
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org     98 

 

Program Optimization Based Pointer Analysis and Live Stack-
Heap Analysis 

Mohamed A. El-Zawawy 
 

 Department of Mathematics, Faculty of Science, Cairo University 
Giza, 12316, Egypt 

 
 
 

 
Abstract 

In this paper, we present type systems for flow-sensitive pointer 
analysis, live stack-heap (variables) analysis, and program 
optimization. The type system for live stack-heap analysis is an 
enrichment of that for pointer analysis; the enrichment has the 
form of a second component being added to types of the latter 
system. Results of pointer analysis are proved useful via their use 
in the type system for live stack-heap analysis. The type system 
for program optimization is also an augmentation of that for live 
stack-heap analysis, but the augmentation takes the form of a 
transformation component being added to inference rules of the 
latter system. The form of program optimization being achieved 
is that of dead-code elimination. A form of program correction 
may result indirectly from eliminating faulty code (causing the 
program to abort) that is dead. Therefore program optimization 
can result in program correction. Our type systems have the 
advantage of being compositional and relatively-simply 
structured.  
The novelty of our work comes from the fact that our type 
system for program optimization associates the optimized version 
of a program with a justification (in the form of a type 
derivation) for the optimization. This justification is pretty much 
appreciated in many research areas like certified code (proof-
carrying code) which is the motivation of this work. 
Keywords: Pointer analysis, Live variables analysis, Live stack-
heap analysis, Program optimization, Type systems, Certified 
code. 

1. Introduction 

Rather than dynamic code analysis concerned with 
analyzing programs during execution time, static code 
analysis (statics analysis) [14] is a concept describing 
analyzing programs without actually executing them. 
Static analysis can result in improving the quality of the 
code in different ways (including correcting and 
optimizing the code) or in verifying industrial standards 
of the code. Data-flow analysis, one of the techniques 
used in static analysis, is useful for collecting information 
for each program point. An analysis whose results do not 
change due to permuting a statement sequence S1;S2 into 
S2;S1 is described as flow-insensitive; otherwise it is 

described as flow-sensitive. For a flow-sensitive analysis, 
if the program is traversed forwardly (backwardly) to 
collect information, the technique is called a forward 
(backward) analysis. If the collected information may 
(must) be true, the technique is described as may (must).  
Examples of forward-may and backward-may analyses 
are pointer and live variables analyses [14], respectively. 
Pointer analysis calculates for each store (a variable or a 
memory location) at every program point the set of 
addresses that have a chance of being contained in that 
store at that program point. Roughly speaking, live 
variables analysis calculates for every program point the 
set of variables used later in the program. In case of 
pointer programs, we call this analysis live stack-heap 
analysis and it calculates the set of variables and memory 
locations that are used later in the program. Results of live 
variables analysis can be used to eliminate unnecessary 
code in a technique called dead-code elimination. 
Although static analysis is usually treated in an 
algorithmic style [14], there are other frameworks that can 
be used to successfully achieve static analysis. One of 
such frameworks is type systems [9, 20, 2, 15] that has 
proved so far to be a very convenient tool for this job. In 
the algorithmic fashion, the work is done on an annotated 
form of the program control- flow graph. However in the 
type-systems manner the work is done on the program 
using its phrase structure. This fact is advantageous to the 
use of the type-systems framework when it comes to 
optimizing programs. This is so because the algorithmic 
style usually produces only the optimized version of the 
program. However the type-systems style is conveniently-
capable of producing the optimized version together with 
a justification (in the form of a type derivation) for the 
optimization. This justification is necessary in 
applications like certified code. Also the relative 
simplicity of inference rules of type systems makes their 
framework auspicious. 
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Motivation  
The program on the left-hand side of Figure 1 is a 
motivating example of our work. Suppose that y is the 
only variable whose value concerns us at the end of the 
program. Then the last statement is unnecessary (dead 
code). Also the assignment statement in line 6 is a dead 
code and it causes the program to aborts because the value 
of i is not in the domain of the heap. Therefore removing 
theses statements optimizes the program and in the same 
time removes a cause for abortion. 

 
 
The objective of this paper is to develop a technique that 
transforms a program like this one into an optimized 
version like that in the right-hand side of Figure 1 and 
also produces a proof or justification for the 
transformation process.  
All in all this paper tackles the problem of transforming 
pointer programs into optimized and possibly corrected 
versions and producing justifications for the 
transformation process. The importance of producing the 
justification comes from the area of certified code which 
is the motivation of our work and which provides good 
applications for the work as well. The program 
optimization, meant here, is dead-code elimination. The 
optimized version of a program is possibly a corrected 
version as well; this is the case if reasons for abortions in 
the program are included in dead code and hence gets 
removed with the dead code. In other words, program 
optimization can result in program correction. Our tool 
for solving this problem is type systems. Up to our 
knowledge, our paper is the first to tackle this problem 
(using type systems) for pointer programs. 
Contributions  

1. An original type system for flow-sensitive 
pointer analysis. 

2. A novel type system for live stack-heap 
(variables) analysis for pointer programs. This 
type system utilizes results of our type system for 
pointer analysis and is an enrichment of it. 

