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Abstract. Using type systems, this paper treats heap slicing which is a tech-
nique transforming a program into a new one that produces the same result while
working on a heap sliced into independent regions. Heap slicing is a common
approach to handle the problem of modifying the heap layout without changing
the program semantics. Heap slicing has applications in the areas of performance
optimization and security.

Towards solving the problem of heap slicing, this paper introduces three type
systems. The first type system does a pointer analysis and annotates program
points with pointer information. This type system is an augmentation of a previ-
ously developed type system by the author. The second type system does a region
analysis and refines the result of the first type system by augmenting the pointer
information with region information. The region information approximately spec-
ifies at each program point for each memory cell the region where the cell exists.
The third type system uses the information gathered by the region type system to
do the principal transformation of heap slicing.

The paper also presents two operational semantics; one for single-region heap
scenario and the other for multi-regions heap scenario. These semantics are used
to prove the soundness of the type systems.

Keywords: heap slicing, type systems, semantics of programming languages,
operational semantics, region analysis, pointer analysis.

1 Introduction

Heap slicing [28,31] is a technique that transforms a program into a new one that pro-
duces the same result while working on a heap sliced into independent regions. This
transforation enables an optimizing compiler to figure out memory cells that must lie
in different slices of the heap. The input to this technique is a program in which in-
teger argument-expressions in statements allocating memory cells are annotated with
slice (region) names. Every slice only contains data that was annotated with the slice
name. Arithmetic and Boolean operations are allowed only between arguments in the
same slice. Usually, it is assumed that no cell in a slice is allowed to point to a cell in a
different slice.
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1. x� cons(1 : R1,2 : R2);
2. y� cons(x,3 : R2,4 : R3,5 : R1);
3. z� cons(y,6 : R3,7 : R2);
4. w� [x+1];
5. t � [y+2];
6. [z+1]� t;

↪→
x� cons′(1 : R1,2 : R2);
y� cons′(x : {1},3 : R2,4 : R3,5 : R1);
z� cons′(y : {1},6 : R3,7 : R2);
w�{2} [x+1];
t �{3} [y+2];
[z+1]�{3} t;

Fig. 1. A motivating example

Very often while maintaining a large software, it becomes apparent that a change
to the heap layout (e.g. adding arguments to an allocation statement) is necessary. The
amount of code depending on the heap layout can make the process of introducing such
a change, even when it is very little, very tricky. Introducing changes in such situations
can be time-consuming and it scarifies the software correctness as it may call bugs. The
heap slicing techniques are good tools to address the problem of altering the heap layout
without changing the program semantics.

Heap slicing has applications in the areas of performance optimization and se-
curity [29,3]. The instance interleaving optimization is a static analysis [20] tech-
nique that rearranges the memory cells (or fields of different data structures) to
improve cache performance via letting frequently-accessed fields (or cells) belong
to the same cache line. Heap slicing techniques provide good implementations for
instance interleaving optimization [20]. In security, heap slicing can be used to
hide function pointers in a heap slice (region) preventing attackers from accessing
them.

Motivating Example

Figure 1 shows a motivating example of our work. Consider the program on the l.h.s. of
the figure. The integer-expressions of the allocation statements are annotated with their
region names. For example the first allocation statement allocates an array of length
two: the first of which belongs to region 1 and the second of which belongs to region 2.
The goal of our research is to automatically transform such a program into the program
on the r.h.s. of the figure. In the new program: (a) the address expressions (expressions
evaluates to addresses) of allocation statements are annotated with their region names,
and (b) mutation and look-up statements are annotated with reign names where the
statements are allowed to be executed.

While the original program is assumed to be executed on a one-slice heap, the
new program is executed on a heap that physical sliced into 3 regions. The num-
ber of the regions is fixed in the programming language. Figures 2 and 3 show the
heaps of the original and new programs, respectively, after executing the allocation
statements.

Moreover, we want to associate each of such program transformation with a proof
that original and new programs have the same semantics: compute the same result. This
proof is required in many application like proof-carrying code [19,22].
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Algorithm

The transformation process described above on the motivating example is achieved in
this paper using a 3-steps algorithm. Each of the 3 steps is accomplished by a type
system. The first step is a pointer analysis to the input program. This analysis results
in annotating the program points with points-to information in the form of types. The
points-to information at a given point specifies approximately for each store (a variable
or a memory cell) the address that has a chance of going into that store. The second step
is a region analysis to the program resulting from the first step. This analysis results in
augmenting the pointer information with region information in the form of types. The
region information at a given point specifies approximately the region for each memory
cell. Also the region information at a given point specifies approximately for each vari-
able the source region of the variable’s content. The third step does the transformation
step using the information gathered in the previous steps.

