the reference analysis associates a pre-reference type pts and a post-reference type pts′,
i.e. S : pts → pts′. The soundness has the intuition that if the execution of S from a
state (γ, p) of type pts ends at a state (γ, p′), then this final state has to be of type pts′.

Definition 1. 1. Addrs = {x′ | x ∈ Var} and Addrsp = Addrs × [0, 1].

2. Pre-PTS = {pts | pts : Var→ 2Addrsp s.t. (y′, p1), (y′, p2) ∈ pts(x) =⇒ p1 = p2}.
3. For pts ∈ Pre-PTS and x ∈ Var,

∑
pts x =

∑
(z′,p)∈pts(x) p.

1 The reference analysis results (reference information) are typically assigned to program points
of S.
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4. For pts ∈ Pre-PTS and x ∈ Var, Apts(x) = {z′ | ∃p > 0. (z′, p) ∈ pts(x)}.
5. PTS = {pts ∈ Pre-PTS | ∀x ∈ Var.

∑
pts x ≤ 1}.

6. pts ≤ pts′ def⇐⇒ (∀x, y ∈ Var. (y′, p) ∈ pts(x) =⇒ ∃p′. p ≥ p′& (y′, p′) ∈ pts′(x)).

7. γ |= pts
def⇐⇒ (∀x ∈ Var. γ(x) ∈ Addrs =⇒ ∃p > 0. (γ(x), p) ∈ pts(x)).

2.1 Types

Our proposed approach for memory safety has the form of a type system. The types
of this type system are enrichments of that of the underlying reference types (PTS).
Therefore each memory-safety type is a triple (pts, v, ps) where v is a set of variables
that are guaranteed to contain addresses at the program point assigned this type and ps

is a lower bound for probabilities of reaching the program point assigned this type. The
following definition gives a precise formalization for the set of memory-safety types
(called safety types). The formal interpretation of assigning a safety type to a state is
also introduced in the following definition.

Definition 2. – A safety type is a triple (pts, v, ps) such that
• pts ∈ PTS,
• v ⊆ Var such that for every x ∈ v, there exists a pair (z′, p) ∈ pts(x) with

p > pms, and
• ps ∈ [0, 1].

– (pts, v, ps) ≤ (pts′, v′, p′s)
def⇐⇒ pts ≤ pts′, v ⊇ v′, and ps ≥ p′s ≥ pms.

– A state (γ, p) has type (pts, v, ps) with respect to the probability pms, denoted by
(γ, p) |=pms (pts, v, ps), if γ |= pts,∀x ∈ v(γ(x) ∈ Addrs), and pms ≤ ps ≤ p.

The key to our technique for probabilistic memory safety of multi-core programs is the
following. Suppose that we have a statement S and a reference analysis for S in the
form S : pts → pts′. Then for a safety pre-type (pts, v, ps)2, a post-type derivation is
attempted for S in the memory-safety type system. If such post-type exists then Theo-
rem 1 below guarantees the following. It is memory-safe to execute S starting from a
state (γ, p) that is of type (pts, v, ps) and that is positive (Definition 5; has no execution
paths with probability less than or equal to pms).

2.2 Inference Rules

The inference rules of our type system for probabilistic memory safety are as follows:

y ∈ v
(ym

1 )
y : (x, pts, v)→ v ∪ {x}

∑

pts

y < pms

(ym
2 )

y : (x, pts, v)→ v \ {x}
(nm)

n : (x, pts, v)→ v \ {x}

∀y ∈ FV(e1 ⊕ e2).
∑

pts

y = 0

(⊕m)
e1 ⊕ e2 : (x, pts, v)→ v \ {x}

x � e : pts→ pts′ e : (x, pts, v)→ v′
(�m)

x � e : (pts, v, ps)→ (pts′, v′, ps)

2 Typically (pts, v, ps) = (pts, ∅, 1).
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x ∈ v pts(x) = {(z′1 , p1), . . . , (z′n, pn)} ∀z′i ∈ Apts(x). zi � e : (pts, v, ps)→ (ptsi, v
′, ps)

