
Certified Transformation for Static Single
Assignment of SPMD Programs

Mohamed A. El-Zawawy∗
∗College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
∗Department of Mathematics, Faculty of Science

Cairo University

Giza 12613, Egypt

Email: maelzawawy@cu.edu.eg

Abstract—A common program view adapted by most contem-
porary compilers is Static Single Assignment (SSA) which can be
realized as transitional form (TF). In SSA, each variable is modi-
fied by exactly one assignment. SSA is based on splitting variables
of the original program into many versions. Power constraints
of sequential programming led parallel programming to be the
main programming style today for performance boosting. The
single program, multiple data (SPMD) style of parallelism is a
prevalent model of parallel computing. A Proof-Carrying Code
package typically consists of the original code, a proof that is
checkable by a machine, and the code’s correctness specification.

A new technique for constructing a static single assignment
form for SPMD programs is introduced in this paper. The
proposed technique is in the form of a system of inference rules.
The input of our proposed technique is a SPMD program and
the output is a SSA form of the program. Judgment derivations
in the proposed system are convenient choices for proof parts of
a PCC packages. Therefore the resulting SSA form is certified in
terms of proof-carrying code area of research.

I. INTRODUCTION

Static Single Assignment (SSA) [5], [32] is a common
program view adapted by most contemporary compilers. Static
Single Assignment is also considered a tool for compiler
design. SSA forms can be realized as transitional form (TF)
in which exactly one assignment modifies each variable. The
main idea of building SSA forms is the splitting of variables of
the original program into many versions. This is implemented
via indicating new variables with the original names and new
subscriptions. This style allows each definition to have its own
history. Therefore, in the SSA form, use-definition sequences
are clearly trackable. SSA forms are even adopted in phases
of final-code generation. Compilers use SSA representations
include LLVM, LibFirm, Java HotSpot, and LAO. Just-in-time
compilers (with relatively longer compilation time) also benefit
from advantages of SSA. Examples of Just-in-time compilers
are LAO, Java HotSpot, and Mono.

Although historically, SSA main function was to enable
building transformations of high-level program, SSA forms
have attracted researcher attentions due to good characteristics
(reducing computational complexities and enabling simple
algorithms) that these forms enjoy. Based on SSA, different
important program analyses and optimizations (like dead-
code removal, pointer analysis, constant propagation, memory

safety, and live-range analysis) have been studied and designed.
Therefore this paper focuses on SSA forms.

Parallel programming [29] is a main programming style
today for performance boosting due to power constraints of
sequential programming. There are considerable intersections
between challenges of parallel programming and that of large-
scale machines programming. One of common challenges
is that of involved assignments; distributed computers are
organized in a hierarchical style. Of course, different types
of communication charges among applications and distributed
machines are allowed. This even complicates parallel-programs
analysis in presence of involved assignments.

One prevalent model of parallel computing is that of single
program, multiple data (SPMD) [25], [35] style of parallelism.
The strength of this style comes from its ability to mix global
simultaneity and cumulative communication operations with
separate execution threads. There are many advantages of
SPMD compared to relevant models. Efficient programming
that is free of many common parallel errors is possible with
SPMD which is as well a convenient style for constructions
and maintenance of compiler optimization and analysis. The
execution style of SPMD is typically locality-aware. This
makes it straightforward to programmer to control data locality.
Hence SPMD programs are typically scalable for large-scale
computers. Therefore SPMD programs are the main objects of
interest in this paper.

The Proof-Carrying Code (PCC) [36], [28] has a great
impact on certifying compilers, theorem provers, and program
justification tools. This is so as by the aid of PCC, it is now
possible to construct softwares that are more trustworthy. A
PCC package typically consists of the original code, a proof
that is checkable by a machine, and the code’s correctness
specification. The proof is supposed to ensure that the code
behavior is in line with the code specification. Therefore,
before executing the code, the user of the code can employ
a simple checker to test the safety proof. The technique used
in this paper to construct the SSA form produces such proofs
used in PCC.