The justification (proof) that the source and the new programs are semantically
equivalent takes the form of a type derivation.
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⊕ ∈ {+,−,×},x ∈Var, and {i, j},Rs ⊆ {1, . . . ,γ}
e ∈ Aexprs � x | n | e1 ⊕ e2 | Cast(Ri ↪→ R j)e

d ∈ Allo-exprs � e : Ri | e

b ∈ Bexprs � true | false | ¬b | e1 = e2 | e1 ≤ e2 | b1 ∧b2 | b1 ∨b2

S ∈ Stmts � x� e | x� cons(d1, . . . ,dn) | x� [e] | [e1]� e2 | dispose(e) |
skip | S1;S2 | if b then St else S f | while b do St

S′ ∈ Stmts′ � x� e | x� cons′(e1 : Rs1, . . . ,en : Rsn) | x�Rs [e] | [e1]�Rs e2

| dispose′(e) | skip | S′1;S′2 | if b then S′t else S′f | while b do S′t

Fig. 4. Our language for studying heap slicing

Contributions

Contributions of this paper are the following.

1. A type system for pointer analysis of the language presented in this paper. This type
system is an augmented version of that we presented in [13].

2. A novel approach for region analysis (in the form of a type system as well).
3. An original technique for heap slicing.
4. Two new operational semantics; one for single-region heap scenario and the other

for multi-regions heap scenario.

Organization

The rest of the paper is organized as follows. A toy programming language together
with two operational semantics (one for single-region heap scenario and the other for
multi-regions heap scenario) are presented in Section 2. Type systems for flow-sensitive
pointer and region analyses are presented in Sections 3 and 4, respectively. The type
system carrying program optimization is introduced in Section 5. A brief survey of
related work and future work are presented in Section 6.

2 Programming Language and Two Operational Semantics

This section presents the programming language used to study heap slicing. The section
also presents an operational semantics [23] for a one-slice heap executions and another
operational semantics for γ-slices heap executions. The number of regions or slices in
memory is fixed in our language and is denoted by γ .

We have two memory models; one for the single-slice heap scenario and the other
for the γ-slices heap scenario. In our single-heap model, we assume that for any
m ∈ N+ the memory has an infinite number of arrays of length m with addresses
{a1

m,1,a
1
m,2, . . . ,a

1
m,m,a

2
m,1,a

2
m,2, . . . ,a

2
m,m, . . .}. Therefore the set of address, Addrs, has

the form presented in Figure 5. In order to facilitate evaluating inequalities we assume
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Atoms ⊆ Integers.

Addrs = {ai
j,k | i, j,k ∈N+,k ≤ j}

= {a1
1,1,a

1
2,1,a

1
2,2,a

1
3,1,a

1
3,2,a

1
3,3, . . . ,a

2
1,1,a

2
2,1,a

2
2,2,a

2
3,1,a

2
3,2,a

2
3,3, . . .}.

R = {1, . . . ,γ}.
Values = Z∪Addrs.

Values+ = Values∪{φ}.

Fig. 5. Entities of our memory model

that the set Values is equipped with an order. We assume that our γ−slices memory
model consists of γ separated regions each of which has the single-slice model. The
value φ in the set Values+ goes into cells that are inactive in a region. Arithmetic and
Boolean operations are only allowed between arguments of the same region.

The language (Figure 4) that we study is based on the programming language usually
used to introduce separation logic [24]. There are two additions to the separation logic
language. The first addition is that the arithmetic expression is extended with a cast
statement permitting handling a value that we obtained form region i as it is obtained
from region j. This is useful in many situations like if the programmer is interested in
copying a value from a private slice of a memory to a public slice. The other addition is
to annotate arguments (the ones evaluates to integers) of the allocation statement with
region names. Stmt′ presents the syntax of transformed programs. A clue to meaning
of Stmt′-commands is given by the motivating example above and a precise meaning is
given below by operational semantics.

The states of our operational semantics are defined as follows.

Definition 1. 1. s ∈ Stacks = {(sv,sr) | sv : Var → Values and sr : Var → R∪{⊥}}.
2. h ∈ Heaps = {(hv,hr) | hv : A → Values,hv : A → R, and A ⊆fin Addrs}.

3. A sliced heap h̃ is a γ-tuple (h̃1, . . . , h̃γ) of finite partial maps from Addrs to Values+

such that:
(a) these maps share the same domain, and
(b) for any a ∈ dom(h̃1) there is a unique i ∈ [1,γ] such that h̃i(a) � φ .

Definition 2. 1. A state is an abort or a pair of a stack and a heap (s,h).
2. A sliced state is an abort or a pair of a stack and a sliced heap (s, h̃).

2.1 One-Slice Heap Semantics

This section presents an operational semantics for the input program of our transforma-
tion technique. The states of the semantics are defined in Definition 2.1.