(∗ �m)
∗x � e : (pts, v, ps)→ (Υ(pts, pts1, . . . , ptsn), v′, ps)

y ∈ v pts(y) = {(z′1 , p1), . . . , (z′n, pn)} ∀i. x � zi : (pts, v, ps)→ (ptsi, v
′, ps)

(� ∗m)
x � ∗y : (pts, v, ps)→ (Υ(pts, pts1, . . . , ptsn), v′, ps)

x � &y : pts→ pts′
(� &m)

x � &y : (pts, v, ps)→ (pts′, v ∪ {x}, ps) skip : (pts, v, ps)→ (pts, v, ps)

S1 : (pts, v, ps)→ (pts′′, v′′, p′′s ) S2 : (pts′′, v′′, p′′s )→ (pts′, v′, p′s)
(seqm)

S1; S2 : (pts, v, ps)→ (pts′, v′, p′s)

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts, v, ps)→ (ptst, vt, pt)

Sf : (pts, v, ps)→ (pts f , vf , pf )

pms ≤ pt × pi f

pms > ps × (1 − pi f )
(ifm1 )

if b then St else Sf : (pts, v, ps)→ (Υ(ptst, pts f ), vt, pt × pi f )

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts, v, ps)→ (ptst, vt, pt)

Sf : (pts, v, ps)→ (pts f , vf , pf )

pms > ps × pi f

pms ≤ pf × (1 − pi f )
(ifm2 )

if b then St else Sf : (pts, v, ps)→ (Υ(ptst, pts f ), vf , pf × (1 − pi f ))

∀y ∈ FV(b)(
∑

pts

y = 0)
St : (pts, v, ps)→ (ptst, vt, pt)

Sf : (pts, v, ps)→ (pts f , vf , pf )

pms ≤ pt × pi f

pms ≤ pf × (1 − pi f )
(ifm3 )

if b then St else Sf : (pts, v, ps)→ (Υ(ptst, pts f ), vt ∩ vf ,min{pt × pi f , pf × (1 − pi f )})

Si : (Ψ (pts, . . . , pts j, . . . | j � i), v ∩ ∩ j�ivj,min{ps, pj | j � i})→ (ptsi, vi, pi) pms ≤ mini pi

n! (parm)

par{{S1}, . . . , {Sn}} : (pts, v, ps)→ (Υ(pts1, . . . , ptsn),∩ivi ,
mini pi

n!
)

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (pts, v, ps)→ (pts′, v′, p′s)
(par-ifm)

par-if{(b1, S1), . . . , (bn,Sn)} : (pts, v, ps)→ (pts′, v′, p′s)

S : (Ψ (pts, pts′), v ∩ v′,min{ps, p′s})→ (pts′, v′, p′s)
(par-form)

par-for{S} : (pts, v, ps)→ (pts′, v′, p′s)

∀i ∈ [1, n],∀y ∈ FV(b)(
∑

ptsi
y = 0)

(pts1, v1, ps1 )
St→ (pts2, v2, ps2 )

St→ . . . St→ (ptsn+1, vn+1, psn+1 )
(whlm)

while b do St : (pts1, v1, ps1 )→ (Υ(ptsn+1), vn+1, psn+1 )

(pts′1, v
′
1 , p
′
s1

) ≤ (pts1, v1, ps1 )

S : (pts1, v1, ps1 )→ (pts2, v2, ps2 )
(pts2, v2, ps2 ) ≤ (pts′2, v

′
2, p
′
s1

)

(csqm)
S : (pts′1, v

′
1, p
′
s1

)→ (pts′2, v
′
2, p
′
s2

)

Judgments produced by the type system above has two forms. The judgment of an
arithmetic expression has the form e : (x, pts, v)→ v′. The existence of such judgment
for an expression e guarantees that calculating e in a state (γ, p) of type (pts, v, ps) w.r.t.
pms, i.e. (γ, p) |=pms (pts, v, ps), does not fail. The judgment also guarantees that if the
execution of the statement x � e at the state (γ, p) ends at a state (γ′, p′), then elements
of v′ are guaranteed to contain addresses w.r.t. γ′. This is formalized in Lemma 1. The
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judgment of a statement S has the from S : (pts, v, p) → (pts′, v′, p′) and assures that
if the execution of S from a pre-state of the pre-type ends at a post-state, then this
post-state is of the post-type. This is proved in Theorem 1.