33..  The third contribution is a new type system for 
optimizing and possibly correcting pointer 
programs. This type system serves also as a tool 
for obtaining a justification (in the form of a type 
derivation) for every individual transformation 
and is an augmentation of our type system for 
live stack-heap analysis.  

  
Organization  
The rest of the paper is organized as follows. The language 
whilep (the while language enriched with pointer 
commands) and an operational semantics for its constructs 
are presented in Section 2. Our proposed type systems for 
flow-sensitive pointer analysis and live stack-heap analysis 
are presented in Sections 3 and 4, respectively. The type 
system carrying program optimization is introduced in 
Section 5. A brief survey of related work is presented in 
Section 6..  

2. The Programming Language 

The programming language that we are using is usually 
used to introduce separation logic like in [19] and its 
operational semantics is a slightly-modified version of that 
in [19]. The language is an imperative one that is enriched 
with commands dealing with pointers. We call this 
language whilep. This section presents the language whilep 
with an operational semantics to its constructs. The 
grammar of the whilep language is shown in Figure 2, 
where Var is a finite set of program variables. 
 

 
 
For any m א N+, we assume that the memory has an 
infinite number of arrays of length m with addresses {a1

m,1, 
a1

m,2, . . . ,  a
1
m,1, a

2
m,1, a

2
m,2, . . . ,  a

2
m,m,…} Therefore the 

set of address, Addrs, has the form presented in Figure 3. 
This memory model, rather than letting addresses to be a 
subset of integers, has the advantage of reducing the 
chance of messing with the memory. This is so because a 
number which is intended to be used as a numerical value 
(not as an address) can be an address as well and therefore 
it can be accidently used to access un-allowed or 
unintended memory cells. In order to facilitate evaluating 
inequalities we assume that Values is equipped with an 
order. 
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Definition 1.  
A stack (heap) is a map (finite partial map) from Var 
(Addrs) to Values. A state is an abort or a pair of a stack 
and a heap. 
Arithmetic and Boolean expressions have the same 
semantics as in the case of the while language except for 
the operation ْ. The semantics of this operation on 
Values is defined as usual if both of its operands are 
integers and otherwise as in Figure 4.   
The semantics of whilep statements is given by an 
operational semantics whose transition relation is denoted 
by → and whose configurations (nonterminal and 
terminal) are defined in Definition 1. In the inference rules 
of the semantics (Figure 4),  st denotes a state. 
The cons allocates the array au

n,1, . . . , au
n,n with the 

minimum dimension, u, of all available arrays of length n. 
The allocation takes place by storing the address au

n,1 in x 
and semantics of expressions e1, . . . , en in addresses au

n,1, . 
. . , au

n,n, respectively. If f is a map and A is a set, f ۀA 
denotes the restriction of f on A and [f | x:A] denotes the 
function whose domain is dom(f){x} and whose 
definition is λy. if y = x then A else f(y). 

3. Pointer Analysis 

In this section, we introduce a type system for flow-
sensitive pointer analysis which is a forward-may analysis 
that assigns to each program point a partial map from 
variables and memory locations to the power set of 
addresses. Under this map, the image of an element is an 
over-approximate set of addresses that the element may 
contain (point to) at this program point. The set of points-
to types, PTS, and the sub-typing relation are defined as 
follows. 

 
Definition 2.  
1. PTS = {pts | pts: Var  d → 2Addrs | d ك Addrs}. The 
bottom type is denoted by ٣. 
2. pts ≤ pts′ ֞ dom(pts) ك dom(pts′ ) and t א dom(pts). 
pts(t) ك pts′ (t). 
3. A state (s, h) has type pts, denoted by (s, h) |= pts, if 
     – dom(h) ك dom(pts), 
 pts(x), and א Addrs ֜ s(x) א Var. s(x) א x –     
 .pts(a) א Addrs ֜ h(a) א dom(h). h(a) א a –     
 
Given a points-to type pts, the pointer analysis is achieved 
for a statement S via a post-type derivation for S and pts as 
the pre-type. Typically the pre-type pts is the bottom type 
٣. The judgment of an arithmetic expression e has the 
form e: pts → V. The set V is either a set of addresses or a 
singleton of an integer. The intended meaning, which is 
formalized in Lemma 1, of this judgment is that V captures 
any address that e evaluates to in a state of type pts. In 
particular if V is a set of addresses, then e is either an 
address from V, any integer, or nil. The judgment of a 
statement S has the form S: pts → pts′. The intuition, 
which is formalized in Theorem 1, of this judgment is that 
if S is executed in a state of type pts, then any state (rather 
than abort) where the execution ends is of type pts′. In the 
rest of the paper when e: pts → V, we let V' denotes V∩ 
Addrs. The inference rules of our type system for pointer 
analysis are presented in Figure 5.  
 
