
An Efficient Binary Technique for Trace
Simplifications of Concurrent Programs

Mohamed A. El-Zawawy∗
∗College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Kingdom of Saudi Arabia

∗Department of Mathematics, Faculty of Science
Cairo University

Giza 12613, Egypt
Email: maelzawawy@cu.edu.eg

Mohammad N. Alanazi
College of Computer and Information Sciences,

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Riyadh, Kingdom of Saudi Arabia
Email: alanazi@ccis.imamu.edu.sa

Abstract—Execution of concurrent programs implies frequent
switching between different thread contexts. This property per-
plexes analyzing and reasoning about concurrent programs. Trace
simplification is a technique that aims at alleviating this problem
via transforming a concurrent program trace (execution) into a
semantically equivalent one. The resulted trace typically includes
less number of context switches than that in the original trace.

This paper presents a new static approach for trace sim-
plification. This approach is based on a connectivity analysis
that calculates for each trace-point connectivity and context-
switching information. The paper also presents a novel opera-
tional semantics for concurrent programs. The semantics is used
to prove the correctness and efficiency of the proposed techniques
for connectivity analysis and trace simplification. The results of
experiments testing the proposed technique on problems treated
by previous work for trace simplification are also shown in the
paper. The results prove the efficiency and effectiveness of the
proposed method.

Keywords—trace simplifications; binary techniques; concurrent
programs; semantics; connectivity analysis.

I. INTRODUCTION

Concurrency [1] is becoming a main stream in program-
ming due to advances in multi-core hardware. Compared to
other programming techniques, debugging and reasoning about
concurrent programs are not an easy job; in fact they are
very difficult. This is mainly because of the non-deterministic
behavior of their executions. The debugging difficulty was re-
ported by research [2] comparing debugging resources needed
for concurrent and sequential programs where debugging the
former was found to last, on average, (more than twice) longer
than debugging the latter. The non-deterministic behavior of
execution is caused by non-deterministic thread interleaving
at execution time. This makes reproducing a bug towards
analyzing and resolving it, in most cases, difficult. Much
research [3] has been carried out for smoothing bug repro-
ductions in concurrent programs.

Context switching [1] is a terminology describing (fine-
grained) interleaving of different threads. A relatively large
number of context switches in an execution of a concurrent
program complicates its debugging extremely. This is so as the

number of possible interactions between threads needing to be
reasoned about, in order to understand a trace (an execution),
becomes extremely huge by thread interleaving. Therefore, it
is quite helpful to produce an equivalent execution trace (of
a given one) that has less number of context switches. This
results in increasing the interleaving granularity. One main
source of increase in context switches is thinking sequentially
while coding concurrently. Few attempts [4] were done to pro-
duce techniques for reduction of context switches in executions
(traces) of concurrent programs.

This paper presents a new technique, Binary Trace Reduc-
tion (BinTrcRed), for automatic reductions of context switches
in traces (execution instances) of concurrent programs. This
technique (transformation) produces an equivalent trace to the
given one and hence the produced trace maintains bugs of the
original one. Therefore the resulted simplified trace can be
useful in the debugging process as it removes the burden of
reasoning about unnecessary fine-grained thread interactions.
The proposed technique has the form of a system of inference
rules. This has two advantages over related work. First the
system is relatively easy to understand and to apply as it is
simply structured. Secondly, the system naturally associates
each trace simplification process with a validity proof which
has the form a rule derivation in the system. This proof is
required by many applications like proof-carrying code [5].

BinTrcRed is based on the result of a connectivity analysis
that is proposed in this paper and that also has the form of
a system of inference rules. The connectivity analysis simply
analyzes a given trace towards complete information about the
number of context switches and trace-joins where switching
takes place. Then based on this information, a sequence of
binary replacements between segments (sequence) of state-
ments constituting the trace are performed by BinTrcRed to
reduce the number of context switches. BinTrcRed computes
a locally optimal simplification rather than a globally optimal
simplification as the problem was proved to be NP-hard [6].
Experiments show that in many cases the proposed solution is
close to the optimal one. Hence the upper bound of the ratio
between the proposed solution and the optimal is acceptable.