Comments on the inference rules above are in order. The condition
∑

pts y ≥ pms

of the rule (ym
1 ) assures that when reaching the program point being assigned a type

along any of the computation paths whose probabilities greater than or equal to pms, y
will contain an address. The condition ∀y ∈ FV(e1 ⊕ e2)(

∑
pts y = 0) of the rule (⊕m)

assures that all free variables of the expression contain integers and hence guarantees
the success of calculating the expression e1 ⊕ e2 at any state of the type (pts, v, ps). In
the rules (∗ �m) and (� ∗m) the expression Υ(pts, pts1, . . . , ptsn) denotes the reference
post-type calculated by the underlying reference analysis3. Υ(pts, pts1, . . . , ptsn) is nat-
urally a function in {pts, pts1, . . . , ptsn} and its precise shape does not contribute to the
calculations of the inference rules (∗ �m) and (� ∗m). The rule (ifm1 ) treats the case
when the probability of the then path is greater than or equal to the threshold pms and
that of the else path is strictly less than pms. In this case, it is sensible to consider the
analysis results of St and to neglect that of S f . The rule (parm) has this shape in order
to treat any possible integrations between the statement threads. For the rule (whlm), n
is an upper bound for the trip-count of the loop. Therefore the post-type of the rule
is an upper bound for post-types corresponding to number of iterations bounded by n.
The statistical and probabilistic information concerning correctness probabilities of if
statements and trip counts of loops can be obtained using edge-profiling techniques.
Heuristics can be used in absence of edge-profiling methods.

Remark 1. As it is common with a probabilistic reference analysis [10], we assume that
our underlying reference analysis satisfies the following condition. Suppose that pts is
the reference type assigned to a program point t of a statement S and

∑
pts y = p. Then

for all computational paths of S with probabilities less than p, the variable y contains
no address at the point t.

Lemma 1. 1. Suppose (γ, p) |=pms (pts, v, ps) and e : (x, pts, v) → v′. Then �e�γ �!,
and

x � e : (γ, p)→ (γ′, p′) =⇒ ∀y ∈ Var. (y ∈ v′ =⇒ γ′(y) ∈ Addrs).

2. (pts, v, ps) ≤ (pts′, v′, p′s) =⇒ (∀(γ, p). (γ, p) |=pms (pts, v, ps) =⇒ (γ, p) |=pms

(pts′, v′, p′s)).

Proof. It is straightforward to prove the second item. The first item is proved by induc-
tion on the structure of type derivations:

– The case of the rule (ym
1 ): in this case γ′ = γ[x �→ γ(y)], p′ = p, and v′ = v ∪ {x}.

Since y ∈ v, y is guaranteed to contain an address at the program point before the
assignment statement. Therefore γ′(x) has an address at the program point after the
assignment statement. This justifies adding x to v.

– The case of the rule (ym
2 ): in this case γ′ = γ[x �→ γ(y)], p′ = p, and v′ = v \ {x}.

Since
∑

pts y < pms and pms ≤ ps ≤ p, by Remark 1 y contains no address at the pro-
gram point before the assignment statement. Hence γ′(x) is not assured to contain

3 The interested reader can check [10] for the details of calculating Υ(pts, pts1, . . . , ptsn).
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an address at the program point after the assignment statement. This legitimizes
removing x from v.

– The case of the rule (⊕m): in this case p′ = p, γ′ = γ[x �→ �e1 ⊕ e2�γ], and v′ =
v \ {x}. The condition ∀y ∈ FV(e1 ⊕ e2) (

∑
pts y = 0) assures that ∀y ∈ FV(e1 ⊕

e2).(γ(y) ∈ Z). Therefore �e1 ⊕ e2�γ ∈ Z. Hence γ′(x) ∈ Z which legitimizes
removing x from v.

