
CLUSTERING WITH OBSTACLES IN SPATIAL DATABASES

Mohamed A. El-Zawawy1
 Mohamed E. El-Sharkawi2

1Dept. of Mathematics
Faculty of Science
Cairo University

Cairo, Egypt
mzawawy@operamail.com

2Dept. of Information Systems
Faculty of Computers & Information

Cairo University
Cairo, Egypt

mel_sharkawi@hotmail.com

ABSTRACT

Clustering large spatial databases is an
important problem, which tries to find the
densely populated regions in a spatial area to
be used in data mining, knowledge discovery,
or efficient information retrieval. However
most algorithms have ignored the fact that
physical obstacles such as rivers, lakes, and
highways exist in the real world and could thus
affect the result of the clustering. In this paper,
we propose CPO, an efficient clustering
technique to solve the problem of clustering in
the presence of obstacles. The proposed
algorithm divides the spatial area into
rectangular cells. Each cell is associated with
statistical information used to label the cell as
dense or non-dense. It also labels each cell as
obstructed (i.e. intersects any obstacle) or non-
obstructed. For each obstructed cell, the
algorithm finds a number of non-obstructed
sub-cells. Then it finds the dense regions of
non-obstructed cells or sub-cells by a breadth-
first search as the required clusters with a
center to each region.

1. INTRODUCTION

Spatial databases contain spatial-related
information such databases include geographic
(map) databases, VLSI chip design databases, and

medical and satellite image databases. Spatial data
mining is the discovery of interesting
characteristics and patterns that may exist in large
spatial databases. It can be used in many
applications such as seismology (grouping
earthquakes clustered along seismic faults) and
geographic information systems (GIS). Clustering,
in spatial data mining, is a useful technique for
grouping a set of objects into classes or clusters
such that objects within a cluster have high
similarity among each other, but are dissimilar to
objects in other clusters. Many effective clustering
methods have been developed. Most of these
algorithms, however, dose not allow users to
specify real life constraints such as the existence
of physical obstacles, like mountains and rivers.
Existence of such obstacles could substantially
affect the result of a clustering algorithm. For
example, consider a telephone-company that
wishes to locate a suitable number of telephone
cabinets in the area shown in Figure 1-a to serve
the customers who are represented by points in
the figure. There are natural obstacles in the area
and they should not be ignored. Ignoring these
obstacles will result in clusters like those in Figure
1-b, which are obviously inappropriate. Cluster cl1
is split by a river, and customers on one side of the
river have to travel a long way to reach the
telephone cabinet at the other side. Thus the ability
to handle such real life constraints in a clustering
algorithm is important.

In this paper, we propose an efficient spatial
clustering technique, CPO, which considers the
presence of obstacles. The algorithm divides the
spatial area into rectangular cells and labels each
cell as either dense or non-dense (according to
the number of points in this cell) and also as either
obstructed (intersects any obstacle) or non-
obstructed. For each obstructed cell, the
algorithm finds a number of non-obstructed sub-
cells. Then it finds the dense regions of non-
obstructed cells or sub-cells by a breadth-first
search as the required clusters and determines a
center for each region.

The proposed algorithm has several advantages
over other work [THH01].

1. It handles outliers or noise.
2. It dose not use any randomized search.
3. Instead of specifying the number of

desired clusters beforehand, it finds the
natural number of clusters in the area.

4. When the data is updated, we do not need
to recompute all information in the cell
grid. Instead, incremental update can be
done.

(a) Customers’ locations and obstacles

(b) Clusters formed when ignoring obstacles

Figure 1. Planning locations for telephone cabinets

The rest of the paper is organized as follows. We
first discuss the related work in Section 2. The
proposed algorithm is given in Section 3. In
section 4, we analyze the complexity of our
algorithm. Section 5 concludes the conclusion.

2. RELATED WORK

Many studies [HK00] have been conducted in
cluster analysis. These methods can be
categorized into partitioning methods [NH94,
BFR98], hierarchal methods [ZRL96, GRS98,
KHK99], density-based methods [ABKS99,
EKSX96, HK98], grid-based methods [WYM97,
AGG98, SCA98], and constrained-based methods
[THH01]. Methods related to our work are
discussed briefly in this section and we emphasize
what we believe the limitations, which are
addressed by our approach.

2.1 COD-CLARANS

COD-CLARANS [THH01] (clustering with
obstructed distance based on CLARANS
[NH94]) was the first and the only clustering work
that consider the presence of obstacle entities in
the spatial area. COD-CLARANS takes as input
the number, k , of the required clusters. That is, the
users determine the number of clusters. In some
situation, however, determining this number is not
easy. COD-CLARANS contains two phases. The
first phase breaks the database into several
databases and summarizes them individually by
grouping the objects in each sub-database in
micro-clusters. A micro-cluster is a group of
points, which are so close together that they are
likely to belong to the same cluster. The second
phase is the clustering stage. The algorithm first
randomly selects k points as centers for the
required k clusters and then tries to find better
solutions. A basic difference between CLARANS
and COD-CAARANS is that COD-CLARANS
computes obstructed distances between the center
of a cluster and its objects. The obstructed
distance between two points is defined as the
length of the shortest Euclidean path between the
two points without cutting through any obstacles.