Two measures are used to verify the correctness and
efficiency of the proposed technique. The first measure is978-1-4799-4998-4/14/$31.00 c⃝2014IEEE



theoretical and provides a robust ground for BinTrcRed. This
is done via designing an accurate, yet simple, operational
semantics for the model langauge used in this paper. This
model is used to state and prove the correctness and efficiency
of BinTrcRed. More specifically, the semantics is used to prove
that any resulting trace by BinTrcRed is equivalent (having the
same effect on memory) to the input one and has a number
of context switches that is less than or equal to that in the
original trace. The other measure is experimental results that
were carried out to compare the performance of BinTrcRed
to a previous technique. Many parameters were used towards
a fair comparison. Experiments confirm that our technique is
faster and more effective than the previous technique.

Motivation

Fig. 1 presents a motivating example of the work proposed
in this paper. Assume a concurrent program P that includes
9 statements distributed between 2 threads. The upper part
of Fig. 1 presents a trace of executing this program. This
trace includes 4 groups of connected statements and 3 context
switches. For example statements s3, s4 and s5 are connected
and included in thread 2. After s5, a context switch happens to
thread 1 to execute the connected statements s6 and s7. First
of all, a robust analysis to accurately collect such connectivity
and switching information is required. Base on the connectivity
information if we replace the third and fourth groups of state-
ments we get the equivalent trace at the middle of the figure
with 2 context switches. Intuitively, the equivalency is due to
the replacement of unconnected groups of statements. Further
replacements produce the final equivalent trace at the bottom
of the figure with only 1 context switch. This paper aims
at formalizing a technique that does such replacements. The
technique is required also to associate each such transformation
with a correctness proof that is compact enough for the sake
of mobility.

Contributions

Contributions of this paper are the following:

1) A new operational approach to accurately define the
semantics of concurrent programs.

2) A connectivity analysis to calculate connectivity and
context switching information in traces of concurrent
programs.

3) A new technique to reduce context switches in traces
of concurrent programs.

Paper Outline

The outline of this paper is as follows. Section II presents
the used model of programming language and the proposed
techniques for connectivity analysis and trace transformation.
The semantics for the langauge constructs together with a
formalization for correctness and efficiency of proposed tech-
niques are shown in Section III. Section IV presents the
experimental results. Related and future research are reviewed
in Section V. Section VI concludes the paper.

II. CONNECTIVITY ANALYSIS AND TRACE
TRANSFORMATION

This section presents our model for a concurrent pro-
gramming language. The section also presents two techniques;
a connectivity analysis and a trace transformation reducing
number of context switches in concurrent programs (trace
simplification). The section also uses the language model to
introduce a formalization of the problem of trace simplifi-
cation (BinTrcRed). The language model includes commands
common to languages used to study similar problems. Fig. 2
presents the langauge model.

Some comments on the language model are in order. Two
types of stores are used in the model; global (typical element
denoted by g) and local (typical element denoted by l). A
global store is a memory location that is accessed by all threads
constituting a concurrent program. A local store is a memory
location that is private for a certain thread. A special global
store, tc, services as a counter for the trace. Global stores
are meant to facilitate the communication among a program
threads. According to the syntax of Fig. 2, each thread consists
of a sequence of statements. Due to the use of a global trace
counter, standing alone, each thread is deterministic.

Towards a rich, yet simple, langauge model the syntax of
our language includes the following statements:

• Share(l,g): copying the value of g into l. (Java’s read
command)

• localize(l,g): copying the value of l to g. (Java’s write
command)

• Require: meaning that its hosting thread requires a
lock. (Java’s lock command)

• Release: meaning that its hosting thread releases a
lock. (Java’s unlock command)

• Duplicate: meaning that its hosting thread duplicates
itself. (Java’s fork command)

• Initiate: meaning that the execution of its hosting
thread is initiated immediately after the completion
of another thread. (Java’s join command)

• Ready: meaning that its hosting thread is ready for
execution. (Java’s start command)

• End: marking the end of a thread. (Java’s exit com-
mand)

• Set1(g): setting the value of g to 1. (Java’s signal
command)

• Set0(g): waiting g to become 1 to set it to 0 again.
(Java’s wait command)

Definition 1: Let P = {T1} . . . {Tn} be a program and
suppose that Ti has ni statements (i.e. Ti = Si

1; . . . ;S
i
ni

).
Then

1) NP =
∑

i ni.
2) SP = {Si

j | 1 ≤ i ≤ n & 1 ≤ j ≤ ni}
3) A faithful map δP for the program P is a one-to-one

map
δP : {1, . . . , NP } → SP (1)



Fig. 1. A Motivating Example.

g ∈ G = Global variable names
l ∈ L = Thread local variable names

S ∈ Statements ::= Localize(l, g) | Share(l, g) | Require | Release | Duplicate | Initiate | Ready | End |
Set1(g) | Set0(g)

T ∈ Thread ::= S | T ;T ′ | ϵ.
P ∈ Programs ::= {T1} . . . {Tn}.