This paper presents a new technique for constructing a
static single assignment form for SPMD programs. The input
of our proposed technique is a SPMD program and the output
is a SSA form of the program. However the new technique has

2014 14th International Conference on Computational Science and Its Applications

978-1-4799-4264-0/14 $31.00 © 2014 IEEE

DOI 10.1109/ICCSA.2014.15

12

the form of a system of inference rules. This hence is enabling
associating each produced SSA form of our system with a
justification-proof for the correctness of the SSA form. This
makes the SSA form certified. Applications like proof-carrying
code are basically built on the use of certified transformations.
Therefore results of the technique proposed in this paper are
expected to have wide range of applications in proof-carrying
code area of research.

Motivation

The paper is motivated by the need for an SSA-
transformation technique for SPMD programs that produces
machine-checkable and easily-transferable justification-proofs
for each SSA-transformation towards an SSA-form for a given
SPMD program.

Contributions

The contribution of this paper is a new technique for
producing Static Single Assignment of SPMD programs. the
technique has the form of a system of inference rules and
hence its results are applicable to methods of Proof-Carrying
Code.

Paper Outline

The rest of the paper is outlined as following. The langauge
model, SSA-ParLang, used in the paper is shown in Section II
which also introduces the details of the new technique pro-
posed by this paper. A conclusion to the paper as well as
suggestions for future work are introduced in Section IV.

II. CERTIFIED STATIC SINGLE ASSIGNMENT

This section presents a new technique for building Static
Single Assignment (SSA) forms for single program multiply
data (SPMD) programs. The proposed technique is a transfor-
mation one that transforms a given SPMD (in a classical form)
into an equivalent program in a SSA form. The transformation
has the from of annotations to the original program statements.
The proposed technique is in the form of a type system (system
of inference rules and set of types). Elements of the proposed
system are the main contribution of this paper.

The model langauge, SSA-ParLang, used in this paper to
present the new technique is shown in Figure 1. There are two
syntactical categories of statements; Stmt and AnnotStmt. The
former category is intended to capture the SPMD in its original
form and the later category is meant to capture the SSA form
produced by the technique presented in this paper. Because our
transformation technique is an annotating one, the definition
of the category AnnotStmt includes that of Stmt. Therefore the
set of programs produced by Stmt is a subset of the set of
programs produced by AnnotStmt.

Our technique inserts three different types of statements
in the form of annotations to the original program. The first
type of annotation is that uses the statement xi := fi(xj , xk).
This statement is added to preserve single assignments at the
junction points of control flow graphs (CFGs). The statement
xi := fi(xj , xk) can be realized as pseudo assignment. While
the symbol xi stands for the new version of the variable x,
the symbols xj , xk stand for original versions of the variable

which are needed up to the junction point. The implementation
of fi annotation is typically achieved in two steps. the first
step is to insert the fi statement and then to do the variable
subscribing. Typically the fi statements are placed on control
borderlines of the CFG. Then the variable order of appearance
in the the dominator tree determines their subscribes.

The other two types of statement annotations are related to
operations of indirect memory-access which complicates the
process of maintaining the use-definition chains. The source
of complication is that aliasing pointers of scalar variables
may create definitions. Therefore for the SSA technique, sym-
bolic investigation would not be enough to determine single
definition sites. In this paper we treat this problem in a way
inspired by [21] and [11]. However our solution improves over
similar approaches from many points of view including (a)
refining places of insertions for new statements, (b) producing
proofs (in the form of type derivations for each transformation
process), and (c) employing the well-established concepts of
typing theory to determine variables subscripts in a systematic
way. We use two annotate statements to treat indirect memory-
access; xi := md(xj) and mu(xj). Details of conditions and
locations concerning the insertion of these annotations depend
on the type of the indirect memory-access statement. This is
evident in inference rules of Figure 5 and 6.

As stressed earlier in many occasions, the approach we
present has the form of a type system consisting of a set of
SSA-types and a set of inference rules. The set of the types
(SSA-types) are defined as follows.

Definition 1: A SSA-type is a map T : ∪m∈MlVarm ⇀
Integers.

A SSA-type is a partial map from the set of local variables of
all machines to the set of integers. The set of inference rules
are introduced in Figures 2, 3, 4, and 6. The proposed type
system is syntax-directed. Therefore each syntactical category
of the language syntax, SSA-ParLang, corresponds to a set of
inference rules. Our system assumes that the input program
is annotated with pointer information. This can be calculated
using any of common algorithms for flow-sensitive pointer
analysis. The pointer-analysis annotations have the forms of
S : P → P ′ and e : P → A, where P and P ′ denote the pre
and post pointer types and A is the set of variables that e may
alias to in a state of type P .