Lemma 1. 
 Suppose that (s, h) |= pts and e: pts → V. Then 
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1. V ك Addrs or n א Z. V = {n}, 
 s = n, andۥZ. V = {n} ֜ ۤe א n .2
3. ۤeۥs א Addrs ֜ ۤeۥs א V. 
Proof. By induction on the structure of e. We present the 
proof of the last item. If e = n then ۤeۥs = n  ב Addrs. If e = 
x then ۤxۥs = s(x) א Addrs implies s(x) א pts(x) = V 
because (s, h) |= pts. Now suppose e = e1 ْ e2, e1 : pts → 
V1, and e2 : pts → V2. If ۤe1 ْ e2 ۥs א Addrs, then we have 
one of the following cases: 
1. ۤe1ۥs = am

i,j, ۤe2ۥs = n, and 1 ≤ j ْ n ≤ i. 
2. ۤe1ۥs = n, ۤe2 ۥs = am

i,j, and 1 ≤ j ْ n ≤ i. 
In the first case, by the induction hypothesis am

i,j א V1 and 
if V2 = {t}, then, by (2), n = t and ۤe1 ْ e2 ۥs = am

i,jْn  א { 
am

i,jْn  | am
i,j א V1 1 ר ≤ j ْ n ≤ i} = V. If V2 ك Addrs then 

ۤe1 ْ e2 ۥs = am
i,jْn א V. The second case is similar to the 

first case. ■ 
 
The following lemma is needed in the proof of the 
following soundness theorem and it is obvious because (s, 
h) |= pts implies dom(h) ك dom(pts). 
 
Lemma 2.  
Suppose that (s, h) |= pts, u = min{t | {at

n,1 , . . . , a
t
n,n} ∩ 

dom(h) = }, and v = min{t | { at
n,1 , . . . , at

n,n } ∩ 
dom(pts) = }. Then 1 ≤ u ≤ v. 
 
The rules (assp) and (disp) are straightforward. For the rule 
(conp) and by Lemma 2, executing the cons statement in a 
state of type pts results in allocating one of the arrays {aj

n,1 
, . . . , aj

n,n }, 1 ≤ j ≤ v.  But it is not obvious which of these 
arrays will be allocated. Therefore the rule (conp) takes 
into account all these possibilities by adding the addresses  
of these arrays to pts(x) and adding Vi′ to the image, under 
pts, of each location aj

n,i. 
In the rule (lokp), V′ contains any address that e evaluates 

to in a state of type pts. Therefore the set aאV′ pts(a) 
captures any address that goes into x after executing the 
look-up statement in a state of type pts. For the rule (mutp),  
there are two cases for V1, namely either |V1| = 1 or |V1 | ≠   
1. In the first case, the rule (mutp) cuts down to a form that 
is pretty much similar to the rule (assp). In the second case, 
it is not obvious to which address the assignment will 
happen. Hence the post-type is calculated from the pre-
type by including the set V2′ in the image of every element 
of V1′. The rules (seqp), (ifp), and (csqp) are clear. 
As it is evident from the (whlp) rule, an invariant type is 
necessary to type a while statement. The required invariant 
type is calculated as a fix-point of an order-preserving map 
over the complete lattice pts using a given pre-type. The 
consequence rule can be used to show that the fix-point is 
indeed the required invariant type. 
 
Theorem 1. (Soundness) 
1. pts ≤ pts′ iff (For every state (s, h), (s, h) |= pts ֜ (s, h) 
|= pts′ ). 
2. Suppose that S: pts → pts′ and S: (s, h) → (s′, h′). Then 
(s, h) |= pts implies (s′, h′) |= pts′. 
Proof. 1. The left-to-right direction is obvious. The other 
direction is proved as follows. Suppose x א Var, a, b א 
Addrs, and a א pts(x). Then the state (s, h) = ({(x, a), ( y, 
0) | x≠y א Var}, ) is of type pts and therefore is of type 
pts′. So a א pts′(x) and hence pts(x) ك pts′(x). Similarly, 
we can show that b א dom(pts) implies b א dom(pts′) and 
pts(b) ك pts′(b). 
2. The proof is by induction on the structure of type 
derivation as follows: 
(a) The type derivation has the form (assp). In this case, 
pts′ = [pts | x:V′] and (s′, h′ ) = ([s | x : ۤeۥs], h). If ۤeۥs א 
Addrs, then ۤeۥs א V′ by Lemma 1. Therefore s′(x) א 
Addrs implies s′(x) א pts′(x). We also have that dom(h′ ) = 
dom(h) ك dom(pts) ك dom(pts′) because (s, h) |= pts. It is 
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obvious that for any x ≠ y א Var and a א dom(h′), s′( y) א 
Addrs implies s'(y) א pts'(y) and h'(a) א Addrs implies 
h′(a) א pts′ (a). Hence (s′, h′) |= pts′.   
(b)The type derivation has the form (lokp). In this case, pts′ 
= [pts | x : aאV′ pts(a)] and (s′, h′) = ([s | x : h(ۤeۥs)], h). 
Also we have ۤeۥs א Addrs ∩ dom(h) and hence ۤeۥs א V′ 
by Lemma 1. If h(ۤeۥs) א Addrs, then h(ۤeۥs) א pts(ۤeۥs) 
because (s, h) |= pts. Therefore s′(x) = h(ۤeۥs) א Addrs 
implies s′(x) = h(ۤeۥs)  אaאV′ pts(a) = pts′ (x). We also 
have that dom(h′) = dom(h) ك dom(pts) ك dom(pts′) 
because (s, h) |= pts. It is obvious that for any x≠ y א Var 
and a א dom(h′), s′(y) א Addrs implies s′(y) א pts′(y) and 
h;(a) א Addrs implies h′(a) א pts′(a). Hence (s′, h′) |= pts′ 
(c) The type derivation has the form (conp). In this case, 
pts′ = 1≤i≤v [pts |x : {ai

n,1} | ai
n,1: V′1 | . . . | a

i
n,n: V'n ] and 

(s′, h′ ) = ([s | x : au
n,1 ], [h | au

n,1:ۤe1 ۥs | . . . | au
n,n: ۤen ۥs]). 