Fig. 2. The Language Model.

satisfying the following condition:
u, v ∈ {1, . . . , NP }, δP (u) = Si

q1 , and δP (v) =
Si
q2 =⇒ q1 < q2.

4) The trace, tδP , of δP is the sequence
δP (1); δP (2); . . . ; δP (NP ).

5) For u ∈ {1, . . . , NP }, suppose δP (u) = Si
q1 . Then

thδP : {1, . . . , NP } → {1, . . . , n}; s 7→ i. (2)

6) For u, v ∈ {1, . . . , NP },

diff(u, v) =
{

0, thδP (u) = thδP (v);
1, otherwise. (3)

7) CS(tδP ) =
∑NP−1

s=1 diff(s, s+ 1).

Definition 1 introduces concepts necessary to introduce
results of the paper and to formalize the problem of trace
simplification. Some comments on the definition above are
in order. The number and the set of all statements in all
threads of a concurrent program P are denoted by NP and SP ,
respectively. We assume that each program statement is super-
scribed with its thread number. Hence when necessary, a trace
is denoted by Si1

1 , . . . , S
iNP

NP
, where 1 ≤, i1, . . . , iNP ≤ n. A

faithful map (denoted by δP ) of a concurrent program, P , is a
map that orders the program statements in way that respects the
inner order of each thread. Hence each trace (denoted by tδP )
can be realized as the image of a faithful map δP . For a faithful
map δP (u), the map thδP calculates for a given position in the

trace, the ID of the thread that hosts the statement occupying
the position. Using the map thδP of a faithful map δP (u), the
map diff(u, v) decides wether locations number u and v of the
trace are hosting statements of the same thread. Therefore the
summation

∑NP−1
s=1 diff(s, s+1) is the number of the context

switches of the trace in hand.

Definition 2: For a trace Si1
1 , . . . , S

iNP

NP
of a program P =

{T1} . . . {Tn},

• CP
1 = {(S1, S2) | ∃1 ≤ i ≤ n, 1 ≤ j ≤ ni. S1 =

Si
j and S2 = Si

j+1}.

• CP
2 = {(Releasei,Requirei), (Duplicatei,Readi),

(Endi, Initiatei), (Set1i(g), Set0i′(g)) | 1 ≤ i, i′ ≤ n}.

• CP
3 = {(localizei(l, g), Sharej(l′, g)), (Sharei(l, g),

localizej(l′, g)), (Sharei(l, g), Sharej(l′, g)) | i ̸= j}.

• The connectivity set:

CP = CP
1 ∪ CP

2 ∪ CP
3 . (4)

• The map, connect, measuring connectivity of state-
ments in a trace is defined as following:

connect(S1, S2) =

{
1, (S1, S2) ∈ CP ;
0, otherwise. (5)

Definition 3: For a trace S1, . . . , SNP
of a program P =

{T1} . . . {Tn}, an annotated trace is a sequence:



(tr1)
Su : (0, 0, 0, 0)→ (u, u, thδP (u), thδP (u))

connect(δP (u− 1), δP (u)) = 0
(tr2)

Su : (s1, s2, t1, t2)→ (u, u, thδP (u), thδP (u))

connect(δP (u− 1), δP (u)) = 1
(tr3)

Su : (s1, s2, t1, t2)→ (s1, u, t1, thδP (u))

S1 : (s1, s2, t1, t2)→ (s′′1 , s
′′
2 , t

′′
1 , t

′′
2 )

S2, . . . , Sq : (s′′1 , s
′′
2 , t

′′
1 , t

′′
2 )→ (s′1, s

′
2, t

′
1, t

′
2) (tr4)

S1, S2, . . . , Sq : (s1, s2, t1, t2)→ (s′1, s
′
2, t

′
1, t

′
2)

Fig. 3. Rules for Connectivity Analysis.