Judgements produced by the system have the forms e :
T → T ′ ↪→ e′ and Stmt � S : T → T ′ ↪→ S′ ∈ AnnotStmt . In
these Judgement e′ and S′ are the transformations (annotated
versions) of e and S, respectively. The former judgment reads
as follows; (a) evaluating e at a state of type T (if ends) reaches
a state of type T ′ and (b) executing e′ at a state equivalent
to that of executing e reaches (if ends) a state equivalent to
that e reaches (if ends) at the end of its execution. Similarly
S : T → T ′ ↪→ S′ reads as follows; (a) executing S at a state
of type T (if ends) reaches a state of type T ′ and (b) executing
S′ at a state equivalent to that of executing S reaches (if ends)
a state equivalent to that S reaches at the end of its execution.
This can be formalized in the following theorem that assumes
an appropriate operational semantics for constructs of SSA-
ParLang.

Theorem 1: 1) Suppose that e : T → T ′ ↪→ e′.
Suppose also the existence of an appropriate opera-

13

x ∈ lVar, iop ∈ Iop, bop ∈ Bop, and m ∈ M ⊆ M
V ∈ VarDefs ::= int x | d1d2 | ε.

l ∈ Loc ::= x | l → y | [l].
e ∈ DistExpr ::= l | e1 iop e2 | &l | allocate() | run (e,m) |

convert(ptr m, int m) e | convert (int mj , int mi)) e.

S ∈ Stmts ::= l := e | run (S,m) | S1;S2 | if e then St else Sf | while e do St.

AS ∈ AnnotStmts ::= l := e | run (S,m) | S1;S2 | xi := fi(xj , xk) | xi := md(xj) |
mu(xj) | if e then St else Sf | while e do St.

prog ∈ Progs ::= V ;S.

Fig. 1. Programming Language Model: SSA-ParLang

(ε)
ε : T →V T ↪→ ε

(int)
int x : T →V T [x �→ 1] ↪→ int x1

d1 : T →V T ′′ ↪→ d′1 d2 : T ′′ →V T ′ ↪→ d′2
(d1dV2)

d1d2 : T →V T ′ ↪→ d′1d
′
2

Fig. 2. Typing Rules for Static Single Assignment (SSA): Variable Types.

T (x) = i
(xl)

x : T →l T [x �→ T (x) + 1] ↪→ xi

T (y) = i
(→l)

(l → y) : T →l T [y �→ T (y) + 1] ↪→ (l → yi)

l : T →l T
′ ↪→ l′

([l]l)
[l] : T →l T

′ ↪→ [l′]

Fig. 3. Typing Rules for Static Single Assignment (SSA): Locations.

T (x) = i
(xe)

x : T →e T ↪→ xi

T (y) = i
(→e)

l → y : T → T ↪→ l →e yi

l : T →e T ′ ↪→ l′
([l]e)

[l] : T →e T ′ ↪→ [l′]

e1 : T →e T ′ ↪→ e′1
e2 : T →e T ′ ↪→ e′2 (lt)

(e1 iop e2) : T →e T ′ ↪→ (e′1 iop e′2)

l : T →e T ′ ↪→ l′
(&le)

&l : T →e T ′ ↪→ &l′

(allocatee)
allocate() : T →e T ↪→ allocate()

e : T →e T ′ ↪→ e′
(rune)

run(e,m) : T →e T ′ ↪→ run(e′,m)

e : T →e T ′ ↪→ e′
(cone1)

convert(ptr m, int m) e : T →e T ′ ↪→ convert(ptr m, int m) e′

e : T →e T ′ ↪→ e′
(cone2)

convert (int mj , int mi)) e : T →e T ′ ↪→ convert (int mj , int mi)) e′

Fig. 4. Typing Rules for Static Single Assignment (SSA): Distributed Expressions.

Fig. 5. Static Single Assignment (SSA) of SPMD: Technique Elements

14

l �= [. . .] e �= [. . .]
l : T → T ′′ ↪→l l

′
e : T ′′ →e T ′ ↪→ e′

(;s1)
l := e : T →s T ′ ↪→ l′ := e′

l : T → T ′′ ↪→l l
′

l := [e] : P →a P ′
∀x ∈ A. Sx = mu(xT ′(x))

e : T ′′ →e T ′ ↪→ e′
e : P →a A = {x1, . . . , xn}
l �= [. . .]