The semantics of arithmetic and Boolean expressions are defined as follows:

�d� ∈ States ⇀ Values× (R∪{⊥})

�n�(s,h) = (n,⊥) �x�(s,h) = (sv(x),sr(x)) �e1 ⊕ e2�(s,h) = ηh(�e1�(s,h)⊕�e1�(s,h))
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where,

ηh(α ,β )

⎧
⎨

⎩

(α ,β ), if α ∈Z;
(α ,hr(α)), if α ∈ dom(hr);
undefined, otherwise.

�e : Ri�(s,h) =
{
(n, i) if �e�(s,h) ∈ {(n, i),(n,⊥)}
undefined otherwise.

�cast(Ri ↪→ R j)e�(s,h) =
{
(n, j) if �e�(s,h) ∈ {(n, j),(n, i)},
undefined otherwise.

The semantics of the operation ⊕ is defined as usual if both of its operands are integers
and otherwise as follows:

v1 ⊕ v2 =

⎧
⎪⎨

⎪⎩

(n⊕m,⊥), if v1 = (n,⊥) and v2 = (m,⊥);
(n⊕m, i), if v1 = (n, i) and (v2 = (m, i) or v2 = (m,⊥));
(ar

s,t⊕n, i), if v1 = (ar
s,t , i), (v2 = (n, i) or v2 = (n,⊥)), and 1 ≤ t ⊕n ≤ s;

undefined, otherwise.

Boolean operations are only allowed between values from the same region.
The inference rules of the semantics are defined as follows.

skip : (s,h)→ (s,h)

�e�(s,h) is undefined

x� e : (s,h)→ abort

�e�(s,h) = (α ,β )

x� e : (s,h)→ ([sv | x : α ], [sr | x : β ],h)

u = min{t | {at
n,1, . . . ,a

t
n,n}∩dom(h) = /0} ∀1 ≤ i ≤ n(�di�(s,h) = (αi,βi))

x� cons(d1, . . . ,dn) : (s,h)→
([sv | x : au

n,1], [sr | x : β1], [hv | au
n,1 : α1 | . . . | au

n,n : αn], [hr | au
n,1 : β1 | . . . | au

n,n : βn])

∃1 ≤ i ≤ n (�di�(s,h) is undefined)

x� cons(d1, . . . ,dn) : (s,h)→ abort

�e�(s,h) is undefined, or
�e�(s,h) = (α , )∧α � dom(h)

dispose(e) : (s,h)→ abort

x� [e] : (s,h)→
{
([sv | x : hv(α)], [sr | x : β )],h), if �e�(s,h) = (α ,β ) and α ∈ dom(h);
abort, otherwise.

[e1]� e2 : (s,h)→
{
(s, [hv | α1 : α2], [hr | α1 : β ]), if�ei�(s,h) = (αi,β ) and α1 ∈ dom(h);
abort, otherwise.

�e�(s,h) = (α , )∧α ∈ dom(h)

dispose(e) : (s,h)→ (s,hv�(dom(h)\{α}),hr�(dom(hr)\{α}))

S1 : (s,h)→ (s′,h′)
S2 : (s′,h′)→ st

S1;S2 : (s,h)→ st

S1 : (s,h)→ abort
S2 ∈ Stmts

S1;S2 : (s,h)→ abort

�b�(s,h) is undefined

if b then St else S f : (s,h)→ abort

�b�(s,h) = false
S f : (s,h)→ st

if b then St else S f : (s,h)→ st

�b�(s,h) = true
St : (s,h)→ st

if b then St else S f : (s,h)→ st

�b�(s,h) is undefined

while b do St : (s,h)→ abort

�b�(s,h) = true
St : (s,h)→ abort

while b do St : (s,h)→ abort

�b�(s,h) = false

while b do St : (s,h)→ (s,h)

�b�(s,h) = true
St : (s,h)→ (s′,h′)
while b do St : (s′,h′)→ st

while b do St : (s,h)→ st

If f is a map and A is a set, f �A denotes the restriction of f on A and [ f | x :
A] denotes the function whose domain is dom( f ) ∪ {x} and whose definition is
λ y. if y = x then A else f (y).

Lemma 1. Suppose �e�(s,h) = (α,β ). If α ∈ Addrs then β = hr(α).
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2.2 γ-Slices Heap Semantics

This section presents an operational semantics for programs resulted by our pro-
posed transformation technique. The semantics uses a memory model where the mem-
ory is physically sliced into γ regions. The states of the semantics are introduced in
Definition 2.2.