By Lemma 2, 1 ≤ u ≤ v. For every 1 ≤ i ≤ n, if ۤeiۥs א 
Addrs then ۤeiۥs א Vi′ by Lemma 1. We have s′(x) = au

1,n 
a1}א

1,n, . . . , a
v
1,n } ك pts′(x). We also have that dom(h′) ك 

dom(pts′) because dom(h) ك dom(pts) ((s, h) |= pts) and 1 
≤ u ≤ v. It is obvious that for any x ≠ y א Var and a א 
dom(h′) \ {au

n,1, . . . , a
u

n,n }, s′(y) א Addrs implies s' (y) א 
pts′(y) and h′(a) א Addrs implies h′(a) = h(a) א pts(a) ك 
pts′(a). For every 1 ≤ i ≤ n, if h(au

n,i) א Addrs, then h(au
n,i) 

= ۤei ۥs א Vi′ ك pts′ (au
n,i). Hence (s′, h′) |= pts′. 

(d) The type derivation has the form (mutp). In this case, 
pts′ = aאV1′ [pts | a:V'2 ] and (s′,h′) = (s, [h | ۤe1ۥs : ۤe2ۥs]). 
We have ۤe1ۥs א dom(h) ∩ V1 and if ۤe2ۥs א Addrs then 
ۤe2ۥs א V′2 by Lemma 1. If h′(ۤe1ۥs) א Addrs, then 
h′(ۤe1ۥs) = ۤe2 ۥs א V′2 ك pts′ (ۤe1 ۥs) because ۤe1 ۥs א V′1. 
We also have that dom(h′) = dom(h) ك dom(pts) ك 
dom(pts′) because (s, h) |= pts. It is obvious that for any y 
 = Addrs implies s′ (y) א dom(h′) \ V′1 , s′( y) א Var and a א
s(y) א pts(y) = pts′( y) and h′(a) � Addrs implies h′(a) = 
h(a)  א pts(a) � pts′ (a). Hence (s′, h′) |= pts′. 
The remaining cases are straightforward to check. ■ 

4. Live stack-heap analysis 

In this section, we show how the type system for pointer 
analysis, presented in the previous section, can be enriched 
to produce a type system for live stack-heap analysis. In 
other words, the type system presented in this section is a 
strict extension of the system presented in the previous 
section. This reflects the fact that pointer information 
obtained by previous system are used to improve the 
precision of the live stack-heap analysis. 
The live stack-heap analysis associates with each program 
point the set of variables and memory locations live 
(according to Definition 3) at that point. The resulting type 
system is a generalized one of that presented in [20] for 
live variables analysis for the while language.  
Therefore the goal in this section is to utilize results of our 
type system for pointer analysis and to build o 
n it a type system that carries live stack-heap analysis. 
Towards this objective, we augment points-to types to get 
live stack-heap types defined below (Definition 4). 
 
Definition 3.  
 A variable (memory location) is live at a program 

point if there is a computational path from that 
program point during which the variable (the memory 
location’s content) gets usefully used before being 
modified. 

 A variable (the content of a memory location) is 
usefully used  
1- if it is used in an assignment to a variable or a 

memory location that is live at the end of the 
assignment,  

2- the guard of an if-statement or a while-statement, 
3- an arithmetic expression of a dispose statement, 

or  
4- the left expression of a mutation statement. 
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Definition 4.  
The set of live stack-heap types (live types in short) is 
denoted by lsh and equal to pts × 2VarAddrs. The second 
component of a live type is termed a live-component. The 
subtyping relation  ≤  is defined as: 

(pts, lsh)  ≤  (pts′, lsh′ ) iff  (pts ≤ pts′ and lsh ل lsh′) . 
 
The judgment of an expression has the form e : lsh → lsh′ 
and the intuition is that lsh is lsh′ plus variables occurring 
free in e. The judgment of a statement S has the form S : 
(pts, lsh) → (pts′, lsh′) and it is meant to guarantee that if 
lsh′ contains variables and memory locations live at the 
post-state of an execution of S, then lsh contains variables 
and memory locations live at the pre-state of this 
execution. This is formalized in Theorem 2 and consents 
with the fact that live stack-heap analysis is a backward 
analysis. This also gives an insight into the definition of (s, 
h) |= lsh in Definition 6. 
Suppose that we have a live-component lsh′ and the result 
of a pointer analysis for a statement S (in the form S : pts 
→ pts′). The live stack-heap analysis is achieved for S via 
a pre-type derivation that calculates a set lsh such that S: 
(pts, lsh) → (pts′, lsh′). It is natural to let lsh′ be the set of 
variables that we have interest in their values at the end of 
executing S.  
The inference rules for our type system for live stack-heap 
analysis are presented in Figure 5. The inference rules for 
Boolean expressions other than e1 = e2 are similar to the 
inference rule for e1 = e2. In rules for allocation, we 
suppose that x:=cons(e1 , . . . , en) : pts → pts′, v = min{t | 
{at