(;s2)
l := [e] : T →s T ′ ↪→ l′ := [e′];Sx1 ; . . . ;Sxn

l : T → T ′′ ↪→l l
′

[l] := e : P →a P ′
∀x ∈ A. Sx = (xT ′(x)+1 := md(xT (x)))

e : T ′′ →e T ′ ↪→ e′
l : P →a A = {x1, . . . , xn}
e �= [. . .]

(;s3)
[l] := e : T →s T ′[x �→ T ′(x) + 1 | x ∈ A] ↪→ [l′] := e′;Sx1 ; . . . ;Sxn

l : T → T ′′ ↪→l l
′

[l] := e : P →a P ′
∀x ∈ A. Sx = (xT ′(x)+1 := md(xT (x)))
∀y ∈ B. Sy = mu(yT ′(y))

e : T ′′ →e T ′ ↪→ e′
l : P →a A = {x1, . . . , xn}
e : P →a B = {y1, . . . , ym}

(;s4)
[l] := [e] : T →s T ′[x �→ T ′(x) + 1 | x ∈ A] ↪→ Sy1 ; . . . ;Sym ; [l′] := e′;Sx1 ; . . . ;Sxn

S1 : T →s T ′′ ↪→ S′
1

S2 : T ′′ →s T ′ ↪→ S′
2 (:=s)

S1;S2 : T →s T ′ ↪→ S′
1;S

′
2

S : T →s T ′ ↪→ S′
(runs)

run (S,m) : T →s T ′ ↪→ run (S′,m)

e : T →s Te ↪→ e′
St : Te →s T ′′ ↪→ S′

t
Sf : T ′′ →s T ′′′ ↪→ S′

f

A = {x1, . . . , xn} = {x | T ′(x) > T (x)}
∀x ∈ A. Sx = xT ′(x)+1 := fi(xT (x), xT ′′′(x))
T ′ = T ′′′[x �→ T ′′′(x) + 1 | x ∈ A]

(ifs)
if e then St else Sf : T →s T ′ ↪→ Sx1 ; . . . ;Sxn if e′ then S′

t else S′
f

e : T →s Te ↪→ e′
St : T ′′ →s T ′′′ ↪→ S′

t

A = {x1, . . . , xn} is the set of varibales modified by St

T ′′ = Te[x �→ Te(x) + 1 | x ∈ A]
∀x ∈ A. Sx = xT (x)+1 := fi(xT (x), xT ′′′(x))
∀y ∈ A. Sy = yT ′′′(x)+1 := fi(xT (x), xT ′′′(x))
T ′ = T ′′′[x �→ T ′′′(x) + 1 | x ∈ A]

(whls)
while e do St : T →s T ′ ↪→ Sy1 ; . . . ;Syn ;while e′ do S′

t;Sx1 ; . . . ;Sxn

Fig. 6. Typing Rules for Static Single Assignment (SSA): Statements.

tional semantics, Sem-e,to the distributed expressions
of SSA-ParLang. Suppose in Sem-e that e : s → s′.
Then [e]s ≡ [e′]s and if s is of type T , then s′ is of
type T ′.

2) Suppose S : T → T ′ ↪→ S′. Suppose also the
existence of an appropriate operational semantics,
Sem-S, to the statements of SSA-ParLang. Suppose
in Sem-s that S : s → s′. Then [S]s ≡ [S′]s and if s
is of type T , then s′ is of type T ′.

The above theorem formalizes the soundness of our proposed
technique and has a straightforward proof if the used semantics
is a convenient one. Therefore the choice of the operational
semantics affects the complexity of the theorem proof.

Our proposed technique works as following. Given a
SPMD program S ∈ Stmt, one uses the inference rules
presented in this section to gradually build S′ ∈ AnnotStmt
such as S : ⊥ → T ′ ↪→ S′. The symbol ⊥ denotes the
bottom type with an empty domain. Once S′ is built, the type

derivation of this judgment serves as a justification-proof for
a PCC package.

Rules corresponding to distributed expressions are shown
in Figure 2, 3, and 4. Comments are in order. The rule (xl)
creates a new version of the variable x using the index specified
by the type T and increases the index of x in the post-type by 1.
This is so as in this case x is encountered on the left-hand-side
of some assignment statement and hence is assigned a value.
On the other hand, the rule (xe) creates a new version of the
variable x using the index specified by the type T and does
not modify the index of x in the post-type. This is so as in this
case x is encountered on the right-hand-side of an assignment
statement and hence is not modified. Similar explanations
clarify remaining rules for distributed expressions.