Although COD-CLARANS generates good
clustering results, there are several major
problems with this algorithm. First, the quality of
the results cannot be guaranteed when the
number of points, N, is large since the
randomized search is used in the algorithm to
determine initial centers for the clusters and then
to refine those centers. Second, COD-
CLARANS takes as an input the number of the
desired clusters and another integer, which
determine the number of maximum tries to refine
a center, but both numbers are generally
unknowns in realistic applications. Third, COD-
CLARANS can’t handle outliers. Forth, when
data is updated, we need to run the algorithm
from scratch.

2.2. STING

STING (STatistical INformation Grid), presented
in [WYM97], is a statistical information grid-based
approach to spatial data mining. A pyramid-like
structure is employed, in which the spatial area is
divided recursively into rectangular cells down to
certain granularity determined by the data
distribution and resolution required by applications.
Statistical information for each cell is calculated in
bottom up manner and is used to answer queries.
The results of such queries are in the form of
regions that satisfy the conditions specified in the
query. So these resulted regions are a clustering of
the data according the conditions specified in the
query. When processing a query, the hierarchal
structure is examined in a top down manner. Cells
are marked as either relevant or non-relevant with
certain confidence level using standard statistical
tests. Only children cells of relevant cells are
examined at the next level. The final result is
formed as the union of qualified leave level cells.

3. ALGORITHM

In this section, we describe our proposed algorithm
in detail. We show the main function of the CPO
algorithm in Algorithm 3.1. The algorithm first
divides the spatial area into rectangle cells of equal
size such that the average number of points in

each cell is in the range from several dozens to
several thousands. Then, the algorithm labels each
cell as either dense or non-dense (according to
the number of points in that cell) and also as either
obstructed (i.e. intersects any obstacle) or non-
obstructed. Next, each obstructed cell is divided
into a number of non-obstructed sub-cells. Again
each of the new sub-cells is labeled as dense or
non-dense (according to the number of point in
this sub-cell). Then the algorithm finds the dense
regions of non-obstructed cells or sub-cells by a
breadth-first search. The obtained regions are the
required clusters. For each cluster the algorithm
finds a center. Finally the algorithm outputs the
clusters with their centers.

Algorithm 3.1 CPO.
Input: A set of N objects (points) and a set of
polygon obstacles in a spatial area S.
Output: The relatively dense regions in S, with a
center for each region.
Method:

1. Let La and Lo be the dimensions of the
spatial area. Determine two numbers, x, y,

such that lo
y

la
x = and the average

number of points in each cell, t, given by

)()(y
lo

x
la

N

∗
 ranges from several dozens to

several thousands.

2. Divide the spatial area into)()(y
lo

x
la ∗

rectangular cells that have equal areas by
dividing the longitude and latitude of the

spatial area into))()((y
lo

x
la = equal

segments.
3. For each cell, c, we determine the following

parameters:
 nc : the number of the objects in the cell.
 mc : the mean of points in the cell.
4. For each cell, c, if tnc ≥ , then label c as

dense, otherwise label c as non-dense.
5. For each obstacle, O, all cells that intersect

O are labeled as obstructed.
6. For each obstructed cell, c, apply algorithm 3.2

to find non-obstructed sub-cells in c.

7. For each sub-cell, sc, obtained in step 6, if

sc
sc pt

n ≥ , then label sc as dense.

Otherwise label sc as non-dense.
8. For each dense, non-obstructed cell that is

not, previously, processed in the current step,
or dense sub-cell that also is not processed
before in the current step, we examine its
neighboring non-obstructed cells or sub-cells
to see if the average number of points in a
cell within this small area is greater than or
equal t. If so, this area is marked and all
dense cells or sub-cells that are just
examined are put into a queue. Remove from
the queue each dense cell or sub-cell that has
been examined before in a previous iteration.
Each time we take one cell or sub-cell from
the queue and repeat the same procedure.
When the queue is empty, we have identified
one region, cl.

9. For each region, cl, constructed in step 8,
apply algorithm 3.3 to find a center for cl.

10. Output the constructed regions with their
centers.

Algorithm 3.2 Find_non-obstruced_sub-cell(c).
Input: an obstructed cell, c.
Output: a number of non-obstructed sub-cells in
c.
Method:

1. Divide the cell c into a number of small
pieces of equal areas in the same way as we
divide the spatial area such that the average
number of the points in each piece (smaller
than the average number of points in a cell
inside the spatial area) is in the range from
several dozens to several hundreds.