n,1 , . . . , a
t
n,n} ∩ dom(pts) = }, and I = {x, ai

n,1, . . . , 
ai

n,n | 1 ≤ i ≤ v} ∩ lsh′ . In rules for look-up, we assume 
that x:= [e] : pts → pts′ . For the mutation statement, we 

suppose that [e1] :=  e2 : pts → pts'   and e1 : pts → V. 
The set of variables and memory locations modified by the 
statement x:= cons(e1 , . . . , en) is contained in {x, a1

n,1, . . 
. , a1

n,n , a
2
n,1 , . . . , a

2
n,n, . . . , a

v
n,1 , . . . , a

v
n,n}. We have 

three cases concerning which elements of this set are in 
lsh′ (possibly live after executing the statement); none, 
only x, or at least one address. For the first case when all 
modified elements are necessary dead after executing the 
statement, the rule (consl

1) equalizes live-components of 
the pre and post types. For the second case, the rule 
(consl

2) lets lsh′\{x} (as the assignment to x kills it) be the 
live-component of the pre-type. For the third case treated 
by the rule (consl

3) the live-component of the pre-type is 
constructed via augmenting lsh′\{x} with variables 
occurring free in every expression assigned to a location 
possibly live after execution.  
For the look-up statement, the rule (lokl

2) deals with the 
case that x is possibly live after executing the statement. In 
this case, the pointer information is used to calculate the 
set of addresses V′. Then, to form the live-component of 
the pre-type, the set lsh′\{x} is augmented to include V′ 
and variables occurring free in e.  
For the mutation statement, the pointer information is used 
to find the set V′ containing any address that the expression 
e1 evaluates to in a state of type pts. The type system has 
two rules dealing with the two possible cases; whether or 
not V′ has an empty intersection with lsh′. The rule (mutl

2) 
takes care of the case of nonempty intersection. In this rule 
the live-component of the pre-type is constructed by 
adding variables occurring free in e1 and e2 to lsh′. We 
note that in this case it is not obvious which location will 
be modified (and hence gets killed) but it is clear that this 
location is possibly live at the end of mutation. Therefore 
nothing is removed from lsh′; instead variables occurring 
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free in e1 and e2 are added.  
Now we introduce necessary definitions and results 
towards proving the soundness of our type system for live 
stack-heap analysis.  
 
Definition 5. 1. (s, h) |=lsh pts ֞ dom(h) ك dom(pts), x א 
Var ∩ lsh (s(x) א Addrs ֜ s(x) א pts(x)), and a א dom(h) 
∩ lsh (h(a) א Addrs ֜ h(a) א pts(a)). 
2. (s, h) lsh (s′, h′) ֞ x א lsh ∩ Var. s(x) = s′(x), and a 
 .lsh ∩ dom(h) ∩ dom(h′). h(a) = h′(a) א
3. (s, h) (pts,lsh) (s′, h′ ) ֞ dom(h) = dom(h′), (s, h) |=lsh pts, 
(s′ , h′) |=lsh pts, and (s, h) lsh (s′ , h′). 
 
Definition 6. The expression (s, h) |= lsh denotes the case 
when there is a variable or a memory location that is live 
at that state (computational point) and is not included in 
lsh. A state (s,h) has type (pts,lsh), denoted by (s,h) |= (pts, 
lsh), if (s, h) |=lsh pts and (s, h) |= lsh. 
 
The following lemma is proved by structure induction on e 
and b. 

 
Lemma 3. Suppose that (s,h) and (s′,h′) are states and lsh 
and lsh′ 2 אVar  Addrs. Then 
1. If lsh ل lsh′ and (s,h) lsh (s′,h′), then (s,h) lsh′ (s′,h′). 
2. If e : lsh → lsh′ and (s, h) lsh (s′,h′), then ۤeۥs = ۤeۥs′ 
and (s, h) lsh′ (s′, h′ ). 
3. If b : lsh → lsh′ and (s,h) lsh (s′,h′), then ۤbۥs = ۤbۥs′ 
and (s,h) lsh′ (s′, h′ ). 
 
The following lemma follows from Lemma 1. 
 
Lemma 4. Suppose that (s, h) |=lsh pts, FV(e) ك lsh, and e : 
pts → V. Then ۤeۥs א Addrs ֜ ۤeۥs א V. 
Proof. Consider the state (s′,h′), where s′ = λx. if x א FV(e) 
then s(x) else 0 and h′ = . It is not hard to see that ۤeۥs = 
ۤeۥs′ and (s′,h′) |= pts. Now by Lemma 1, ۤeۥs′ א Addrs 
implies ۤeۥs′ א V which completes the proof. ■ 

 
 