Rules corresponding to statements are shown in Figure 5.
Comments are in order. The rule (;s2) treats the statement
l := [e]. The preconditions of this rule include a transformation
derivation for l and e and include as well pointer analysis

15

for the statement l := [e] and for the distributed expression
e. This is so as the set of variables that e may alias to
will be the bases for constructing the annotating statements
Sx1 ; . . . ;Sxn . The idea of the annotation is that these are
the variables that may include pointers at that program point.
The rule (;s4) treats the statement [l] := [e] which includes
two types of indirect memory-access; reading and modifying.
For the reading process we insert a sort of annotations before
the statement and for modifying we insert a different sort of
annotations after the statement. Similar explanations clarify
remaining rules for statements.

III. RELATED WORK

To represent the programs data flow, many data structures,
including SSA form, were proposed. As symmetric extension
of SSA, One example of these data structures is present in [34]
and presents static single information form (SSI) [3], [7]. The
idea of SSI is to present, for every branch, new definitions
in case of variable uses in many different branches in the
control flow graph. Webs were presented in [27] as maximal
collections of def-use sequences having a similar use.

Static Single Assignment form construction, as an ex-
ample of program analysis and transformation, is based on
recognizing, in a control-flow graph, the dominator tree. Of
differing worst-case and average complexities, much research
were carrier out to find these trees [8], [9], [19], [4]. On the
control-flow graph, a common attribute of all these research
is that they are all expressed in a single phase. Other research
split the tree construction in two phases [20].

Program dependence graphs (PDGs) [13] can be used for
software compiling, developing, and debugging. In PDGs,
vertices and edges represent subprogram and dependencies,
respectively. This facilitates realizing (as graph traversals)
involved program analyses (such as slicing [22]). The effort
of establishing PDGs mostly goes to constructing control and
data dependencies. Dataflow analyses can be used to construct
the def-use chains such as in [24]. Also interval analysis and
directed methods [10], [33], [14] can be used for the same
purpose. However this technique is not efficient enough to
deal with languages with pointers and control flow that is
unstructured.

Static Single Assignment is not classified as transport
format. However, as transitional representation, most of the
recent efficient virtual machines (JIT-based) use SSA form.
More interestingly, SSA is indeed used as an encoding format
in representations of mobile code formats [2], [1] that are
inherently safe. An example of this use is SafeTSA [1]. The
format of mobile code is typically self-consistent. This format
can only represent programs that are well typed and formed.
Therefore the use of SSA removes the need for dynamic
verifications. However this use usually results not treating the
Java class-file already existing. Some research [20], [1] speeds
up code construction via presenting, in SSA-form, the code to
the JIT.

To study programming-languages implementations that are
high-level, SSA representation can also be used in byte-
code compilation as in Marmot [18]. Such use typically pays
more attention to code consumption and does not help (such

as program reordering) in the code production process (via
hinting for example).

Proof-carrying code (PCC) [30], [23] handles the need
for mobile code annotation with proofs simply checkable by
code consumer. Therefore PCC [31], [26] carries the code
verification instead of the code consumer. In absence of PCC,
using policies for public safety, the code producer establishes
a justification condition and proves its correctness for the
program in hand. Of course the justification is typically send
to consumer together with the code. Therefore when the code
is received, the consumer rechecks the justification condition
and makes sure that the received justification indeed satisfies
the claimed verification condition. Shipping the justification
unfortunately typically results in abandoning the format of Java
byte-code format.

Similar to PCC is the split verifier technique [12]. To
reduce class loading time and relieving the burden from
JVM, split verifier uses the data-flow analysis fixed-point to
annotate the JVML [6], [37]. Therefore this way simplifies the
verification as it becomes necessary only to make sure that
the annotation is a logical fixed-point, achievable in in linear
time. Some research used this idea to verify the constructed
dominator trees

IV. CONCLUSION AND FUTURE WORK

This paper proposed a new method for establishing an SSA
form for SPMD programs. The method basic components are
inference rules. This makes its application relatively simple
and trustful. The type derivations of the proposed method can
be used in proof-carrying code area of research (PCC).

