
Flow Sensitive-Insensitive Pointer Analysis Based
Memory Safety for Multithreaded Programs

Mohamed A. El-Zawawy

Department of Mathematics
Faculty of Science
Cairo University

Giza 12613
Egypt

maelzawawy@cu.edu.eg

Abstract. The competency of pointer analysis is crucial for many compiler op-
timizations, transformations, and checks like memory safety. The potential in-
teraction between threads in multithreaded programs complicates their pointer
analysis and memory-safety check. The trade-off between accuracy and scalabil-
ity remains a main issue when studying these analyses. In this work, we present
novel approaches for the pointer analysis and memory safety of multithreaded
programs as simply structured type systems.

In order to balance accuracy and scalability, the type system proposed for
pointer analysis of multithreaded programs is flow-sensitive and it invokes
another flow-insensitive type system for parallel constructs. Therefore the
proposed pointer analysis is described as flow sensitive-insensitive. The third
type system presented in this paper takes care of memory safety of multithreaded
programs and is an extension of the type system of pointer analysis. Programs
having types in memory-safety type system, are guaranteed to be memory safe.
Type derivations serve as proofs for correctness of the result of every pointer
analysis and memory-safety check. Such proofs are required in the area of
proof-carrying code.

Keywords: Pointer analysis, memory safety, operational semantics, multi-
threaded programs, type systems.

1 Introduction

Two facts contribute to the enormous importance that the pointer analysis of multi-
threaded programs enjoys. One fact is that pointer information is important for many
compiler optimizations and corrections [23]. The other fact is the growing interest in
multithreading as a mainstream practice of programming. One important use of pointer
information is to statically judge the memory safety of programs. That is to reason about
(a) the existence of pointer arithmetics when they are not allowed by the syntax of the
language and (b) the existence of dangling pointers (de-referencing of variables that
contain no pointers). The fact that pointer analysis is a main tool in code parallelization
magnifies importance of pointer analysis.

B. Murgante et al. (Eds.): ICCSA 2011, Part V, LNCS 6786, pp. 355–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

356 M.A. El-Zawawy

For multithreaded programs, compilation and program analyses are challenging
problems [17,23] because the potential interaction between various threads creates diffi-
culty in extending techniques of compiling and analyzing sequential programs to cover
multithreaded ones. For the pointer analysis, the interaction happens when a thread
writes a pointer variable that is simultaneously accessed by another thread. Such inter-
actions result in enlarging sets of pointers that variables may point to. For the sake of
correctness, analyses of multithreaded programs must conveniently interpret the inter-
action between various threads.

Pointer analysis [7,9] calculates information about memory locations that are pointed
to by program pointers. The memory safety analysis aims at statically proves that the
program does not treat pointers illegally according to the language syntax. One way
to classify techniques of pointer analysis and memory safety is according to flow-
sensitivity of approaches i.e. into flow-sensitive and flow-insensitive. The approaches
of flow-insensitive neglect the program’s flow of control. Hence in these techniques
the program statements are dealt with as if they are executable any number of times
in any probable order. Flow-insensitive approaches [1,2] are believed to be less precise
and more efficient than flow sensitive ones. Therefore there is a trade-off between us-
ing flow-sensitive and flow-insensitive approaches. In this paper, we introduce pointer
analysis and memory safety techniques for multithreaded programs. Aiming at captur-
ing the advantages of the two approaches, the proposed techniques mix flow sensitivity
and insensitivity.

Typically, static analysis of programs is done in an algorithmic style through which
algorithms work on control-flow graphs of programs rather than on their syntactic struc-
tures. The algorithmic style has the drawback of working like a black box in the sense
that it is not clear how the analysis was done. Therefore in applications like proof-
carrying code or certified code, where a proof for the correctness of analysis results
is required to be delivered with the result, the algorithmic style is not an ideal choice.
Type systems have established themselves as good tools to carry static analysis instead
of algorithms specially for applications of proof-carrying code [3,14,20]. Type rules are
relatively easy to interpret and type derivations are good format for required proofs.
The techniques presented in this paper for pointer analysis and memory safety of mul-
tithreaded programs are in the form of type systems.

Figure 1 presents the programming language that we study. The language is the sim-
ple while language [11] enriched with commands for structured parallel constructs and
pointer manipulations. Join-fork constructs, conditionally spawned threads, and paral-
lel loops are parallel constructs included in the language. The join-fork (par) construct
begins the execution of its threads concurrently at the beginning of the construct and

n ∈ Z, x ∈ Var, and ⊕ ∈ {+,−,×}
e ∈ Aexprs � x | n | e1 ⊕ e2

b ∈ Bexprs � true | false | ¬b | e1 = e2 | e1 ≤ e2 | b1 ∧ b2 | b1 ∨ b2

S ∈ Stmts � x � e | x � &y | ∗x � e | x � ∗y | skip | S1; S2 | if b then St else S f |
while b do St | par{{S1}, . . . , {Sn}} | par-if{(b1,S1), . . . , (bn,Sn)} | par-for{S}.

Fig. 1. The programming language

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 357

then waits for the accomplishment of these executions at the end of the par construct.
The parallel loop construct, par-for, executes in parallel a statically unknown number
of threads that have the same code (the loop body). The construct including condition-
ally spawned threads is that of par-if and it executes in parallel its n threads where the
execution of thread (bi, Si) includes the execution of Si only if bi is true.