Theorem 2. 1. (pts, lsh) ≤ (pts′ , lsh′ ) ֜ ((s, h). (s,h) |=lsh 
pts ֜ (s, h) |=lsh′  pts′). 
2. Suppose that S: (pts, lsh) → (pts′ , lsh′ ) and S : (s, h) → 
(s′ , h′). Then (s, h) |=lsh pts implies (s′, h′ ) |=lsh′ pts′. 
3. Suppose S: (s,h) → (s′,h′) and S : (pts,lsh) → (pts′, lsh′). 
Then (s,h) |= lsh implies (s′,h′) |= lsh′ . This guarantees 
that if the set of variables and memory locations live at the 
state (s′,h′) is included in lsh′, then the set of variables and 
memory locations live at the state (s, h) is included in lsh. 
Proof. 1. Suppose (s, h) |=lsh pts. This implies (s,h) |=lsh′ pts 
because lsh′ ك lsh. The last fact implies (s, h) |=lsh′ pts′ 

because pts ≤ pts′. 
2. The proof is by induction on the structure of type 
derivation as follows: 
(a) The type derivation has the form (disl). In this case, lsh 
= lsh′  FV(e) and (s′, h′) = (s, hۀ(dom(h) \ {ۤeۥs})). 
Therefore (s,h) |=lsh pts implies (s′,h) |=lsh pts′ which 
implies (s′, h′ ) |=lsh′ pts′ because h′ ≤ h and lsh′ ك lsh. 
(b) The type derivation has the form (ass1

l). In this case, 
pts′ = [pts | x : V′] and (s′, h′ ) = ([s | x : ۤeۥs], h). Therefore 
(s, h) |=lsh pts implies (s′, h) |=lsh pts′ because x ב  lsh. 
Clearly (s′, h) |=lsh pts′ implies (s′, h′ ) |=lsh'  pts′. 
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(c) The type derivation has the form (ass2
l). In this case, 

pts′ = [pts | x:V′], (s′, h′ ) = ([s | x : ۤeۥs], h), and lsh = (lsh′ 
\ {x})  FV(e). Therefore by Lemma 4 and similarly to 
Theorem 1 (2.a), we can conclude (s′, h′) |=lsh′ pts′. 
(d) The type derivation has the form (conl

1). In this case, 
– pts′ = 1≤i≤v [pts | x: {ai

n,1} | ai
n,1 : V′1 | . . . | a

i
n,n : V′n ], 

– (s′, h′) = ([s | x: au
n,1], [h | au

n,1: ۤe1ۥs | . . . | au
n,n:ۤen ۥs]), 

– v = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(pts) = }, and  

– u = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(h) = }. 

By Lemma 2, 1 ≤ u ≤ v. Because I = , (s, h) |=lsh′ pts 
implies (s′, h′ ) |=lsh′ pts′. 
(e) The type derivation has the form (con2

l ). In this case, 
(s′, h′), pts′, u, and v have the same definitions as in the 
previous case (d). Moreover, lsh = lsh′ \ {x}. Because I = 
{x} and 1 ≤ u ≤ v, (s, h) |=lsh′ \{x} pts implies (s′, h′) |=lsh′ pts′. 
(f) The type derivation has the form (con3

l). In this case, 
(s′, h′), pts′, u, and v have the same definitions as in the 
case (d). Moreover lsh = ajn,i אI lshi . Therefore by Lemma 
4 and similarly to Theorem 1 (2.c), we can conclude (s′, h′) 
|=lsh′ pts′. 
(g) The type derivation has the form (lok1

l). In this case, 
pts′ = [pts | x : aאV′ pts(a)], (s′, h′ ) = ([s | x : h(ۤeۥs)], h)), 
and lsh = lsh′. Therefore (s, h) |=lsh pts implies (s′, h) |=lsh 
pts′ because x ב lsh. Clearly (s′, h) |=lsh pts′ implies (s′, h′) 
|=lsh′ pts′. 
(h) The type derivation has the form (lok2

l). In this case, 
pts′ = [pts | x : aאV′ pts(a)], (s′, h′ ) = ([s | x : h(ۤeۥs)], h), 
and lsh = (lsh′ \ {x})  FV(e)  V′. Therefore by Lemma 4 
and similarly to Theorem 1 (2.b), we can conclude (s′, h′) 
|=lsh′ pts′. 
(i) The type derivation has the form (mut1

l). In this case, 
pts′ = aאV′1 [pts | a: V2′], (s′, h′) = (s, [h | ۤe1ۥs: ۤe2ۥs]), 
and lsh = lsh′  FV(e1). Clearly, (s, h) |=lsh pts implies (s, 
h) |=lsh′ pts. Because V ∩ lsh′ = , (s, h) |=lsh′ pts implies (s′, 
h′) |=lsh′ pts′. 
(j) The type derivation has the form (mut2

l). In this case, 
pts′ = aאV1′ [pts | a: V′2], (s′, h′) = (s, [h | ۤe1ۥs: ۤe2ۥs]), 
and lsh = lsh′  FV(e1)  FV(e2). Therefore by Lemma 4 
and similarly to Theorem 1 (2.d), we can conclude (s′, h′) 
|=lsh′ pts′. 
The remaining cases are straightforward to check. 
3. The proof again is by induction on the structure of type 
derivation and it is straightforward.   ■ 
 
Corollary 1. Suppose S: (s, h) → (s′, h′ ) and S : (pts, lsh) 
→ (pts′ , lsh′ ). Then (s, h) |= (pts, lsh) implies (s′, h′) |= 
(pts′, lsh′).  
Proof. The proof follows from Theorem 2. 
 