2.3 Soundness

For a statement S that has types in our probabilistic memory-safety type system, S :
(pts, v, ps) → (pts′, v′, p′s), Theorem 1 assures the following fact about S. It is memory
safe to execute S from a positive state (γ, p) of type (pts, v, ps) w.r.t. pms, i.e. (γ, p) |=pms

(pts, v, ps). The memory safety means that the program does not abort due to faulty
de-referencing (dangling pointers). A positive (Definition 5) state is a state that does
not start any executions paths with probability less than pms. Theorem 1 also proves
soundness of memory-safety type system.

Theorem 1. (Soundness and Probabilistic Memory Safety) Suppose S : (pts, v, ps) →
(pts′, v′, p′s). Then

1. If (γ, p) |=pms (pts, v, ps) and S is positive at (γ, p) then S does not abort at (γ, p) i.e.
S : (γ, p) �� abort.

2. If S : (γ, p)� (γ′, p′) then (γ, p) |=pms (pts, v, ps) =⇒ (γ′, p′) |=pms (pts′, v′, p′s).

Proof. The proof is by structure induction on the type derivation. Main cases are shown
as follows:

– The case of (�m): this case follows from Lemma 1 and the soundness of reference
analysis.

– The case of (∗ �m): because x ∈ v, there exists z ∈ Var such that γ(x) = z′. And
because (γ, p) |=pms (pts, v, ps), we have z′ ∈ Apts(x) . z � e does not abort at (γ, p)
by induction hypothesis and hence neither does ∗x � e. We also have z � e :
(γ, p) � (γ′, p′). By assumption, it is true that z � e : (pts, v, ps) → (pts′, v′, p′).
Hence by soundness of (�m), (γ′, p′) |=pms (pts′, v′, p′).

– The case of (ifm1 ): the condition ∀y ∈ FV(b)(
∑

pts y = 0) guarantees that all free
variables of the condition b have integers (not addresses) under the state γ. This is
so because (γ, p) |=pms (pts, v, ps). Therefore the semantics of b with respect to γ is
a Boolean value. We have the following inequalities
• pt × pi f ≥ pms > ps × (1 − pi f ), and
• p ≥ ps ≥ pt.

These inequalities imply that p × pi f ≥ pt × pi f ≥ pms > ps × (1 − pi f ) which
implies p × pi f ≥ pms > ps × (1 − pi f ). Because S is positive at (γ, p) (Defi-
nition 5), �b�γ = true. Now by induction hypothesis St does not abort at (γ, p)
because St : (pts, v, ps) → (ptst, vt, pt), (γ, p) |=pms (pts, v, ps), and St is positive
at (γ, p) by Lemma 2. Therefore the if statement does not abort at (γ, p) which
completes the proof of (1) for this case.

(2) In this case, we have (γ′, p′) = (γ′, pi f × p′′) where St : (γ, p) � (γ′, p′′).
We also have (pts′, v′, p′) = (Υ(ptst, pts f ), vt, pt × pi f ) where St : (pts, v, ps) →
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(ptst, vt, pt). By induction hypothesis on St we have (γ′, p′′) |=pms (ptst, vt, pt).
Therefore p′′ ≥ pt which implies p′′ × pi f ≥ pt × pi f ≥ pms because pt ×
pi f ≥ pms. Hence (γ′, p′) |=pms (ptst, vt, pt × pi f ) which implies (γ′, p′) |=pms

(Υ(ptst, pts f ), vt, pt × pi f ) because (ptst, vt, pt × pi f ) ≤ (Υ(ptst, pts f ), vt, pt × pi f ).
The last inequality holds because Υ(ptst, pts f ) is an upper bound for ptst.

– The case of (ifm2 ) is pretty much similar to the case of (ifm1 ).
– The case of (ifm3 ): the condition ∀y ∈ FV(b)(

∑
pts y = 0) guarantees that �b�γ is a

Boolean value. We have the following inequalities
• pms ≤ pt × pi f ,
• pms ≤ p f × (1 − pi f ),
• pt ≤ ps ≤ p, and
• p f ≤ ps ≤ p.

These inequalities imply that

pms ≤ pt × pi f ≤ p × pi f and pms ≤ p f × (1 − pi f ) ≤ p × (1 − pi f )

which implies
• pms ≤ min{pt × pi f , p f × (1 − pi f )} ≤ p × pi f and
• pms ≤ min{pt × pi f , p f × (1 − pi f )} ≤ p × (1 − pi f ).