This paper presents a new technique for pointer analysis of multithreaded programs.
Type systems are basic tools of our proposed technique which mixes concepts of flow
sensitive and insensitive analyses. More precisely, the technique has the form of a
type system that is flow-sensitive and that invokes another type system which is flow-
insensitive when parallel constructs are encountered. The paper also presents another
type system that checks memory-safety of multithreaded programs and that utilizes the
pointer information obtained by our pointer analysis. We show that if a program has
types in the memory safety type system then it is memory-safe in the sense that it is
guaranteed not to abort due to illegal pointer operations.

Motivation

1. x � &y;
2. ∗ x � 2;
3. par{
4. {y � &x}
5. {y � 5;
6. ∗ x � &z}
7. };
8. x � &z;
9. z � 2;
10. y � ∗z

Program point Pointer information
first point {t �→ ∅ | t ∈ Var}
between lines 1 & 2 {x �→ {y}, t �→ ∅ | x � t}
points between 2 & 8 {x �→ {y}, y �→ {x, z}, t �→ ∅ | t � {x, y}}
points between 8 & 10 {x �→ {z}, y �→ {x, z}, t �→ ∅ | t � {x, y}}
last point {x �→ {z}, t �→ ∅ | x � t}

Fig. 2. A motivating example together with its pointer analysis

The program in Figure 2 is a motivating example of the work presented in this paper.
We note that this program aborts because the command at the last line de-references
the variable z that has no address. Therefore this program is not memory safe. It is the
task of this paper to introduce a technique that statically (without running programs)
tests memory safety of multithreaded programs like this one. The information that z
has no addresses can be inferred from the result of a pointer analysis for the program.
Hence the paper introduces an efficient flow sensitive-insensitive pointer analysis whose
results for our example program are in the table of Figure 2.

Contributions

Contributions of this paper are the following:

1. A new flow sensitive-insensitive pointer analysis technique for multithreaded
programs.

2. An original type system for flow-insensitive pointer analysis of multithreaded
programs.

3. An original analysis that checks memory safety of multithreaded programs.

358 M.A. El-Zawawy

Organization

The rest of the paper is organized in sections that present the following topics in the
following order:

1. Related work.
2. The proposed technique (type systems) for pointer analysis of multithreaded pro-

grams.
3. The proposed technique (type system) for memory safety of multithreaded pro-

grams.
4. Operational semantics of our language (Figure 1).
5. Conclusion.

2 Related Work

Pointer Analysis and Memory Safety

The pointer analysis and memory safety for sequential programs have been studied
extensively for decades [7,10,9,25,6]. Flow-sensitive pointer analyses [8,26,30], which
are more natural to most applications, consider the order of program commands. Mostly
these analyses perform an abstract interpretation of program using dataflow analysis to
associate each program point with a points-to relation. Flow-insensitive pointer analy-
ses [1,2] do not consider the order of program commands. Typically the output of these
analyses, which are performed using a constraint-based approach, is a points-to relation
that is valid all over the program. Clearly the flow-sensitive approach is more precise
but less efficient than the flow-insensitive one. The work [25] presents a type and effect
analysis for detecting memory and type errors in C source code.

Although problems of pointer analysis and memory safety for sequential programs
were studied extensively, a little effort was done towards a pointer and a memory-safety
analyses for multithreaded programs. In [22], a flow sensitive analysis for multithreaded
programs was introduced. This analysis associates each program point with a triple
of points-to relations. This in turn complicates the the analysis and creates a sort of
redundancy in the collected points-to information. The work in [7] presents a design
for a formal low-level multi-threaded language enriched with region-based memory
management and synchronization constructs. Well-typed programs of this language are
claimed to be memory safe and race free. Investigating the details of these approaches
and our work makes it apparent that our work is simpler and more accurate than these
approaches. Moreover our approach provides a proof for the correctness of the pointer
analysis and memory safety for each program. To the best of our knowledge, such proof
is not known to be provided by any other existing approach.

Type Systems in Program Analysis

The work in [3,14,20,6,19] is among the closest work to ours in the sense that it uses
type systems to achieve the program analysis in a way similar to ours. The work in [14]
shows that a good deal of program analysis can be done using type systems. More

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 359

precisely, it proves that for every analysis in a certain class of data-flow analyses, there
exists a type system such that a program checks with a type if and only if the type is
a supertype for the set resulting from running the analysis on the program. The type
system in [18] and the flow-logic work in [20], which is used in [19] to study security
of the coordinated systems, are very similar to [14]. For the simple while language, the
work in [3] introduces type systems for constant folding and dead code elimination and
also logically proves correctness of optimizations. Safety policies for information flow,
carrying-code abstraction, and resource usage were also casted using type systems [4,5].
Earlier, related work (with structurally-complex type systems) is [21].

To the best of our knowledge, our approach is the first attempt to use type systems to
check memory safety based pointer analysis for multithreaded programs and associates
every individual check with a justification for correctness.