2. For each small piece, p, label p as either
obstructed (i.e. intersects any obstacle) or
non-obstructed.

3. For each non-obstructed piece, p, that is not
marked before in this step, the area
constituted from p and its non-obstructed
neighbors is marked and all non-obstructed
neighbors we just examined are put into a
queue. Each time, we take one piece from
the queue and repeat the same procedure
except that those non-obstructed pieces that

are not marked before are enqueued. When
the queue is empty, we have identified one
sub-cell.

4. For each sub-cell, sc, obtained in step 3, we
determine the following parameters:

 nsc: the number of the objects in the sub-
cell.

 mc : the mean of points in the sub-cell.
 Psc: the percentage of the area covered by

sc from c.
5. Output the sub-cells formed in step 3 with

their parameters.

Algorithm 3.3 Find_center(cl)
Input: A cluster, cl.
Output: a center for the cluster cl.
Method:

1. Calculate the mean, m, of all the points in cl.
2. If this mean is not in any obstacle, then return

m.
3. In the case that the mean lies in an obstacle,

for each cell, c, with mean mc, in the cluster,
find cost(c) which is ∑

∈

′
cli

ic mmd 2)),((,

where i is a cell in the cluster and
),(ic mmd ′ is the obstructed distance

[THH01] between mc and mi, which defined
as the shortest Euclidean path from mc to mi

that does not go through any obstacle.
4. Return the mean of the cell with the minimum

cost.

4. ANALYSIS OF THE ALGORITHM

In this section we analysis the complexity of the
CPO algorithm. We first need the following
definition.

Definition (Visibility Graph): Let B be the set of
obstacles. Each obstacle O is represented as a
polygon. Vo is the set of vertices that determine
the obstacle O. The visibility graph of the set of
obstacles B is an undirected graph with set of
nodes V and set of edges E. V is the union of all
the sets Vo for all obstacles. There is an edge
between two vertices vi and vj if they are mutually
visible. Two vertices are said to be visible if the

straight line that connects the vertices does not
intersect an obstacle. The following notation are
defined for this discussion:
N: the number of data objects in the spatial area S.
m: the number of the cells in the spatial area.
m’: the number of the cells in the spatial area, if
we divide the spatial area such that the number of
points in each cell is in the range from several
dozens to several hundreds, m<m’<<N.
Steps 1 and 2, take a constant time. In step 3, we
need to scan points in the spatial area only once so
step 3 takes O(N) time. In the worst case, step 4,
and step 5 as well, may need to scan all cells, so it
takes O(m) time. So the running time for the first
five steps is O(m)+O(m)+O(N). Since m << N the
complexity is O(N) time.

4.1. The complexity of steps 6, 7 and 8

In the worst case, all cells may be obstructed so
step 6 will be applied on all cells. But this is
equivalent to re-execute steps 1 and 2 on the
spatial area such that the number of points in
every cell in the new grid is in the range from
several dozens to several hundreds. The number
of cells in the new grid is m’. Afterwards, to go
through step 6, we need to scan all cells in the
new grid to label them as obstructed or non-
obstructed, form the non-obstructed sub-cells
and compute the parameter p for each sub-cell
and this scan takes O(m’) time and then scan the
data points again to determine the other
parameters to each sub-cell which takes O(N)
time. So, totally step 6 takes O(N)+O(m’) time. In
step 7, we need to scan all the formed sub-cells to
label them as dense or non-dense but this takes
O(m’) time. Step 8 in the worst case takes O(m’)
time.

4.2. The complexity of step 9

The worst case running time of step 9 is
O(m|V|2)+O(m2|V|). The worst case is when the
mean of the points in the region is inside an
obstacle, we will need to scan all cells in the
cluster and find the cell whose mean point is the
nearest to the mean points of all the other cells in
the region. For each cell, to determine the sum of
the obstructed distances between its mean point

and the mean points of the other cells in the
cluster, this takes O(|V|2)+O(m|V|). Calculation of
this sum includes the following two operations.
First, for the mean point of this cell a new
Extended Dijkstra’s tree is built. The construction
of the Extended Dijkstra’s tree takes O(|V|2) time,
which is the same as the Dijkstra
algorithm[O’R98]. Second, for each of the cells in
the regions, we need to look up its visibility
information. This takes O(|V|) to each cell, so the
second operation takes as a total O(m|V|). Now,
since the calculation of summation is needed for
each cell in the cluster, the total complexity of this
step is O(m|V|2)+O(m2|V|).

4.3 The total complexity

The total complexity of CPO algorithm is the sum
of the running time of all the steps:

O(CPO) = O(N) +O(N)+O(m’)+ O(m’)+
 O(m’)+ O(m|V|2) + O(m2|V|)
 =O(N) + O(m|V|2) + O(m2|V|).