Theorem 3. Suppose that S : (pts, lsh) → (pts′, lsh′), S: (s, 
h) → (s′, h′ ), and (s, h) (pts,lsh) (sכ, hכ). Then there exists a 
state (s′כ, h′כ) such that S: (sכ, hכ) → (s′כ, h′כ) and (s′, h′) 
 .(כ′h ,כ′s) ( ′pts′,lsh)
Proof. The proof is by induction on structure of type 
derivation as follows: 

1. The type derivation has the form (disl ). In this case, lsh 
= lsh′  FV(e) and (s′, h′) = (s, hۀ(dom(h) \ {ۤeۥs})). Take 
(s′כ, h′כ) = (sכ, hۀכ(dom(hכ) \ {ۤeۥsכ})). 
2. The type derivation has one of the forms (ass1

l) and 
(ass2

l). In this case, pts′ = [pts | x : V′] and (s′, h′) = ([s | x : 
ۤeۥs], h). Take (s′כ, h′כ) = ([sכ | x : ۤeۥsכ], hכ). 
3. The type derivation has one of the forms (con1

l), (con2
l), 

and (con3
l). In this case, 

– pts′ = 1≤i≤v[pts | x : {ai
n,1} | ai

n,1 : V′1 | . . . | a
i
n,n : V'n], 

– (s′, h′) = ([s | x : au
n,1], [h | au

n,1: ۤe1ۥs | . . . | au
n,n : ۤenۥs]), 

– v = min{t | {at
n,1 , . . . , a

t
n,n} ∩ dom(pts) = }, and 

– u = min{t | {at
n,1, . . . , a

t
n,n } ∩ dom(h) = }. 

By Lemma 2, 1 ≤ u ≤ v. Take (s′כ, h′כ) = ([sכ | x: au
n,1], [hכ | 

au
n,1: ۤe1 ۥsכ | . . . | au

n,n : ۤen ۥsכ]). 
4. The type derivation has the form (lok2

l) or (lok1
l). In this 

case, pts′ = [pts | x: aאV′ pts(a)] and (s′, h′) = ([s | x : 
h(ۤeۥs)], h)). Take (s′כ, h′כ) = ([sכ | x: hכ(ۤeۥsכ)], h)). 
5. The type derivation has one of the forms (mut1

l) and 
(mut2

l). In this case, pts′ = aאV1′ [pts | a: V′2] and (s′, h′) = 
(s, [h | ۤe1ۥs: ۤe2ۥs]). Take (s′כ, h′כ) = (sכ, [hכ | ۤe1ۥsכ: 
ۤe2ۥsכ]) 
The remaining cases are straightforward.  ■ 
 

5. Dead-code elimination 

A type system for dead-code elimination is presented in 
this section. In a program, statements that have no effect 
on the content of variables and memory locations live at 
the end of the program are considered to be dead code. It is 
the task of the type system presented here to optimize 
programs via eliminating dead code. If the dead code is 
faulty (causing the program to abort), then removing it 
may result in correcting the program. 
A typical judgment of our type system takes the form S: 
(pts, lsh) → (pts′, lsh') մ  S′. And it implies that S′ 
optimizes S towards dead-code elimination (and may be 
program correction). The derivation of a judgment 
provides a justification for the optimization process. It is 
clear from the form of the judgment that the optimization 
process is built on the type information gathered by our 
type system for live stack-heap analysis. 
 

Algorithm: optimize
- Input: a statement S of the language whilep and a set of variables 
lsh′ that we like to consider live (have interest in their values) at the 
end of executing S; 
- Output: an optimized and may be corrected version S′ of S such 
that the relation between S and S′ is as stated in Theorem 4. 
- Method: 
1. Find pts such that S: ٣ → pts in our type system for pointer 
analysis. 
2. Find lsh such that S: (٣, lsh) → (pts, lsh′) in our type system for 
live stack-heap analysis. 
3. Find S′ such that S: (٣, lsh) → (pts, lsh′) մ S′ in our type system 
for dead code elimination. 

Fig.7. the algorithm optimize 
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The optimization process can be summarized in the 
algorithm optimize out-lined in Figure 7. The first step of 
the algorithm optimize annotates the program points of S 
with pointer information. This is done via a post type 
derivation of S for the bottom points-to-type ٣ as the pre 
type. The second step of the algorithm refines the 
information obtained in the first step via annotating the 
program points with information about live variables and 
memory locations. This is done via a pre type derivation of 
S for the set lsh′, the set of variables whose values 
concerns us at the end of execution, as the post type. 
Finally the information calculated in the second step is 
used in the third step to find S' using our type system for 
dead code elimination. 
The inference rules of our type system for dead-code 
elimination are presented in Figure 6. In the following 
rules for allocation, the set I has the same definition as in 
the previous type system and we suppose that x:=cons(e1, . 
. . , en ) : (pts, lsh) → (pts′, lsh′). In rules for mutation, we 
suppose that [e1]:= e2: (pts, lsh) → (pts′, lsh′) and e1 : pts 
→ V. In rules for dispose, we suppose that dispose(e) : 
(pts, lsh) → (pts, lsh′ ) and e : pts → V. 
We note that the rule (cond