The semantics of arithmetic and Boolean expressions is defined similarly to the one-
heap semantics except that ηh is replaced with ηh̃:

�d� ∈ Sliced States ⇀ Values× (R∪{⊥})

ηh̃(α ,β ) =

⎧
⎨

⎩

(α ,β ), if α ∈Z;
(α , i), if α ∈ dom(h̃1) and ∃!i ∈ {1, . . . ,γ}. h̃i(α)� φ ;
undefined, otherwise.

The inference rules of the semantics are defined as follows.

skip : (s, h̃)� (s, h̃)

�e�(s, h̃) is undefined

x� e : (s, h̃)� abort

�e�(s, h̃) = (α ,β )

x� e : (s, h̃)� ([sv | x : α ], [sr | x : β ], h̃)

u = min{t | {at
n,1, . . . ,a

t
n,n}∩dom(h̃1) = /0} ζi(α j,β j) =

{
α j , if i = β j;
φ , otherwise.

x� cons′(d1 : Rs1, . . . ,dn : Rsn) : (s, h̃)�⎧
⎨

⎩

([sv | x : au
n,1], [sr | x : β1], . . . , [h̃i | au

n,1 : ζi(α1,β1) | . . . | au
n,n : ζi(αn,βn)], . . .),

if �di�(s, h̃) = (αi,βi) βi ∈ Rsi;
abort, otherwise.

x�Rs [e] : (s, h̃)�
{
([sr | x : h̃β (α)], [sr | x : β ], h̃), if �e�(s, h̃) = (α ,β ) β ∈ Rs;
abort, otherwise.

[e1]�Rs e2 : (s, h̃)�{
(s, . . . , h̃1 , [h̃β | α1 : α2], . . . , h̃γ ), if�ei�(s,h) = (αi,β ), h̃β (α1) � φ , and β ∈ Rs;
abort, otherwise.

dispose(e) : (s, h̃)�
{
(s, . . . , h̃i�(dom(h̃i)\{α}), . . .), if �e�(s, h̃) = (α ,β ) and α ∈ dom(h̃1);
abort, otherwise.

S1 : (s, h̃)� (s′, h̃′)
S2 : (s′, h̃′)� st

S1;S2 : (s, h̃)� st

S1 : (s, h̃)� abort
S2 ∈ Stmts

S1;S2 : (s, h̃)� abort

�b�(s, h̃) is undefined

if b then St else S f : (s, h̃)� abort

�b�(s, h̃) = true
St : (s, h̃)� st

if b then St else S f : (s, h̃)� st

�b�(s, h̃) = false
S f : (s, h̃)� st

if b then St else S f : (s, h̃)� st

�b�(s, h̃) is undefined

while b do St : (s, h̃)� abort

�b�(s, h̃) = true
St : (s, h̃)� abort

while b do St : (s, h̃)� abort

�b�(s, h̃) = false

while b do St : (s, h̃)� (s, h̃)

�b�(s, h̃) = true
St : (s, h̃)� (s′, h̃′)
while b do St : (s′, h̃′)� st

while b do St : (s, h̃)� st

Lemma 2. Suppose �e�(s, h̃) = (α,β ). If α ∈ Addrs then h̃β (α) � φ .

Lemma 3. The semantics introduced in this section are well defined.
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3 Pointer Analysis

This section presents a type system for pointer analysis [13,11,16,12,14,9] which is a
flow-sensitive forward analysis. The analysis presented in this section is an augmented
version of the type system we presented in [13]. We include the system here for the
following reasons; (a) to make the current manuscript self-contained, (b) to show how
differences between the language of this paper and that of [13] are treated, and (c) the
following sections are built on this type system. The proof of the soundness for the
type system presented here can be built by revising that presented in [13] pearing in
mind that the operational semantics used in both cases are different. The augmentation
mentioned above is related to arithmetic expressions. The analysis annotates program
points with partial maps (types of our type system) that approximatively specifies for
each store the addresses that can go into the store.

The set of points-to types, PTS, and the sub-typing relation are defined as follows.

Definition 3. 1. pts = {pts | pts : Var∪A → 2Addrs | A ⊆ Addrs}. The bottom type is
denoted by ⊥.

2. pts ≤ pts′ def⇐⇒ dom(pts)⊆ dom(pts′) and ∀t ∈ dom(pts). pts(t)⊆ pts′(t).
3. A state (s,h) has type pts, denoted by (s,h) |= pts, if

– dom(h)⊆ dom(pts),
– ∀x ∈ Var. sv(x) ∈ Addrs =⇒ sv(x) ∈ pts(x), and
– ∀a ∈ dom(h). hv(a) ∈ Addrs =⇒ hv(a) ∈ pts(a).

The pointer analysis of a program takes the form of a post-type derivation for a given
pre-type. Typically ⊥, the bottom type, is the pre-type.