Analysis of Multithreaded Programs

The analysis of multithreaded programs is a challenging area [23] that receives grow-
ing interest; threading complicates the program analysis. There are several directions
of research in this area [15,13]. Deadlock which results from round waiting to gain re-
sources is a problem of multithreading computing. Researchers have developed various
techniques for deadlock detection [12,27,28]. The aim of the analysis of synchroniza-
tion constructs [24,29] is to explore how the synchronization actions apart executions of
program segments. The result of this analysis can be used by compiler to appropriately
add join-fork constructs. Data race describes the situation when a memory location is
accessed by two threads (one of them writes in the location) without synchronization.
One direction of research focuses on data race detection [16].

The problem with almost all the work refereed to above is that it does not apply to
pointer programs. More precisely, for some of the work the application is possible only
if we have the result of a pointer analysis for the input pointer program. The techniques
presented in this paper have the advantage of being simpler and more reliable than the
techniques refereed to above that would work in the presence of a pointer analysis.

3 Pointer Analysis

This section presents a new technique for pointer analysis of multithreaded programs
that allow shared pointers to be updated simultaneously. Our technique is basically a
flow-sensitive analysis that invokes flow-insensitive one for the analysis of parallel con-
structs; join-fork constructs, parallel loops, and conditionally spawned threads. There-
fore the technique can be described as flow sensitive-insensitive. Both of the analyses
take the form of compositional type systems that are simply structured. The pointer in-
formation calculated by the analyses have the form of types assigned to expressions and
statements. The correctness of collected pointer information is proved by type deriva-
tions. Hence the presented analyses proceed by assigning a type to each program point
of a statement (program). A points-to type associates each variable in the program with
a conservative approximation of the addresses that may get into the variable. The sound-
ness of all type systems presented in this paper is proved using the operational semantics
presented in Section 5. The set of states of this semantics is denoted by Γ.

360 M.A. El-Zawawy

The following definition introduces the set of points-to types PTS and the relation
|= ⊆ Γ × PTS:

Definition 1. 1. Addrs = {x′ | x ∈ Var}.
2. PTS = {pts | pts : Var→ 2Addrs}.
3. pts ≤ pts′ def⇐⇒ ∀x ∈ Var. pts(x) ⊆ pts′(x).

4. γ |= pts
def⇐⇒ (∀x ∈ Var. γ(x) ∈ Addrs =⇒ γ(x) ∈ pts(x)).

We start with introducing a type system for flow-insensitive pointer analysis of mul-
tithreaded programs. Then a type system for flow-sensitive analysis that invokes the
flow-insensitive type system is introduced.

3.1 Flow-Insensitive Pointer Analysis

The types, PTS, of our type system for flow-insensitive pointer analysis are introduced
in the previous definition. The inference rules of the type system are the following:

x : pts, pts(x) n : pts, ∅ e1 ⊕ e2 : pts, ∅ skip : pts

e : pts,A A ⊆ pts(x)
(�p

insen)
x � e : pts

y′ ∈ pts(x)
(� &p

insen)
x � &y : pts

∀z′ ∈ pts(x). z � e : pts
(∗�p

insen)∗x � e : pts

∀z′ ∈ pts(y). x � z : pts
(� ∗pinsen)

x � ∗y : pts

∀i. Si : pts
(parp

insen)
par{{S1}, . . . , {Sn}} : pts

∀i. Si : pts
(par-ifp

insen)
par-if{(b1, S1), . . . , (bn,Sn)} : pts

S : pts
(par-forp

insen)
par-for{S} : pts

S1 : pts S2 : pts
(seqp

insen)
S1; S2 : pts

St : pts S f : pts
(ifpinsen)

if b then St else S f : pts

St : pts
(whlp

insen)
while b do St : pts

S : pts pts ≤ pts′
(csqp

insen)
S : pts′

The judgements of an expression e and a statement S have forms e : pts,A and
S : pts, respectively. As formalized by Lemma 1, A is the collection of addresses that
e may evaluate to in a state of type pts. The judgement of S guarantees that if the
execution of S in a state of type pts terminates in a state γ′, then γ′ has type pts.

The inference rule (�p
insen) says that for the assignment statement to be of type pts,

the set pts(x) has to cover the set of addresses A. The other inference rules correspond-
ing to other assignment commands are clarified similarly. A type invariant is necessary
to type statements like while, par, par-if, and par-for. A fix-point algorithm can be used
to find type invariants. The monotonicity of rules of the type system and the fact that
the set of points-to types PTS is a complete lattice guarantee the convergence of the
algorithm.

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 361

Lemma 1. 1. Suppose e : pts,A and γ |= pts. Then �e�γ ∈ Addrs implies �e�γ ∈ A.
2. pts ≤ pts′ ⇐⇒ (∀γ. γ |= pts =⇒ γ |= pts′).

Proof. (1) is obvious. The right-to-left direction of (2) is proved as follows. Suppose
y′ ∈ pts(x). Then the state {(x, y′), (t, 0) | t ∈ Var \ {x}} is of type pts and hence of
type pts′ implying that y′ ∈ pts′(x). Therefore pts(x) ⊆ pts′(x). Since x is arbitrary,
pts ≤ pts′. The other direction is easy.

Theorem 1. (Soundness) Suppose that S : pts, S : γ � γ′, and γ |= pts. Then
γ′ |= pts.

Proof. The proof is by structure induction on the type derivation. We demonstrate some
cases.