Now we consider the case �b�γ = false. In this case S f : (pts, v, ps) →
(pts f , v f , p f ), (γ, p) |=pms (pts, v, ps), and S f is positive at (γ, p) by Lemma 2. Hence
by induction hypothesis S f does not abort at (γ, p). Consequently the if statement
does not abort at (γ, p) which completes the proof of (1) for this case.

(2) In this case, we have (γ′, p′) = (γ′, pi f × p′′) where S f : (γ, p) � (γ′, p′′).
We also have (pts′, v′, p′) = (Υ(ptst, pts f ), vt ∩ v f ,min{pt × pi f , p f × (1 − pi f )})
where Sf : (pts, v, ps) → (pts f , v f , p f ). By induction hypothesis on S f we have
(γ′, p′′) |=pms (pts f , v f , p f ). Therefore p′′ ≥ p f which implies p′′ × (1 − pi f ) ≥
p f × (1 − pi f ) ≥ min{pt × pi f , p f × (1 − pi f )} ≥ pms because min{pt × pi f , p f ×
(1 − pi f )} ≥ pms. Hence (γ′, p′) |=pms (pts f , v f ,min{pt × pi f , p f × (1 − pi f )}) which
implies (γ′, p′) |=pms (Υ(ptst, pts f ), vt ∩ v f ,min{pt × pi f , p f × (1 − pi f )}) because
(pts f , v f ,min{pt × pi f , p f × (1 − pi f )}) ≤ (Υ(ptst, pts f ), vt ∩ v f ,min{pt × pi f , p f ×
(1−pi f )}). The last inequality holds because Υ(ptst, pts f ) is an upper bound for ptst
and v f ⊇ (vt ∩ v f ).

– The case of (parm): (1) Suppose that θ : {1, . . . , n} → {1, . . . , n} is a permuta-
tion. (γ, p) |=pms (pts, v, ps) implies (γ, p) |=pms (Ψ (pts, . . . , ptsj, . . . | j � θ(1)), v ∩
∩ j�θ(1)vj,min{ps, pj | j � θ(1)}). Recall that Ψ (pts, . . . , pts j, . . . | j � θ(1)) is
a lower bound for pts. By Lemma 2, Sθ(1) is positive at (γ, p). Therefore Sθ(1)

does not abort at γ by induction hypothesis. Hence either the execution of Sθ(1)

terminates at a state (γ2, p2) such that (γ2, p2) |=ms (ptsθ(1), vθ(1), pθ(1)) or en-
ters an infinite loop at (γ, p). Therefore (γ2, p2) |=ms (Ψ (pts, . . . , pts j, . . . | j �
θ(2)), v ∩ ∩ j�θ(2)vj,min{ps, pj | j � θ(2)}). Therefore, clearly (1) is proved via a
simple induction on n.

(2) In this case the existence of a permutation θ : {1, . . . , n} → {1, . . . , n}
and n + 1 states (γ, p) = (γ1, p1), . . . , (γn+1, pn+1) = (γ′, p′′) such that for every

1 ≤ i ≤ n, Sθ(i) : (γi, pi)� (γi+1, pi+1) is guaranteed. In this case p′ = p′′
n! . The fact

that (γ1, p1) |=pms (pts, v, ps) implies the fact that (γ1, p1) |=pms (Ψ (pts, . . . , pts j, . . . |
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j � θ(1)), v ∩ ∩ j�θ(1)vj,min{ps, pj | j � θ(1)}). Hence (γ2, p2) |=pms

(ptsθ(1), vθ(1), pθ(1)) by the induction hypothesis. This implies (γ2, p2) |=pms

(Ψ (pts, . . . , ptsj, . . . | j � θ(2)), v ∩ ∩ j�θ(2)vj,min{ps, pj | j � θ(2)}). Hence Again
(γ3, p3) |=pms (ptsθ(2), vθ(2), pθ(2)) by the induction hypothesis. Therefore a simple
induction on n shows that (γ′, p′) = (γn+1, pn+1) |=pms (ptsθ(n), vθ(n), pθ(n)) implying

(γ′, p′′) |=pms (Υ(pts1, . . . , ptsn),∩ivi,mini pi). Hence because pms ≤ mini pi

n! , we get

(γ′, p′) |=pms (pts′, v′, p′) = (Υ(pts1, . . . , ptsn),∩ivi,
mini pi

n! ) as required.
– The case of (par − f orm): (1) The proof of this item is in line with item (1) of the

(parm) case.
(2) In this case there exists n such that par{{S}1, . . . , {S}n} : (γ, p) � (γ′, p′).