The judgement of an arithmetic expression e has the form e : pts → V . The set V is
either a set of addresses or a singleton of an integer. The intended meaning, which is
formalized in Lemma 4, of this judgement is that V captures any address that e evaluates
to in a state of type pts. In particular if V is a set of addresses, then e is either an address
from V or any integer.

The judgement of a statement S has the form S : pts → pts′. The intuition, which is
formalized in Theorem 1, of this judgement is that if S is executed in a state of type pts,
then any state (rather than abort) where the execution ends is of type pts′.

The inference rules of our type system for pointer analysis are the following:

n : pts →{n} x : pts → pts(x) cast(Ri ↪→ R j)e : pts → /0 e : Ri : pts → /0

e1 : pts →V1 e2 : pts →V2

e1 ⊕ e2 : pts →

⎧
⎪⎪⎨

⎪⎪⎩

{n⊕m} if V1 = {n}∧V2 = {m},
{am

i, j⊕n | am
i, j ∈V2 ∧1 ≤ j⊕n ≤ i} if V1 = {n}∧V2 ⊆ Addrs,

{am
i, j⊕n | am

i, j ∈V1 ∧1 ≤ j⊕n ≤ i} if V2 = {n}∧V1 ⊆ Addrs,
{am

i, j | j = 1, . . . i and for some j,am
i, j ∈V1 ∪V2} otherwise.

In the rest of the paper when e : pts →V, we let V ′ denotes V ∩Addrs.

skip : pts → pts

e : pts →V
(assp)

x� e : pts → [pts | x : V ′]
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v = min{t | {at
n,1, . . . ,a

t
n,n}∩dom(pts) = /0} ∀1 ≤ i ≤ n. di : pts →Vi

(conp)
x� cons(d1, . . . ,dn) : pts →∪1≤i≤v[pts | x : {ai

n,1} | ai
n,1 : V ′

1 | . . . | ai
n,n : V ′

n ]

e : pts →V
(lokp)

x� [e] : pts → [pts | x : ∪a∈V ′pts(a)]

∀1 ≤ i ≤ 2. ei : pts →Vi

(mutp)
[e1]� e2 : pts →∪a∈V ′

1
[pts | a : V ′

2]

(disp)
dispose(e) : pts → pts

S1 : pts → pts′′
S2 : pts′′ → pts′

(seqp)
S1;S2 : pts → pts′

St : pts → pts′
Sf : pts → pts′

(ifp)
if b then St else S f : pts → pts′

St : pts → pts
(whlp)

while b do St : pts → pts

pts′1 ≤ pts1 S : pts1 → pts2 pts2 ≤ pts′2
(csqp)

S : pts′1 → pts′2

Lemma 4. Suppose that (s,h) |= pts, �d�(s,h) = (α,β ) and d : pts →V. Then

1. V ⊆ Addrs or ∃n ∈Z. V = {n},
2. ∀n ∈Z. V = {n}=⇒ α = n, and
3. α ∈ Addrs =⇒ α ∈V.

The soundness of the type system is stated in the following theorem whose proof can
be driven from the corresponding theorem in [13].

Theorem 1. 1. pts ≤ pts′ ⇐⇒ (∀(s,h), (s,h) |= pts =⇒ (s,h) |= pts′).
2. Suppose that S : pts → pts′ and S : (s,h) → (s′,h′). Then (s,h) |= pts implies

(s′,h′) |= pts′.

4 Region Analysis

In this section, we introduce a type system for region analysis which is a flow-sensitive,
forward, and may analysis. The analysis annotates program points with region infor-
mation in the form of partial maps from variables and memory locations to the power
set of regions. Under these maps, the image of an address is an over-approximate set of
regions where this address may exist. The image of a variable is an over-approximate
set of regions from which the variable gets its value. We recall that the set of regions
R = {1, . . . ,γ}.

The set of region types, PTS-REG, and the sub-typing relation are defined as follows.

Definition 4. 1. REG = {reg | reg : Var∪A → 2R | A ⊆ Addrs}.
2. PTS-REG = {(pts,reg) ∈ pts× reg | dom(pts) = dom(reg)}.

3. reg ≤ reg′ def⇐⇒ dom(reg)⊆ dom(reg′) and ∀t ∈ dom(reg). reg(t)⊆ reg′(t).
4. (pts,reg)≤ (pts′,reg′) def⇐⇒ pts ≤ pts′ and reg ≤ reg′.
5. A state (s,h) has type reg, denoted by (s,h) |= reg, if

– dom(hr)⊆ dom(reg),
– ∀t ∈ Var. sr(t) = β =⇒ β ∈ reg(t), and sr(t) =⊥=⇒ reg(t) = {1, . . . ,γ}, and
– ∀t ∈ dom(hr). hr(t) = β =⇒ β ∈ reg(t).
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6. A state (s,h) has type (pts,reg), denoted by (s,h) |= (pts,reg), if
– dom(pts) = dom(reg),
– (s,h) |= pts, and
– (s,h) |= reg.