(s01, s
0
2, t

0
1, t

0
2) S1 (s11, s

1
2, t

1
1, t

1
2) S2 (s21, s

2
2, t

2
1, t

2
2) . . . SNP

(sNP
1 , sNP

2 , tNP
1 , tNP

2 ), (6)

such that ∀u ∈ {1, . . . , NP }, su1 , s
u
2 ∈

{1, . . . , NP } and tu1 , t
u
2 ∈ {1, . . . , n}.

The conditions under which two statements of a concurrent
program are considered connected are presented in Defini-
tion 2. There are three types of pairs of connected statements
in a trace of a program P . The three types are the following.
Paris of contiguous statements of the same thread are grouped
in the set CP

1 . The set CP
2 collects pairs of contiguous concur-

rent statements of various threads accessing the same global
variable. Pairs of contiguous conflicting concurrent statements
are grouped in the set CP

3 . The set of all pairs of connected
statements is denoted by CP . The map connect(S1, S2) is
binary-valued and decides connectivity of S1 and S2 using the
set CP . To illustrate Definition 3, it is necessary to recall that
each trace consists of contiguous segments of statements such
that inside each segment contiguous statements are connected.
In an extreme case, each segment includes only one statement.
For a trace, Definition 3 introduces the concept of an annotated
trace which is a trace whose join-points are annotated with
connectivity information. For a join-point i, this information
is a quadrable (si1, s

i
2, t

i
1, t

i
2) where:

• the number of the first member in the segment includ-
ing the statement Si is denoted by si1,

• the number of the last member in the segment includ-
ing the statement Si is denoted by si2,

• the thread ID of the first member in the segment
including the statement Si is denoted by ti1, and

• the thread ID of the last member in the segment
including the statement Si is denoted by ti2.

Fig. 3 presents the connectivity analysis in the form of a
system of inference rules. For a given trace S1, . . . , SNP of
a program P = {T1} . . . {Tn}, the idea is to use the rules to
find a quadrable (s1, s2, t1, t2) such that

S1, S2, . . . , SNP
: (0, 0, 0, 0) → (s1, s2, t1, t2) (7)

is derivable in the system. If such derivation exists, then
an annotated trace (in the sense of Definition 3 above) can

be easily built from the derivation. The obtained annotated
trace includes all the necessary connectivity information for
embarking on reducing the number of context switches. The
precondition of (tr3), connect(δP (u− 1), δP (u)) = 1 requires
that the current statement is connected to its prior one. In this
case the current statement is attached to the segment of its prior
statement by letting the information in the next join-point to
be (s1, u, t1, thδP (u)).

It is quite important to note that although the proposed
connectivity analysis seems to cost O(2n), this is not the case
as the method does not actually ensure the connectivity for
all pairs of statements. However, the proposed method ensures
connectivity of (roughly) all join points of the input program.

Fig. 4 presents BinTrcRed, the main technique of the
paper for reducing number of context switches in concurrent
program. The technique has the form of a system of inference
rules. The technique builds on the results of the connectivity
analysis introduced above. The rule (base0) expresses the fact
that the transformation of a single statement is the statement
itself again. For the annotated trace

(su−1
1 , su−1

2 , tu−1
1 , tu−1

2 ) Su (su1 , s
u
2 , t

u
1 , t

u
2 ) Su+1

(su+1
1 , su+1

2 , tu+1
1 , tu+1

2 ), (8)

if tu−1
2 ̸= tu+1

1 , then switching the two statements Su and
Su+1 would not reduce the number of context switches. There-
fore as formalized in the rule (base1), the transformation of the
trace above is the same trace again. However if tu−1

2 = tu+1
1 ,

then switching the two statements Su and Su+1 would reduce
the number of context switches in the trace by one. This is
formalized in the rule (base2). For a longer annotated trace,
the rule (S) breaks the trace into two sub-traces and applies
the system on each sub-trace. Then the rule switches the two
obtained sub-traces only if their switching would reduce the
number of context switches by 1.

Theorem 1 states that the number of context switching
in a trace resulted from the transformation system above,
BinTrcRed, is less than or equal that number in the ordinal
trace. A straightforward structure induction on rules of Fig. 4
proves the theorem.

Theorem 1: Let P = {T1} . . . {Tn} be a program and
suppose that Ti has ni statements (i.e. Ti = Si

1; . . . ;S
i
ni

).
Suppose that δP is a trace for P with annotation:

(s01, s
0
2, t

0
1, t

0
2)δP (1)(s

1
1, s

1
2, t

1
1, t

1
2)δP (2)(s

2
1, s

2
2, t

2
1, t

2
2) . . .