– The case of (�p
insen): in this case γ′ = γ[x �→ �e�γ]. Therefore by the previous

lemma γ |= pts implies γ′ |= pts.
– The case of (∗ �p

insen): in this case there exists z ∈ Var such that γ(x) = z′ and z �
e : γ � γ′. Because γ |= pts, z′ ∈ pts(x) and hence by assumption z � e : pts.
Therefore by soundness of (�p

insen), γ′ |= pts.

– The case of (parp
insen): in this case there exist a permutation θ : {1, . . . , n} →

{1, . . . , n} and n + 1 states γ = γ1, . . . , γn+1 = γ′ such that for every
1 ≤ i ≤ n, Sθ(i) : γi → γi+1. Also γ1 |= pts. Therefore by the induction hypothe-
sis γ2 |= pts. Again by the induction hypothesis we get γ3 |= pts. Therefore by a
simple induction on n, we can show that γ′ = γn+1 |= pts.

– The case of (par-for
p
insen): in this case there exists n such that par{

n−times︷������︸︸������︷
{S}, . . . , {S}} :

γ � γ′. By induction hypothesis we have S : pts. By (parp
insen) we conclude that

par{
n−times︷������︸︸������︷

{S}, . . . , {S}} : pts. Therefore by the soundness of (parp
insen), γ′ |= pts′.

3.2 Flow Sensitive-Insensitive Pointer Analysis

This section presents the basic type system that carries the pointer analysis of multi-
threaded programs. For parallel constructs the type system calls the flow-insensitive
type system presented in the previous subsection. Therefore the type system presented
here is described as flow sensitive-insensitive analysis. The following are the rules of
the type system:

n : pts→ ∅ x : pts→ pts(x) e1 ⊕ e2 : pts→ ∅
e : pts→ A

(�p
sen)

x � e : pts→ pts[x �→ A]

(� &p
sen)

x � &y : pts→ pts[x �→ {y′}] skip : pts→ pts

∀z′ ∈ pts(y). x � z : pts→ pts′
(� ∗psen)

x � ∗y : pts→ pts′
∀z′ ∈ pts(x). z � e : pts→ pts′

(∗ �p
sen)∗x � e : pts→ pts′

362 M.A. El-Zawawy

par{{S1}, . . . , {Sn}} : pts
(parp)

par{{S1}, . . . , {Sn}} : pts→ pts

S1 : pts→ pts′′ S2 : pts′′ → pts′
(seqp

sen)
S1; S2 : pts→ pts′

par-if{(b1, S1), . . . , (bn,Sn)} : pts
(par-ifpsen)

par-if{(b1,S1), . . . , (bn,Sn)} : pts→ pts

par-for{S} : pts
(par-forp

sen)
par-for{S} : pts→ pts

St : pts→ pts′ Sf : pts→ pts′
(ifpsen)

if b then St else S f : pts→ pts′

St : pts→ pts
(whlp

sen)
while b do St : pts→ pts

pts′1 ≤ pts1 S : pts1 → pts2 pts2 ≤ pts′2
(csqp

sen)
S : pts′1 → pts′2

The judgements of an expression e and a statement S have forms e : pts → A and
S : pts → pts′, respectively. The intuition of these judgements are similar to that de-
scribed in the previous section for corresponding judgments. A typical pointer analysis
for a program S takes the form of a post-type derivation starting with the bottom type
(mapping variables to ∅) as the pre-type.

Lemma 2. Suppose e : pts→ A and γ |= pts. Then �e�γ ∈ Addrs implies �e�γ ∈ A.

Theorem 2. (Soundness) Suppose that S : pts→ pts′, S : γ� γ′, and γ |= pts. Then
γ′ |= pts′.

Proof. The proof is by structure induction on the type derivation. Some cases are shown
below.

– The case of (�p
sen): in this case pts′ = pts[x �→ A] and γ′ = γ[x �→ �e�γ].

Therefore by the previous lemma γ |= pts implies γ′ |= pts′.
– The case of (∗ �p

sen): in this case there exists z ∈ Var such that γ(x) = z′ and
z � e : γ � γ′. Because γ |= pts, z′ ∈ pts(x) and hence by assumption z � e :
pts→ pts′. Therefore by soundness of (�p

sen), γ′ |= pts′.
– The cases of (parp

sen), (par-forp
sen), and (par-ifpsen) follow directly from soundness of

the type system of the previous subsection (Theorem 1).

4 Memory Safety

This section presents a new technique that statically studies the memory safety of mul-
tithreaded programs. A memory safe program is one that is guaranteed not to attempt
any illegal operations with pointers like dereferencing a variable that has no pointer.
The proposed technique is a type system that extends the type system of pointer anal-
ysis presented in the previous section. The extension takes the form of another type
component added to points-to types. The new component is meant to capture for each
program point the set of variables that must contain addresses. The resulting types of
the memory-safety type system can be seen as a refitment of the points-to types. This
is reflected by the fact that the pointer information collected by the pointer analysis is
used in the rules of memory-safety type system.

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 363

The following definition introduces the set of safety-types MS and the relation |= ⊆
Γ ×MS:

Definition 2. – A safety type is a pair of a points-to type pts and a subset v ⊆ Var.