The inference rules of our type system for region analysis are the following:

n : (pts,reg)→{1, . . . ,γ} x : (pts,reg)→ reg(x) Cast(Ri ↪→ R j)e : (pts,reg)→ { j}

e1 : (pts,reg)→ Rs1 e2 : (pts,reg)→ Rs2 e1 ⊕ e2 : pts →V

e1 ⊕ e2 : (pts,reg)→ (Rs1 ∩Rs2)∪ (∪a∈V′ reg(a)) e : Ri : (pts,reg)→{i}

x� e : pts → pts′ e : (pts,reg)→ Rs
(assR)

x� e : (pts,reg)→ (pts′, [reg | x : Rs])

(disR)
dispose(e) : (pts,reg)→ (pts,reg)

skip : (pts,reg)→ (pts,reg)

x� [e] : pts → pts′ e : (pts,reg)→ Rs
(lokR)

x� [e] : (pts,reg)→ (pts′, [reg | x : Rs])

v = min{t | {at
n,1, . . . ,a

t
n,n}∩dom(reg) = /0}

∀1 ≤ i ≤ n. di : (pts,reg)→ Rsi
x� cons(d1, . . . ,dn) : pts → pts′

(conR)
x� cons(d1, . . . ,dn) : (pts,reg)→ (pts′,∪1≤i≤v[reg | x : Rs1 | ai

n,1 : Rs1 | . . . | ai
n,n : Rsn])

[e1]� e2 : pts → pts′
e2 : (pts,reg)→ Rs

e1 : pts →V
(mutR)

[e1]� e2 : (pts,reg)→ (pts′,∪a∈V ′ [reg | a : Rs])

S1 : (pts,reg)→ (pts′′,reg′′)
S2 : (pts′′,reg′′)→ (pts′,reg′)

(seqR)
S1;S2 : (pts,reg)→ (pts′,reg′)

St : (pts,reg)→ (pts′,reg′)
Sf : (pts,reg)→ (pts′,reg′)

(ifR)
if b then St else S f : (pts,reg)→ (pts′,reg′)

St : (pts,reg)→ (pts,reg)
(whlR)

while b do St : (pts,reg)→ (pts,reg)

(pts′1,reg′1)≤ (pts1,reg1) S : (pts1,reg1)→ (pts2,reg2) (pts2,reg2)≤ (pts′2,reg′2)
(csqR)

S : (pts′1,reg′1)→ (pts′2,reg′2)

The following lemma is needed in the proof of the following theorem which proves the
soundness of the type system.

Lemma 5. Suppose that (s,h) |= (pts,reg), �d�= (α,β ), and d : (pts,reg)→ Rs. Then

1. β ∈ R =⇒ β ∈ Rs.
2. β =⊥=⇒ Rs = R = {1, . . . ,γ}.

Proof. The proof is by induction on the structure of d as follows:

1. If d = n, then by definition β =⊥ and Rs = R as required.
2. If d = x, then β = sr(x) and the required holds because (s,h) |= reg.
3. If d = e : R j or d = Cast(Ri ↪→ R j) e then by definition β = { j} and Rs = { j} as

required.
4. If d = e1 ⊕ e2, then there are three subcases:

(a) α is an integer and β = ⊥. In this case � e1� = (α1,⊥), � e2� = (α2,⊥),
and α = α1 ⊕α2, where α1 and α2 are integers. Therefore by the induction
hypothesis V1 =V2 = R. Hence R ⊆ Rs ⊆ R implying Rs = R.
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(b) α is an integer and β ∈ R. In this case � e1� = (α1,β ), � e2� = (α2,⊥),
and α = α1 ⊕α2, where α1 and α2 are integers. Therefore by the induction
hypothesis β ∈V1 ∩V2 ⊆ Rs.

(c) α is address. Then by Lemma 1, β ∈ R and β = hr(α). In this case, β ∈
reg(α) because (s,h) |= reg and α ∈ V ′ because (s,h) |= pts. Therefore β ∈
∪a∈V ′reg(a)⊆ RS.

Theorem 2. 1. (pts,reg) ≤ (pts′,reg′) =⇒ (∀(s,h), (s,h) |= (pts,reg) =⇒ (s,h) |=
(pts′,reg′)).

2. (S : (pts,reg)→ (pts′,reg′)) =⇒ (S : pts → pts′).
3. Suppose that S : (pts,reg) → (pts′,reg′) and S : (s,h) → (s′,h′). Then (s,h) |=

(pts,reg) implies (s′,h′) |= (pts′,reg′).