We get S : (Ψ (pts, pts′), v ∩ v′,min{ps, p′s}) → (pts′, v′, p′s) by induction hypoth-
esis. Then by (parm) we infer that par{{S}1, . . . , {S}n} : (pts, v, ps) → (pts′, v′, p′s).
Consequently by the soundness of (parm), (γ′, p′) |=pms (pts′, v′, p′s).

3 Related and Future Work

Related work includes security vulnerabilities, memory management, debugging and
testing, garbage collection, failure masking, analysis of multi-core programs, and type
systems in program analysis.

A classical trend to reduce vulnerabilities of heaps to security attacks is to use a ran-
domization approach for both choosing the base address [2] of the heap and buffering
allocation requests [4]. However this classical approach is believed not to be very effec-
tive on 32-bit operating systems [33]. More recent work [29] hides object layouts from
attackers in any duplicate.

To maintain fast allocation and low fragmentation, dynamic techniques for mem-
ory management scarify strength. Repeated memory frees and heap corruption due
to buffer overflows affect most malloc implementations. While some memory man-
agers [6,15,16] prevent heap corruption via separating metadata from the heap, other
managers [31] just recognize heap corruption.

Via simulation and multiple rewrites on run time, techniques for debugging and test-
ing [27] discover errors of memory in programs. Drawbacks of these techniques in-
clude increasing space costs and restrictive runtime overheads. These burdens can only
be tolerated during testing. Other techniques significantly reduce runtime overhead and
discover memory leaks via using sampling [23].

The drawback of garbage collection [29], a technique helping avoiding errors caused
by dangling pointers, is that to perform reasonably it requires an ample amount of space.
In particular, the technique of [29] prevents overwrites via separating metadata from
heap. This technique, which is probabilistic rather than absolute like most other related
techniques, also neglects multiply and faulty frees.

Failure masking [32] is a terminology describing stopping programs from aborting.
Pool allocation, a technique of failure masking, classifies objects into pools according
to their types and hence guarantees that objects overwrite only dangling pointers of the
same type. The drawback of this technique is the unpredictability of behavior of the
produced program. Other techniques, failure-oblivious systems, neglect faulty writes
and create values for reading uninitialized memory.
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None of techniques mentioned above that treat dangling pointers deal with multi-
core programs nor provide proofs for correctness of each individual test. Sound type
systems for reference analysis and memory safety of Multi-core programs are presented
in [9]. However all techniques mentioned so far are absolute; not probabilistic like the
technique presented here. Hence our work has the advantage, over all the related work,
of being usable in speculative-optimizations sections of modern compilers.

The analysis of multi-core programs is receiving a growing research interest. The
possible interactions between various cores significantly complicate analysis of multi-
core programs. Work in this area is typically classified into two main categories: tech-
niques designed specifically for optimization or error-detection of multi-core programs
and techniques originally designed for analysis of sequential programs and successfully
extended to cover multi-core programs.

The work in the first category above includes dataflow frameworks for bitvector
problems [26], concurrent static single assignment forms [35], reaching definitions [7],
constant propagation [5], code motion [25], file safety [17], faulty function-calls [18].
None of these techniques studies memory-safety of multi-core programs leaving alone
probabilistic memory safety of these programs. The work in the other category above
includes synchronization analysis [22], race detection [24], reference analysis [9], and
deadlock analysis [1].

The use of type systems in program analysis [11,9,20,10,13,14,12,21] is becoming a
mainstream approach for applications that require a proof for each individual program
analysis like certified code. General methods for transforming monotone data-flow anal-
yses (forward and backward) into type systems are presented in [28]. Type systems for
program optimizations based live stack-heap and pointer analyses are presented in [11].
Constant folding, common subexpression elimination, and dead code elimination for
while language as type systems are presented in [3].