1) transforms the allocation 
statement to x:=cons(0, . . . , 0), with n arguments, rather 
than to skip. This is so because the optimization to skip 
would led to the possibility that sequent allocations 
allocates different arrays in the original and optimized 
version of the program. And this in turn would complicate 
the definition of similarity between states (Definition 5) 
used in proving the equivalence of the original and 
optimized version of the program. This complication does 
not worth introducing the skip statement. However a 
simple extra forward traverse of the program can remove 
all such allocations (cons(0, . . . , 0)) if necessary. 
The following theorem guarantees that if the original and 
optimized programs are executed in similar states and the 
original one does not abort then: 
1. the optimized program does not abort as well, and 
2. the optimized program reaches a state similar to that 
reached by the original program. 
 
Theorem 4. (Soundness)  
Suppose that S:(pts, lsh) → (pts′, lsh′) մ  S′ and (s, h) 
 Then .(כh ,כs) (lsh,pts)
1. If S: (s, h) → (s′, h′), then there exists a state (s′כ, h′כ) 
such that S′: (sכ, hכ) → (s′כ, h′כ) and (s′, h′) (pts′,lsh′) (s′כ, 
h′כ). 
2. If S′: (sכ, hכ) → (s′כ, h′כ) and S does not abort at (s, h), 
then there exists a state (s′, h′) such that S: (s, h) → (s′, h′) 
and (s′, h′) (pts′,lsh′) (s′כ, h′כ). 
Proof. 1. The proof is by induction on structure of type 
derivation as follows: 
(a) The type derivation has the form (ass1

d). In this case, S′ 
= skip. Take (s′כ, h′כ) = (sכ, hכ). 

(b) The type derivation has the form (ass2
d). In this case, S′ 

= S. This case follows from Theorem 3. 
(c) The type derivation has the form (con1

d). In this case, S′ 
= cons(01, . . . , 0n). Take (s′כ, h′כ) = ([sכ | x: au

n,1], [hכ | au
n,1 

: 0 | . . . | au
n,n : 0]). 

(d) The type derivation has the form (con2
d). In this case, 

S′ = S. This case follows from Theorem 3. 
(e) The type derivation has the form (lok1

d). In this case, S′ 
= skip. Take (s′כ, h′כ) = (sכ, hכ). 
(f) The type derivation has the form (lok2

d). In this case, S′ 
= S. This case follows from Theorem 3. 
(g) The type derivation has form (mut1

d). In this case, S′ = 
skip. Take (s′כ, h′כ) = (sכ, hכ). 
(h) The type derivation has the form (mut2

d). In this case, 
S′ = S. This case follows from Theorem 3. 
The remaining cases are straightforward. 
2. Similar to 1.  ■ 

6. Related work 

There are two fields of related work; the first is type 
systems for data-flow analysis and the second is pointer 
analysis for sequential languages.  
In [9] it is shown that a good deal of static analysis can be 
done in the type-systems fashion. More precisely, for 
every analysis in a certain class of data-flow analyses, it is 
proved in [9] that there exists a type system such that a 
program checks with a type if and only if the type is a 
super-type for the set resulting from running the analysis 
on the program. Later on [20], based on [9], established 
compositional type systems to carry program and proof 
optimization based on dead-code and common sub-
expression elimination for the while language. These type 
systems are equipped with a transformation component 
that does the actual optimization. Our paper builds on and 
extends results presented in [20] to pointer languages.  
The type system in [11] and the flow-logic work in [15] 
(used in [12, 13] to study security of the coordinated 
systems) are very similar to [9]. [2] presents constant 
folding and dead-code elimination via type systems and 
also introduces relational Hoare logic used to prove 
correctness of optimizations. Type systems for 
bidirectional data-flow analyses and their program 
optimizations are presented in [6]. Earlier, related work 
(with type systems that are structurally-complex) is [16, 
17]. However none of these papers consider pointer 
programs.  
Pointer analysis for C−like programs has been actively 
studied for decades [10, 23, 22, 7, 1, 4, 5, 8, 21, 3]. 
However none of these papers utilize results of their 
pointer analyses in data-flow analyses resulting in program 
optimization and/or correction associated with a 
justification for the transformation. The objective of 
pointer analysis has been to obtain a sound analysis only 
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for the sake of program transformation and/or 
understanding. In [21], the bi-similarity is used to find 
pointer equivalences in a technique optimizing the 
performance of inclusion-based pointer analysis. But this 
does not go farther by showing how the task of optimizing 
programs is affected. In [3], a conditionally-sound pointer 
analysis is presented. The results of this analysis are 
utilized towards checking memory safety, but again the 
result of the verification is not associated with a 
justification. [10] studies the existence of an equivalent to 
shape analysis for purely functional programs, and 
the”shapes” it discovers. The argument in [10] is that by 
treating binding environments as dynamically allocated 
structures, by treating bindings as addresses, and by 
treating value environments as heaps, the ”shape” of 
higher-order functions can be analyzed. The better your 
paper looks, the better the Journal looks.  Thanks for your 
cooperation and contribution.  
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