There are many directions for future work. Producing anal-
yses techniques for different programming styles (including
SPMD) using SSA forms is an interesting direction for future
work. For SPMD programs, program analysis techniques can
be designed on the program format produced by the technique
proposed in this paper. If these analyses are designed using
concepts of type systems, in the spirit of [17], [15], [16], they
will have direct applications in PCC.

REFERENCES

[1] Wolfram Amme, Niall Dalton, Michael Franz, and Jeffery von Ronne.
Safetsa: A type safe and referentially secure mobile-code representation
based on static single assignment form. In Michael Burke and Mary Lou
Soffa, editors, PLDI, pages 137–147. ACM, 2001.

[2] Wolfram Amme, Thomas S. Heinze, and Jeffery von Ronne. Intermedi-
ate representations of mobile code. Informatica (Slovenia), 32(1):1–25,
2008.

[3] Davide Ancona and Giovanni Lagorio. Static single information form
for abstract compilation. In Jos C. M. Baeten, Thomas Ball, and
Frank S. de Boer, editors, IFIP TCS, volume 7604 of Lecture Notes
in Computer Science, pages 10–27. Springer, 2012.

[4] Tom Bäckström. Computationally efficient objective function for alge-
braic codebook optimization in acelp. In Frédéric Bimbot, Christophe
Cerisara, Cécile Fougeron, Guillaume Gravier, Lori Lamel, François
Pellegrino, and Pascal Perrier, editors, INTERSPEECH, pages 3434–
3438. ISCA, 2013.

[5] Gilles Barthe, Delphine Demange, and David Pichardie. A formally
verified ssa-based middle-end - static single assignment meets compcert.
In Helmut Seidl, editor, ESOP, volume 7211 of Lecture Notes in
Computer Science, pages 47–66. Springer, 2012.

[6] Nadia Belblidia and Mourad Debbabi. A dynamic operational semantics
for jvml. Journal of Object Technology, 6(3):71–100, 2007.

16

[7] Philip Brisk and Majid Sarrafzadeh. Interference graphs for procedures
in static single information form are interval graphs. In Heiko Falk and
Peter Marwedel, editors, SCOPES, volume 235 of ACM International
Conference Proceeding Series, pages 101–110, 2007.

[8] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers,
Robert Endre Tarjan, and Jeffery Westbrook. Linear-time algorithms
for dominators and other path-evaluation problems. SIAM J. Comput.,
38(4):1533–1573, 2008.

[9] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery West-
brook. Corrigendum: a new, simpler linear-time dominators algorithm.
ACM Trans. Program. Lang. Syst., 27(3):383–387, 2005.

[10] David Byers, Mariam Kamkar, and Ture Pålsson. Syntax-directed
construction of value dependence graphs. In ICSM, pages 692–, 2001.

[11] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Stre-
ich. Effective representation of aliases and indirect memory operations
in ssa form. In Tibor Gyimóthy, editor, CC, volume 1060 of Lecture
Notes in Computer Science, pages 253–267. Springer, 1996.

[12] Ariel Cohen, Kedar S. Namjoshi, and Yaniv Sa’ar. Split: A compo-
sitional ltl verifier. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages
558–561. Springer, 2010.

[13] David J. A. Cooper, Mun Wai Chan, Gautam Mehra, Peter Woodward,
Brian R. von Konsky, Michael C. Robey, and Michael Harding. Using
dependence graphs to assist manual and automated object oriented
software inspections. In ASWEC, pages 262–269. IEEE Computer
Society, 2006.

[14] Lin Du, Guorong Xiao, and Daming Li. A novel approach to construct
object-oriented system dependence graph and algorithm design. JSW,
7(1):133–140, 2012.

[15] Mohamed A. El-Zawawy and Nagwan M. Daoud. New error-recovery
techniques for faulty-calls of functions. Computer and Information
Science, 5(3):67–75, May 2012.

[16] Mohamed A. El-Zawawy and Hamada A. Nayel. Partial redundancy
elimination for multi-threaded programs. IJCSNS International Journal
of Computer Science and Network Security, 11(10):127–133, October
2011.

[17] Mohamed A. El-Zawawy and Hamada A. Nayel. Type systems based
data race detector. IJCSNS International Journal of Computer Science
and Network Security, 5(4):53–60, July 2012.