In the area of denotational semantics, data structures and programs are mathemat-
ically represented by mathematical domains (sets) and maps between domains. For
future work, we are interested in translating concepts of probabilistic memory-safety
analysis to the side of denotational semantics [19,8]. This translation will facilitate the-
oretical studies about probabilistic memory-safety analysis. Obtained theoretical results
can be then translated back to the side of data structures and programs.
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Appendix: Probabilistic Operational Semantics

This appendix reviews and augments a probabilistic operational semantics that we
presented in [10] for the programming language (Figure 1) that we study. This lan-
guage is the simple while language extended with new basic statements for parallel
programming: par{{S1}, . . . , {Sn}} (fork-join), par-if{(b1, S1), . . . , (bn, Sn)} (condition-
ally spawned threads), and par-for{S} (parallel loops). At the begin of the par com-
mand, the basic parallel command, a main core initiates the run of various concurrent
inner cores. The subsequent statement (to the main core) can only be executed when the
run of all inner cores are finished. The semantics of conditionally spawned command
is akin to that of fork-join. The run of par-if{(b1, S1), . . . , (bn, Sn)} includes initiating
the conditionally concurrent runs of the n cores; only if bi is true, Si is executed. The
following command (to the par-if statement) can only be executed when the runs of
all conditional cores are finished. The semantics of parallel loop construct par-for{S}
includes running concurrently a statically unknown number of cores that all are S.

Semantically a computational state is a pair (γ, p): γ is a mapping from variables
to values (integers plus symbolic addresses) and p ∈ [0, 1]. The intuition is that p is
the probability of reaching γ. The following is the formal definition for computational
states:

Definition 3. 1. Addrs = {x′ | x ∈ Var} and Val = Z ∪ Addrs.
2. γ ∈ Γ = Var −→ Val.
3. A state is either an abort or a pair (γ, p) such that p ∈ [0, 1].
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We adopt the usual semantics for arithmetic and Boolean expressions, except that we
do not allow arithmetic and Boolean operations on pointers.

�n�γ = n �&x�γ = x′ �x�γ = γ(x) �true�γ = true �false�γ = false

�∗x�γ =

{
γ(y) if γ(x) = y′,
! otherwise. �e1 ⊕ e2�γ =

{
�e1�γ ⊕ �e2�γ if �e1�γ, �e2�γ ∈ Z,
! otherwise.

�¬A�γ =

{¬(�A�γ) if �A�γ ∈ {true, false},
! otherwise. �e1 = e2�γ =

⎧
⎪⎪⎨
⎪⎪⎩

! if �e1�γ = ! or �e2�γ = !,
true if �e1�γ = �e2�γ � !,
false otherwise.

�e1 ≤ e2�γ =

{
! if �e1�γ � Z or �e2�γ � Z,
�e1�γ ≤ �e2�γ otherwise.

For � ∈ {∧,∨}, �b1 � b2�γ =

{
! if �b1�γ = ! or �b2�γ = !,
�b1�γ � �b2�γ otherwise.

The following are the inference rules of our probabilistic operational semantics (transi-
tion relation).

�e�γ = !

x � e : (γ, p)� abort

�e�γ � !

x � e : (γ, p)� (γ[x �→ �e�γ], p)

γ(x) = z′ z � e : (γ, p)� state

∗x � e : (γ, p)� state

γ(x) � Addrs

∗x � e : (γ, p)� abort x � &y : (γ, p)� (γ[x �→ y′], p)

γ(y) = z′ x � z : (γ, p)� (γ′, p)

x � ∗y : (γ, p)� (γ′, p)

γ(y) � Addrs

x � ∗y : (γ, p)� abort skip : (γ, p)� (γ, p)

S1 : (γ, p)� abort

S1; S2 : (γ, p)� abort

S1 : (γ, p)� (γ′′, p′′) S2 : (γ′′ , p′′)� state

S1; S2 : (γ, p)� state

�b�γ = !