5. CONCLUSION

In this paper, we introduced a new approach to
spatial clustering in the presence of obstacles,
which overcomes the disadvantages of the
previous work. The new approach works as
follows. It first divides the spatial area into
rectangle cells of equal size such that the average
number of points in each cell is in the range from
several dozens to several thousands. Then, the
algorithm labels each cell as either dense or non-
dense (according to the number of points in that
cell) and also as either obstructed (i.e. intersects
any obstacle) or non-obstructed. Next, each
obstructed cell is divided into a number of non-
obstructed sub-cells. Again each of the new sub-
cells is labeled as dense or non-dense (according
to the number of point in this sub-cell). Then the
algorithm finds the dense regions of non-
obstructed cells or sub-cells by a breadth-first
search. The obtained regions are the required
clusters. For each cluster the algorithm finds a
center. Finally the algorithm outputs the clusters
with their centers.

We also gave a complexity analysis of the
proposed algorithm.

REFERENCES

[NH94] R. Ng, and J. Han. “Efficient and
effective clustering method for spatial data
mining”. In Proc. 1994 Int. Conf. Very Large
Data Bases (VLDB’94), pages 144-155, Santiago,
Chile, Sept. 1994.
[THH01] A. K. H. Tung, J. Hou, & J. Han.
“Spatial Clustering in the Presence of Obstacles”.
In Proc. 2001 Int. Conf. Data Engineering
(ICDE’01), Apr. 2001.
[WYM97] W. Wang, J. yang, and R. Muntz.
“STING: A Statistical information grid approach to
spatial data mining”. In Proc. 1997 Int. Conf.
Very Large Data Bases (VLDB’97), pages 186-
195, Athens, Greece, Aug. 1997.
[CLR90] T. Cormen, C. Leiserson, and R.
Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1990.
[O’R98] J. O’Rourke. Computational Geometry
in C (2nd Ed.). Cambridge University Press, 1998.

[HK00] J. Han, M. Kamber. Data Mining:
Concepts and techniquies. Morgan Kaufmann,
2000.
[ZRL96] T. Zhang, R. Ramakrishnan, and M.
Livny. “BIRCH: an efficient data clustering
method for very large databases”. In Proc. 1996
ACM-SIGMOG Int. Conf. Management of Data
(SIGMOD’96), pages 103-114, Montreal,
Canada, June 1996.
[KHK99] G. Karypis, E. –H. Han, and V.
Kumar. “CHAMELEON: A hierarchal clustering
algorithm using dynamic modeling”. COMPUTER,
32:68-75,1999.
[EKSX96] M. Ester, H. -P, Kriegel, J. Sander, X.
Xu. “A desity-based algorithm for discovering
clusters in large spatial databases”. In Proc. 1996
Int. Conf. Knowledge Discovery and Data
Mining (KKD’96), pages 226-231, Portland,
Oregon, Aug. 1996.
[HK98] A. Hinneburg and D. A. Kein. “An
efficient approach to clustering in large multimedia
databases with noise”. In Proc. 1998 Int. Conf.
Knowledge Discovery and Data Mining
(KKD’98), pages 58-65, New York, NY, Aug.
1998.

[AGGR98] R. Agrawal, J. Gehrke,
D.Gunopulos, and P. Raghavan. “Automatic
subspace clustering of high dimensional data for
data mining applications”. In Proc. 1998 ACM-
SIGMOG Int. Conf. Management of Data
(SIGMOD’98), pages 94-105, Seattle, WA, June
1998.
[SCZ98] G. Sheikholeslami, S. Chatterjee, and
A. Zhang. “WaveCluster: A multi-resolution
clustering approach for very large Spatial
databases”. In Proc. 1998 Int. Conf. Very
Large Data Bases (VLDB’98), pages 428-439,
New York, NY, Aug. 1998.
[BFR98] P. Bradley, U. Fayyad, and C. Reina.
“Scaling clustering algorithms to large
databases”. In Proc. 1998 Int. Conf.
Knowledge Discovery and Data Mining
(KKD’98), pages 9-15, New York, NY, Aug.
1998.
[ABKS99] M. Ankerst, M. Breunig, H. -P.
Kriegel, and J. Sander. “OPTICS: ordering points
to identify the clustering structure”. In Proc.
1999 ACM-SIGMOG Int. Conf. Management

of Data (SIGMOD’99), pages 49-60,
Philadelphia, PA, June 1999.
[GRS98] S. Guha, R. Rastogi, and K. Shim.
“CURE: An efficient clustering algorithm for
large data bases”. In Proc. 1998 ACM-
SIGMOG Int. Conf. Management of Data
(SIGMOD’98), pages 73-84, Seattel, WA, June
1998.