[18] Robert P. Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard,
and David Tarditi. Marmot: an optimizing compiler for java. Softw.,
Pract. Exper., 30(3):199–232, 2000.

[19] Wojciech Fraczak, Loukas Georgiadis, Andrew Miller, and Robert En-
dre Tarjan. Finding dominators via disjoint set union. J. Discrete
Algorithms, 23:2–20, 2013.

[20] Andreas Gal, Christian W. Probst, and Michael Franz. Structural
encoding of static single assignment form. Electr. Notes Theor. Comput.
Sci., 141(2):85–102, 2005.

[21] Ming-Yu Hung, Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching
Ju, and Jenq Kuen Lee. Support of probabilistic pointer analysis in the
ssa form. IEEE Trans. Parallel Distrib. Syst., 23(12):2366–2379, 2012.

[22] Paritosh Jain and Nitish Garg. A novel approach for slicing of
object oriented programs. ACM SIGSOFT Software Engineering Notes,
38(4):1–4, 2013.

[23] Romain Jobredeaux, Heber Herencia-Zapana, Natasha A. Neogi, and
Eric Feron. Developing proof carrying code to formally assure termi-
nation in fault tolerant distributed controls systems. In CDC, pages
1816–1821. IEEE, 2012.

[24] Jens Krinke. Advanced slicing of sequential and concurrent programs.
In ICSM, pages 464–468. IEEE Computer Society, 2004.

[25] Xu Liu, Jianfeng Zhan, Kunlin Zhan, Weisong Shi, Lin Yuan, Dan
Meng, and Lei Wang. Automatic performance debugging of spmd-
style parallel programs. J. Parallel Distrib. Comput., 71(7):925–937,
2011.

[26] Hans-Wolfgang Loidl, Kenneth MacKenzie, Steffen Jost, and Lennart
Beringer. A proof-carrying-code infrastructure for resources. In LADC,
pages 127–134. IEEE Computer Society, 2009.

[27] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[28] Preeti Mudliar, Sharon Strover, and Kenneth Flamm. Outside looking
in: shaping access and use of pccs. In Gary Marsden and Julian May,
editors, ICTD (2), pages 104–107. ACM, 2013.

[29] Peter Pacheco. An Introduction to Parallel Programming. Elsevier,
2011. 1 edition (2011).

[30] Frank Pfenning, Luı́s Caires, and Bernardo Toninho. Proof-carrying
code in a session-typed process calculus. In Jean-Pierre Jouannaud and
Zhong Shao, editors, CPP, volume 7086 of Lecture Notes in Computer
Science, pages 21–36. Springer, 2011.

[31] Heidar Pirzadeh, Danny Dubé, and Abdelwahab Hamou-Lhadj. An
extended proof-carrying code framework for security enforcement.
Transactions on Computational Science, 11:249–269, 2010.

[32] Subhajit Roy and Y. N. Srikant. The hot path ssa form: Extending the
static single assignment form for speculative optimizations. In Rajiv
Gupta, editor, CC, volume 6011 of Lecture Notes in Computer Science,
pages 304–323. Springer, 2010.

[33] Josep Silva, Salvador Tamarit, and César Tomás. System dependence
graphs in sequential erlang. In Juan de Lara and Andrea Zisman, editors,
FASE, volume 7212 of Lecture Notes in Computer Science, pages 486–
500. Springer, 2012.

[34] Jeremy Singer. Static single information from a functional perspective.
In Stephen Gilmore, editor, Trends in Functional Programming, vol-
ume 4 of Trends in Functional Programming, pages 63–78. Intellect,
2003.

[35] Ajit Singh and Vincent Van Dongen. An integrated performance
analysis tool for spmd data-parallel programs. Parallel Computing,
23(8):1089–1112, 1997.

[36] Daniel Wonisch, Alexander Schremmer, and Heike Wehrheim. Pro-
grams from proofs - a pcc alternative. In Natasha Sharygina and Helmut
Veith, editors, CAV, volume 8044 of Lecture Notes in Computer Science,
pages 912–927. Springer, 2013.

[37] Hamdi Yahyaoui, Mourad Debbabi, and Nadia Tawbi. A denota-
tional semantic model for validating jvml/cldc optimizations under
isabelle/hol. In QSIC, pages 348–355. IEEE Computer Society, 2007.

17