if b then St else Sf : (γ, p)� abort

�b�γ = true St : (γ, p)� abort

if b then St else Sf : (γ, p)� abort

�b�γ = true St : (γ, p)� (γ′, p′)

if b then St else Sf : (γ, p)� (γ′, pi f × p′)

�b�γ = false Sf : (γ, p)� abort

if b then St else Sf : (γ, p)� abort

�b�γ = false Sf : (γ, p)� (γ′ , p′)

if b then St else Sf : (γ, p)� (γ′ , (1 − pi f ) × p′)

�b�γ = !

while b do St : (γ, p)� abort

�b�γ = false

while b do St : (γ, p)� (γ, p)

�b�γ = true S : (γ, p)� abort

while b do St : (γ, p)� abort

�b�γ = true S : (γ, p)� (γ′′, p′′) while b do St : (γ′′ , p′′)� state

while b do St : (γ, p)� state

• Fork-join:

†
par{{S1}, . . . , {Sn}} : (γ, p)� (γ′ ,

p′

n!
)

‡
par{{S1}, . . . , {Sn}} : (γ, p)� abort

† there exist a permutation θ : {1, . . . , n} → {1, . . . , n} and n + 1 states
(γ, p) = (γ1, p1), . . . , (γn+1, pn+1) = (γ′, p′) such that for every 1 ≤ i ≤ n, Sθ(i) :
(γi, pi)� (γi+1, pi+1).
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‡ there exist m such that 1 ≤ m ≤ n, a one-to-one map β : {1, . . . ,m} →
{1, . . . , n}, and m + 1 states (γ, p) = (γ1, p1), . . . , (γm+1, pm+1) = abort such that
for every 1 ≤ i ≤ m, Sβ(i) : (γi, pi)� (γi+1, pi+1).

• Conditionally spawned threads:

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (γ, p)� (γ′, p′)

par-if{(b1, S1), . . . , (bn ,Sn)} : (γ, p)� (γ′, p′)

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (γ, p)� abort

par-if{(b1 ,S1), . . . , (bn,Sn)} : (γ, p)� abort

• Parallel loops:

∃n. par{{S}1 , . . . , {S}n} : (γ, p)� (γ′ , p′)

par-for{S} : (γ, p)� (γ′, p′)

∃n. par{{S}1 , . . . , {S}n} : (γ, p)� abort

par-for{S} : (γ, p)� abort

The following definitions introduce terminologies that are used above to discuss and
prove soundness of our proposed type system for probabilistic memory safety.

Definition 4. For a statement S, a judgement of the form S : (γ, p) → (γ′, p′) is de-
scribed as a computation (or an execution) path. The quantity p′ is the probability of
this execution path.

Definition 5. Suppose that S : (pts, v, ps) → (pts′, v′, p′s). Then S is positive at a state
(γ, p) of type (pts, v, ps) if along any execution path of S that starts at (γ, p) whenever
an if statement, whose condition is true with probability pi f , is encountered at a state
(γ′′, p′′) whose type is (pts′′, v′′, p′′s ) in the proof tree of S : (pts, v, ps) → (pts′, v′, p′s),
i.e.

(γ, p) � . . . (γ′′, p′′)
i f b then...
� . . .

the following are true:

– if pi f × p′′ ≥ pms > (1 − pi f ) × p′′s , then �b�γ′′ = true.
– if pi f × p′′s < pms ≤ (1 − pi f ) × p′′, then �b�γ′′ = false.

A simple structure induction proves the following lemma which is used in the soundness
proof above:

Lemma 2. Suppose that S : (pts, v, ps) → (pts′, v′, p′s), (γ, p) |=ms (pts, v, ps), and S is
positive at (γ, p). Suppose also that along an execution path of S that starts at (γ, p), a
sub-statement S′ of S is encountered at a state (γ′′, p′′), i.e.

(γ, p) � . . . (γ′′, p′′) S′
� . . .

If S′ : (pts1, v1, p1s) → (pts′2, v
′
2, p
′
2s) in the proof tree of S : (pts, v, ps) → (pts′, v′, p′s)

and (γ′′, p′′) |=ms (pts1, v1, p1s) then S′ is positive at (γ′′, p′′).
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