Proof. The first two items are obvious. For the last item and by (2), it is enough to
prove that (s′,h′) |= reg′. This is proved by induction on the structure of type derivation
as follows:

1. The type derivation has the form (assR). In this case, reg′ = [reg | x : Rs] and
(s′,h′) = ([sv | x : α], [sr | x : β ],h), where �e�(s,h) = (α,β ). By 2 and Theorem 1,
(s′,h′) |= pts′. By Lemma 5, (s′,h′) |= reg′. Clearly dom(pts′) = dom(reg′) and
hence (s′,h′) |= (pts′.reg′).

2. The type derivation has the form (conR). In this case, reg′ = ∪1≤i≤v[reg | x : Rs1 |
ai

n,1 : Rs1 | . . . | ai
n,n : Rsn] and (s′,h′) = ([sv | x : au

n,1], [sr | x : β1], [hv | au
n,1 : α1 | . . . |

au
n,n : αn], [hr | au

n,1 : β1 | . . . | au
n,n : βn]). Clearly, 1 ≤ u ≤ v. For every 1 ≤ i ≤ n by

Lemma 5, if βi ∈R then βi ∈ Rsi and if βi =⊥ then Rsi =R. We have s′r(x) = β1 ∈
Rs1 = reg′(x). We also have that dom(h′)⊆ dom(reg′) because dom(h)⊆ dom(reg)
((s,h) |= reg) and 1 ≤ u ≤ v. It is obvious that for any x� y ∈ Var and a ∈ dom(h′)\
{au

n,1, . . . ,a
u
n,n},

– s′r(y) ∈ R implies s′r(y) ∈ reg′(y),
– s′r(y) =⊥ implies reg′(y) = R, and
– h′r(a) ∈ R implies h′r(a) = hr(a) ∈ reg(a)⊆ reg′(a).

For every 1 ≤ i ≤ n, if hr(au
n,i) ∈ R, then hr(au

n,i) = βi ∈ Rsi ⊆ reg′(au
n,i). Hence

(s′,h′) |= reg′.
3. The type derivation has the form (lokR). In this case, reg′ = [reg | x : Rs] and

(s′,h′) = ([sv | x : hv(α)], [sr | x : β )],h), where �e�(s,h) = (α,β ). By Lemma 5,
β ∈ Rs. Also we have α ∈ Addrs∩dom(h) and hence α ∈V ′ by Lemma 4.

4. The type derivation has the form (mutR). In this case, reg′ = ∪a∈V ′ [reg | a : Rs]
and (s′,h′) = (s, [hv | α1 : α2], [hr | α1 : β ]), where �ei�(s,h) = (αi,β ). We have
α1 ∈ dom(h)∩V1 and β ∈ Rs by Lemma 5. Therefore hr(α1) ∈ reg′(α1).

The remaining cases are straightforward to check.

5 Data Slicing

This section presents a technique for solving the principal problem, heap slicing, mo-
tivating the paper. The basic instrument of the technique is a type system which is an
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enrichment of the type system for region analysis with a transformation component.
This transformation is that of heap slicing. In this section it is also shown that the trans-
formation presented by the type system is sound in the sense that the original program
and that results from the transformation produce the same result.

Definition 5. A sliced heap (s, h̃) is a valid slicing of a state (s,h), denoted by
(s,h) ∼ (s, h̃), if

1. dom(h) = dom(h̃1), and
2. (∀a ∈ dom(h)) (hv(a),hr(a)) = (α,β ) =⇒ h̃β (a) = α and (∀i � β ) hi(a) = φ .

Definition 6. 1. Slice : Heaps → Sliced Heaps : h �→ (h1, . . . ,hγ), where for every
i ∈ [1,γ],

hi : dom(h)→ Values+ : a �→
{

hv(a), if hr(a) = i;
φ , otherwise.

2. Con : Sliced Heaps → Heaps : h̃ �→ (hv,hr), where

hv : dom(h̃)→ Values : a �→ h̃ia(a) hr : dom(h̃)→ R : a �→ ia, where

ia is the unique index such that h̃ia(a) � φ .
3. SliceS : States → Sliced States : (s,h) �→ (s,Slice(H)).
4. ConS : SlicedStates → States : (s, h̃) �→ (s,Con(H̃))

Lemma 6. The maps of the previous definitions are well-defined. Moreover SliceS and
ConS are inverses to each other.