– (pts, v) ≤ (pts′, v′) def⇐⇒pts ≤ pts′ and v ⊇ v′.
– A state γ has type (pts, v), denoted by γ |= (pts, v), if γ |= pts and ∀x ∈ v. γ(x) ∈

Addrs.

Inference rules of our type system for memory safety are the following:

y ∈ v
(ym

1)
y : (x, pts, v)� v ∪ {x}

y � v
(ym

2)
y : (x, pts, v)� v \ {x}

(nm)
n : (x, pts, v)� v \ {x}

∀y ∈ FV(e1 ⊕ e2). pts(y) = ∅
(⊕m)

e1 ⊕ e2 : (x, pts, v)� v \ {x}
x � e : pts→ pts′ e : (x, pts, v)� v′

(�m)
x � e : (pts, v)� (pts′, v′)

skip : (pts, v)� (pts, v)

x ∈ v ∀z′ ∈ pts(x)(z� e : (pts, v)� (pts′, v′))
(∗�m)

∗x � e : (pts, v)� (pts′, v′)
y ∈ v ∀z′ ∈ pts(y)(x � z : (pts, v)� (pts′, v′))

(� ∗m)
x � ∗y : (pts, v)� (pts′, v′)

x � &y : pts→ pts′
(� &m)

x � &y : (pts, v)� (pts′, v ∪ {x})
S : (pts, v ∩ v′)� (pts, v′)

(par-form)
par-for{S} : (pts, v)� (pts, v′)

Si : (pts, v ∩ ∩ j�ivj)� (pts, vi)
(parm)

par{{S1}, . . . , {Sn}} : (pts, v)� (pts,∩ivi)

St : (pts, v)� (pts, v)
(whlm)

while b do St : (pts, v)� (pts, v)

S1 : (pts, v)� (pts′′, v′′) S2 : (pts′′, v′′)� (pts′, v′)
(seqm)

S1; S2 : (pts, v)� (pts′, v′)
par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : (pts, v)� (pts, v′)

(par-ifm)
par-if{(b1, S1), . . . , (bn,Sn)} : (pts, v)� (pts, v′)
St : (pts, v)� (pts′, v′) Sf : (pts, v)� (pts′, v′)

(ifm)
if b then St else S f : (pts, v)� (pts′, v′)

(pts′1, v
′
1) ≤ (pts1, v1) S : (pts1, v1)� (pts2, v2) (pts2, v2) ≤ (pts′2, v

′
2)

(csqm)
S : (pts′1, v

′
1)� (pts′2, v

′
2)

The judgement of an expression e has the form e : (x, pts, v) � v′. We note that
for a type (pts, v) and a variable x the post type v′ does not always exist. Therefore for
a type (pts, v) and a variable x such a judgement does not always exist. When exists
the judgement guarantees that the statement x � e does not abort when executed in a
state of type (pts, v) and that if the execution terminates in a state γ′, then v′ contains
variables that contain addresses according to γ′. The judgement of a statement S has
the form S : (pts, v) � (pts′, v′). For a given statement S and a pre-type (pts, v) such
a judgement does not always exist. This judgement, if exists, guarantees that S does
not abort at any state of type (pts, v) and if the execution of S in a state of type (pts, v)
terminates in a state γ′, then γ′ has type (pts′, v′). A typical memory safety analysis

364 M.A. El-Zawawy

for a program S takes the form of a post-type derivation starting with the bottom type
(where pts maps variables to ∅ and v = ∅) as the pre-type.

The inference rule (⊕m) reflects that in order for the assignment x � e1 ⊕ e2 to
succeed both of the operands e1 and e2 have to be guaranteed not to be pointers. By
Lemma 1 this is guaranteed if ∀y ∈ FV(e1 ⊕ e2)(pts(y) = ∅). In this case x is assigned a
number therefore gets removed from v to produce v′. In the rules (∗ �m) and (� ∗m) the
variables x and y, respectively, have to belong to v to guarantee that the dereferenced
variables x and y do contain addresses before execution. For the rule (parm), according
to semantics of the join-fork command, par, one possibility is that the execution of a
specific thread Si starts before the execution of any other thread starts. Another possibil-
ity is that the execution starts after executions of all other threads end. Of course there
are many other possibilities in between. Consequently, the analysis of the thread Si must
consider all such possibilities. This is reflected in the pre-type of Si and the post-type
of the par command. Similar explanations clarify the rules (par-ifm) and (par-form).

We note that a type invariant is required to type a while statement. Also to achieve
the analysis for one of the par’s threads we need to know the analysis results for all
other threads. However obtaining these results requires the result of analyzing the first
thread. Therefore there is a kind of circularity in rule (parm). Similar situations are in
rules (par-ifm) and (par-form). Such issues can be treated using a fix-point algorithm.
The convergence of this algorithm is guaranteed as the rules of our type system are
monotone and the set of points-to types PTS is a complete lattice.

Lemma 3. 1. (pts, v) ≤ (pts′, v′) =⇒ (∀γ ∈ Γ. γ |= (pts, v) =⇒ γ |= (pts′, v′)).
2. Suppose e : (x, pts, v)� v′ and γ |= (pts, v). Then

(a) �e� �!, and
(b) If x � e : γ→ γ′, then ∀y ∈ Var. (γ′(y) ∈ Addrs =⇒ y ∈ v′).

Proof. The proof of the first item is easy. The proof of the second item is by induction
on the structure of type derivation:

– The case of the rule (ym
1): in this case γ′ = γ[x �→ γ(y)] and v′ = v ∪ {x}. Since

y ∈ v, γ(y) ∈ Addrs. Therefore γ′(x) ∈ Addrs which justifies adding x to v.
– The case of the rule (ym

2): in this case γ′ = γ[x �→ γ(y)] and v′ = v \ {x}. Since
y � v, γ(y) is not guaranteed to be an address. Consequently γ′(x) is not guaranteed
to be an address which justifies removing x from v.

– The case of the rule (⊕m): in this case γ′ = γ[x �→ �e1 ⊕ e2�γ] and v′ = v \ {x}.
�e1 ⊕ e2� ∈ Z because ∀y ∈ FV(e1 ⊕ e2)(pts(y) = ∅), which guarantees that
∀y ∈ FV(e1 ⊕ e2). γ(y) ∈ Z. Consequently γ′(x) ∈ Z which justifies removing x
from v.

Theorem 3. (soundness and memory safety) Suppose S : (pts, v) � (pts′, v′) and
γ |= (pts, v). Then

1. S does not abort at γ i.e. S : γ �� abort.
2. If S : γ� γ′ then γ′ |= (pts′, v′).

Proof. The proof is by structure induction on the type derivation. Some cases are shown
as follows:

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 365

– The case of (�m): this case results from the previous lemma and the soundness of
pointer analysis.

– The case of (∗ �m): in this case there exists z ∈ Var such that γ(x) = z′ because
x ∈ v. We have z′ ∈ pts(x) because γ |= pts. By induction hypothesis z � e does not
abort at γ and consequently neither does ∗x � e. For (2) we have z � e : γ� γ′.
By assumption we have, z � e : (pts, v) � (pts′, v′). Therefore by soundness of
(�m), γ′ |= (pts′, v′).

– The case of (parm): (1) We outline the proof that executing the n threads in any order
starting from a state γ of type (pts, v) does not abort. Suppose that θ : {1, . . . , n} →
{1, . . . , n} is a permutation. γ |= (pts, v) implies γ |= (pts, v ∩ ∩ j�θ(1)vj). Therefore
by induction hypothesis Sθ(1) does not abort at γ. Then either Sθ(1) enters an infinite
loop at γ or the execution terminates at a state γ2 which is by induction hypothesis
of type (pts, vθ(1)). Therefore γ2 is of type (pts, v ∩ ∩ j�θ(2)vj). Hence a simple
induction on n shows (1).
(2) In this case there exist a permutation θ : {1, . . . , n} → {1, . . . , n} and n+1 states
γ = γ1, . . . , γn+1 = γ′ such that for every 1 ≤ i ≤ n, Sθ(i) : γi → γi+1. Also γ1 |=
(pts, v) implies γ1 |= (pts, v ∩ ∩ j�θ(1)vj). Therefore by the induction hypothesis
γ2 |= (pts, vθ(1)). This implies γ2 |= (pts, v ∩ ∩ j�θ(2)vj). Again by the induction
hypothesis we get γ3 |= (pts, vθ(2)). Therefore by a simple induction on n, we can
show that γ′ = γn+1 |= (pts, vθ(n)) which implies γ′ |= (pts′, v′) = (pts,∩ jvj).

– The case of (par-form): (1) Similarly to the previous case it is easy to show that the
par-for command does not abort at any state of type (pts, v).

(2) In this case there exists n such that par{
n−times︷������︸︸������︷

{S}, . . . , {S}} : γ � γ′. By induction
hypothesis we have S : (pts, v ∩ v′) � (pts, v′). By (parm) we conclude that

par{
n−times︷������︸︸������︷

{S}, . . . , {S}} : (pts, v)� (pts, v′). Therefore by the soundness of (parm), γ′ |=
(pts′, v′).

5 Operational Semantics

This section presents an operational semantics for constructs of the language (Figure 1)
we study. The semantics of the par command can be approximately interpreted as if the
threads are executed sequentially in an arbitrary order. By definitions, the semantics of
par-for and par-if are expressed using that of the par construct. Introducing operation
semantics is one way to describe the meanings of the constructs of our programming
language, including the parallel constructs. This is equivalent to defining a transition
relation� between states which are defined as follows.

Definition 3. 1. Addrs = {x′ | x ∈ Var} and Val = Z ∪ Addrs.
2. A state is either an abort or a map γ ∈ Γ = Var −→ Val.

Rather than that arithmetic and Boolean operations are not allowed on pointers, the
semantics of arithmetic and Boolean expressions are defined as usual.

�n�γ = n �&x�γ = x′ �x�γ = γ(x) �true�γ = true �false�γ = false

366 M.A. El-Zawawy

�∗x�γ =
{
γ(y) if γ(x) = y′,
! otherwise.

�e1 ⊕ e2�γ =
{
�e1�γ ⊕ �e2�γ if �e1�γ, �e2�γ ∈ Z,
! otherwise.

�¬A�γ =
{¬(�A�γ) if �A�γ ∈ {true, false},

! otherwise.
�e1 = e2�γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
! if �e1�γ = ! or �e2�γ = !,
true if �e1�γ = �e2�γ � !,
false otherwise.