The inference rules of our type system are the following:

ρ(di,Rsi) =

{
di : Rsi, if di = ei;
di, otherwise.

x� e : (pts,reg)→
(pts′,reg′) ↪→ x� e

skip : (pts,reg)→
(pts,reg) ↪→ skip

x� cons(d1, . . . ,dn) : (pts,reg)→ (pts′,reg′) ∀1 ≤ i ≤ n. di : (pts,reg)→ Rsi

x� cons(d1, . . . ,dn) : (pts,reg)→ (pts′,reg′) ↪→ x� cons′(ρ(d1,Rs1), . . . ,ρ(dn,Rsn))

x� [e] : (pts,reg)→ (pts′,reg′)
e : (pts,reg)→ Rs

x� [e] : (pts,reg)→ (pts′,reg′) ↪→ x�Rs [e]

dispose(e) : (pts,reg)→ (pts,reg′)
↪→ dispose′(e)

[e1]� e2 : (pts,reg)→ (pts′,reg′)
e1 : (pts,reg)→ Rs1 e2 : (pts,reg)→ Rs2

[e1]� e2 : (pts,reg)→ (pts′,reg′) ↪→ [e1]�Rs1∩Rs2 e2

S1 : (pts,reg)→ (pts′′,reg′′) ↪→ S′1
S2 : (pts′′,reg′′)→ (pts′,reg′) ↪→ S′2

S1;S2 : (pts,reg)→ (pts′,reg′) ↪→ S′1;S′2

St : (pts,reg)→ (pts,reg) ↪→ S′t

while b do St : (pts,reg)→ (pts,reg′) ↪→ while b do S′t

St : (pts,reg)→ (pts′,reg′) ↪→ S′t
S f : (pts′′,reg′′)→ (pts′,reg′) ↪→ S′f

if b then St else S f : (pts,reg)→ (pts′,reg′) ↪→ i f b then S′t else S′f

(pts′1,reg′1)≤ (pts1,reg1) S : (pts1,reg1)→ (pts2,reg2) ↪→ S′ (pts2,reg2)≤ (pts′2,reg′2)

S : (pts′1,reg′1)→ (pts′2,reg′2) ↪→ S′
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Theorem 3. (Soundness) Suppose that S : (pts,reg) → (pts′,reg′) ↪→ S′ and (s,h) ∼
(s, h̃). Then

1. If S : (s,h)→ (s′,h′), then there exists a state (s′, h̃′) such that S′ : (s, h̃)� (s′, h̃′)
and (s′,h′) ∼ (s′, h̃).

2. If S′ : (s, h̃)� (s′, h̃′), then there exists a state (s′,h′) such that S : (s,h)→ (s′,h′)
and (s′,h′) ∼ (s′, h̃′).

Proof. The proof is by induction on the structure of type derivation. For the base cases
in the proof of (1), take (s′, h̃′) = Slices((s′,h′)). For the base cases in the proof of (2),
take (s′,h′) = Cons((s′, h̃′)).

6 Related and Future Work

In [6], Condit et al. present data slicing [28,31], a program transformation which di-
vides the heap into separate regions, for a C-like language. The basic idea in [6] is to
syntactically slice structures defined in a given program. Then, the slicing of the pro-
gram commands is calculated using sliced versions of program structures. The physical
slicing of the program heap follows upon executing the sliced program.

Related concepts to data slicing are program slicing, intentional polymorphism,
structure splitting. Program slicing [1,18,4,26] finds the program portions that con-
tribute to evaluating the value of a given variable at a given program point. In other
words, program slicing [25] is a practicable technique to bound the focus of a job to
certain part of a program. Program slicing is used in program comprehension, test-
ing, restructuring, debugging, and optimizing. A technique to compile polymorphism
while still being able to use types information at run time is intentional polymor-
phism [7,17,8]. The similarity to data slicing comes from the fact that intentional poly-
morphism enables the compiler of preserving type safety and efficiently representing
types. An alternative approach to data slicing, is structure splitting [2,5]. This approach
marks the non-active fields of data structures by adding new pointers to data structures.
Clearly this pointer addition does sacrifices the backward compatibility. Therefore data
slicing is advantageous over structure splitting.

Among advantages of data slicing is preserving backward compatibility. As an alter-
native, splay trees [30,21,27] can be used to preserve backward compatibility. However
some research like [6] concludes that the use of splay trees is more expensive in terms
of time and complexity of the system used in implementation.

A typical approach for heap slicing is the algorithmic style. However the use of type
systems in program analysis (in general) [13,11,16,12], rather than classical algorithms,
and in data slicing (in particular) is very useful for applications like certified code or
proof-carrying code. The catch of the type systems approach is that type derivations
serve as proofs for the technique result.

Programs and data structures can mathematically be represented by mathematical
domains and maps between domains. This representation is called denotational seman-
tics of programs. An important direction for future research is to transfer concepts of
data and program slicing to the side of denotational semantics [15,10]. This enables us
to mathematically study in deep heap slicing and translates back obtained results to the
side of programs and data structures.
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