�e1 ≤ e2�γ =
{

! if �e1�γ � Z or �e2�γ � Z,
�e1�γ ≤ �e2�γ otherwise.

For � ∈ {∧,∨}, �b1 � b2�γ =
{

! if �b1�γ = ! or �b2�γ = !,
�b1�γ � �b2�γ otherwise.

The inference rules of our semantics (transition relation) are defined as follows:

�e�γ = !

x � e : γ� abort

�e�γ � !

x � e : γ� γ[x �→ �e�γ]

γ(x) = z′ z � e : γ� state

∗x � e : γ� state

γ(x) � Addrs

∗x � e : γ� abort x � &y : γ� γ[x �→ y′]
γ(y) = z′ x � z : γ� γ′

x � ∗y : γ� γ′

γ(y) � Addrs

x � ∗y : γ� abort skip : γ� γ

S1 : γ� abort

S1; S2 : γ� abort

S1 : γ� γ′′ S2 : γ′′ � state

S1; S2 : γ� state

�b�γ = !

if b then St else S f : γ� abort

�b�γ = true St : γ� state

if b then St else S f : γ� state

�b�γ = false Sf : γ� state

if b then St else S f : γ� state

�b�γ = !

while b do St : γ� abort

�b�γ = false

while b do St : γ� γ

�b�γ = true S : γ� γ′′ while b do St : γ′′ � state

while b do St : γ� state

�b�γ = true S : γ� abort

while b do St : γ� abort

• Join-Fork:

†
par{{S1}, . . . , {Sn}} : γ� γ′

‡
par{{S1}, . . . , {Sn}} : γ� abort

† there exist a permutation θ : {1, . . . , n} → {1, . . . , n} and n + 1 states γ =
γ1, . . . , γn+1 = γ′ such that for every 1 ≤ i ≤ n, Sθ(i) : γi → γi+1.
‡ there exist m such that 1 ≤ m ≤ n, a one-to-one map β : {1, . . . ,m} →
{1, . . . , n}, and m + 1 states γ = γ1, . . . , γm+1 = abort such that for every
1 ≤ i ≤ m, Sβ(i) : γi → γi+1.

• Conditionally Spawned Threads:

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : γ� γ′

par-if{(b1,S1), . . . , (bn,Sn)} : γ� γ′

par{{if b1 then S1 else skip}, . . . , {if bn then Sn else skip}} : γ� abort

par-if{(b1,S1), . . . , (bn,Sn)} : γ� abort

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 367

• Parallel Loops:

∃n. par{
n−times︷������︸︸������︷

{S}, . . . , {S}} : γ� γ′

par-for{S} : γ� γ′
∃n. par{

n−times︷������︸︸������︷
{S}, . . . , {S}} : γ� abort

par-for{S} : γ� abort

Some comments on the inference rules are in order. The execution of assignment
command (�) aborts at a state only if the semantics of the expression e at that state
includes arithmetics on pointers. The semantics of the indirect assignment commands
(∗ � and � ∗) uses that of direct assignment (�) and has one more source of abor-
tion which happens due to de-referencing that is unsafe. One source for abortion of if
and while statements is the un-computability of Boolean conditions of these statements
which happens when a Boolean operation is tried on pointers. The execution of par
command, the main parallel command, amounts to starting at the begin of construct the
concurrent execution of all the command threads and waiting at the end of the construct
for the termination of these executions. This is approximated by the inference rules for
par command. The semantics of the other parallel commands (par-if and par-for) is
defined by means of the inference rules for par command.

6 Conclusion

Many compiler optimizations, transformations, and checks like memory safety are di-
rectly affected by the efficiency of the crucial program analysis of pointer analysis. One
factor that complicates the pointer analysis and memory-safety check of multithreaded
programs is the potential interaction between threads. A main issue when studying
these analyses for programs is the trade-off between accuracy and scalability. Novel
approaches, in the form of simply structured type systems, for the pointer analysis and
memory safety of multithreaded programs are presented in this paper.

For the sake of balancing accuracy and scalability, a flow-insensitive type system
for parallel constructs is invoked by the main flow-sensitive type system proposed for
pointer analysis of multithreaded programs. Hence the proposed technique is classified
as flow sensitive-insensitive. This paper extends the proposed type system for pointer
analysis to introduce the third type system of the paper which takes care of memory
safety of multithreaded programs. Memory safe is guaranteed for programs typed in the
proposed memory-safety type system. In the proposed techniques, the result of every
pointer analysis and memory-safety check is associated with a correctness proof which
has the form of a type derivation. These proofs are necessary in many applications like
proof-carrying code (certified code).

References

1. Adams, S., Ball, T., Das, M., Lerner, S., Rajamani, S.K., Seigle, M., Weimer, W.: Speeding
up dataflow analysis using flow-insensitive pointer analysis. In: Hermenegildo, M.V., Puebla,
G. (eds.) SAS 2002. LNCS, vol. 2477, p. 230. Springer, Heidelberg (2002)

2. Anderson, P., Binkley, D., Rosay, G., Teitelbaum, T.: Flow insensitive points-to sets. Infor-
mation & Software Technology 44(13), 743–754 (2002)

368 M.A. El-Zawawy

3. Benton, N.: Simple relational correctness proofs for static analyses and program transforma-
tions. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 14–25. ACM, New York (2004)

4. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certification of heap
consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp.
347–362. Springer, Heidelberg (2005)

5. Besson, F., Jensen, T.P., Pichardie, D.: Proof-carrying code from certified abstract interpre-
tation and fixpoint compression. Theor. Comput. Sci. 364(3), 273–291 (2006)

6. El-Zawawy, M.A.: Program optimization based pointer analysis and live stack-heap analysis.
International Journal of Computer Science Issues 8(2), 98–107 (2011)

7. Gerakios, P., Papaspyrou, N., Sagonas, K.F.: Race-free and memory-safe multithreading:
design and implementation in cyclone. In: Kennedy, A., Benton, N. (eds.) TLDI, pp. 15–26.
ACM, New York (2010)

8. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: Shao, Z., Pierce, B.C.
(eds.) POPL, pp. 226–238. ACM, New York (2009)

9. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: PASTE, pp. 54–61 (2001)
10. Hind, M., Pioli, A.: Which pointer analysis should i use? In: ISSTA, pp. 113–123 (2000)
11. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580

(1969)
12. Kim, B.-C., Jun, S.-W., Hwang, D.J., Jun, Y.-K.: Visualizing potential deadlocks in mul-

tithreaded programs. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 321–330.
Springer, Heidelberg (2009)

13. Knoop, J., Steffen, B.: Code motion for explicitly parallel programs. In: PPOPP, pp. 13–24
(1999)

14. Laud, P., Uustalu, T., Vene, V.: Type systems equivalent to data-flow analyses for imperative
languages. Theor. Comput. Sci. 364(3), 292–310 (2006)

15. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent static single assignment form and constant
propagation for explicitly parallel programs. In: Huang, C.-H., Sadayappan, P., Sehr, D. (eds.)
LCPC 1997. LNCS, vol. 1366, pp. 114–130. Springer, Heidelberg (1998)

16. Leung, K.-Y., Huang, Z., Huang, Q., Werstein, P.: Maotai 2.0: Data race prevention in
view-oriented parallel programming. In: PDCAT, pp. 263–271. IEEE Computer Society, Los
Alamitos (2009)

17. Midkiff, S.P., Padua, D.A.: Issues in the optimization of parallel programs. In: Padua, D.A.
(ed.) ICPP (2), pp. 105–113. Pennsylvania State University Press (1990)

18. Naik, M., Palsberg, J.: A type system equivalent to a model checker. ACM Trans. Program.
Lang. Syst. 30(5), 1–24 (2008)

19. Nicola, R.D., Gorla, D., Hansen, R.R., Nielson, F., Nielson, H.R., Probst, C.W., Pugliese,
R.: From flow logic to static type systems for coordination languages. Sci. Comput. Pro-
gram. 75(6), 376–397 (2010)

20. Riis Nielson, H., Nielson, F.: Flow logic: A multi-paradigmatic approach to static analysis.
In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation.
LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

21. Palsberg, J., O’Keefe, P.: A type system equivalent to flow analysis. ACM Trans. Program.
Lang. Syst. 17(4), 576–599 (1995)

22. Rugina, R., Rinard, M.C.: Pointer analysis for structured parallel programs. ACM Trans.
Program. Lang. Syst. 25(1), 70–116 (2003)

23. Sarkar, V.: Challenges in code optimization of parallel programs. In: de Moor, O.,
Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 1–1. Springer, Heidelberg (2009)

24. Tian, C., Nagarajan, V., Gupta, R., Tallam, S.: Automated dynamic detection of busy-wait
synchronizations. Softw., Pract. Exper. 39(11), 947–972 (2009)

25. Tlili, S., Debbabi, M.: Interprocedural and flow-sensitive type analysis for memory and type
safety of c code. J. Autom. Reasoning 42(2-4), 265–300 (2009)

Flow Sensitive-Insensitive Pointer Analysis Based Memory Safety 369

26. Wang, J., Ma, X., Dong, W., Xu, H.-F., Liu, W.: Demand-driven memory leak detection
based on flow- and context-sensitive pointer analysis. J. Comput. Sci. Technol. 24(2), 347–
356 (2009)

27. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.: Gadara: Dynamic deadlock
avoidance for multithreaded programs. In: Draves, R., van Renesse, R. (eds.) OSDI, pp.
281–294. USENIX Association (2008)

28. Xiao, X., Lee, J.J.: A true o(1) parallel deadlock detection algorithm for single-unit resource
systems and its hardware implementation. IEEE Trans. Parallel Distrib. Syst. 21(1), 4–19
(2010)

29. Xu, C., Che, Y., Fang, J., Wang, Z.: Optimizing adaptive synchronization in parallel simula-
tors for large-scale parallel systems and applications. In: CIT, pp. 131–138. IEEE Computer
Society, Los Alamitos (2010)

30. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow- and context-
sensitive pointer analysis scalable for millions of lines of code. In: Moshovos, A., Steffan,
J.G., Hazelwood, K.M., Kaeli, D.R. (eds.) CGO, pp. 218–229. ACM, New York (2010)

	Introduction
	Related Work
	Pointer Analysis
	Flow-Insensitive Pointer Analysis
	Flow Sensitive-Insensitive Pointer Analysis

	Memory Safety
	Operational Semantics
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