δP (NP )(s
NP
1 , sNP

2 , tNP
1 , tNP

2 ), (9)

obtained using the analysis technique of Fig. 3. Suppose
that this trace is transformed using BinTrcRed (Fig. 4):

(s01, s
0
2, t

0
1, t

0
2)δP (1)(s

1
1, s

1
2, t

1
1, t

1
2) . . . δP (NP )

((sNP
1 , sNP

2 , tNP
1 , tNP

2 ) =⇒ (s0′1 , s
0′
2 , t

0′
1 , t

0′
2 )δ

′
P (1)

(s1′1 , s
1′
2 , t

1′
1 , t

1′
2 ) . . . δ

′
P (NP )(s

NP ′
1 , s

N ′
P

2 , t
N ′

P
1 , t

N ′
P

2 ).(10)

Then CS(tδ′
P
) ≤ CS(tδP ).



(base0)
(su−1

1 , su−1
2 , tu−1

1 , tu−1
2 ) Su (su1 , s

u
2 , t

u
1 , t

u
2 )

=⇒ (su−1
1 , su−1

2 , tu−1
1 , tu−1

2 ) Su (su1 , s
u
2 , t

u
1 , t

u
2 )

tu−1
2 ̸= tu+1

1
(base1)

(su−1
1 , su−1

2 , tu−1
1 , tu−1

2 ) Su (su1 , s
u
2 , t

u
1 , t

u
2 ) Su+1

(su+1
1 , su+1

2 , tu+1
1 , tu+1

2 ) =⇒ (su−1
1 , su−1

2 , tu−1
1 , tu−1

2 ) Su

(su1 , s
u
2 , t

u
1 , t

u
2 ) Su+1 (su+1

1 , su+1
2 , tu+1

1 , tu+1
2 )

tu−1
2 = tu+1

1
(base2)

(su−1
1 , su−1

2 , tu−1
1 , tu−1

2 ) Su (su1 , s
u
2 , t

u
1 , t

u
2 ) Su+1

(su+1
1 , su+1

2 , tu+1
1 , tu+1

2 ) =⇒ (su−1
1 , su−1

2 , tu−1
1 , tu−1

2 )

Su+1 (su−1
1 , su+1

2 , tu−1
1 , tu+1

2 ) Su (su1 , s
u
2 , t

u
1 , t

u
2 )

Nq > 2 v = ⌈µ/2⌉
(s01, s

0
2, t

0
1, t

0
2) S1 (s11, s

1
2, t

1
1, t

1
2) S2 . . . Sv (sv1 , s

v
2 , t

v
1 , t

v
2)

=⇒ (s0′1 , s0′2 , t0′1 , t0′2 ) S′
1 (s1′1 , s1′2 , t1′1 , t1′2 ) S′

2 . . .
S′
v (sv′1 , sv′2 , tv′1 , tv′2 )

(sv1 , s
v
2 , t

v
1 , t

v
2) Sv+1 (sv+1

1 , sv+1
2 , tv+1

1 , tv+1
2 ) Sv+2 . . .

Sµ(s
µ
1 , s

µ
2 , t

µ
1 , t

µ
2 ) =⇒ (sv′1 , sv′2 , tv′1 , tv′2 ) S′

v+1

(sv+1′
1 , sv+1′

2 , tv+1′
1 , tv+1′

2 ) S′
v+2 . . . S′

µ (sµ′1 , sµ′
2 , tµ′

1 , tµ′
2 )

(S)
(s01, s

0
2, t

0
1, t

0
2) S1 (s11, s

1
2, t

1
1, t

1
2) S2 . . . Sµ (sµ1 , s

µ
2 , t

µ
1 , t

µ
2 )

=⇒


(s0′1 , s0′2 , t0′1 , t0′2 ) S′

v+1 . . . S′
µ (s0′1 , sµ′2 , ,

t0′1 , tµ′2 ) S′
1 . . . S′

v (sv′1 , sv′2 , tv′1 , tv′2 ) if t02 = tµ′1 ;

(s01, s
0
2, t

0
1, t

0
2) S1 (s11, s

1
2, t

1
1, t

1
2) S2 . . .

Sµ (sµ1 , s
µ
2 , t

µ
1 , t

µ
2 ), otherwsie.

Fig. 4. BinTrcRed: Rules for Context Switching Reduction.

III. SEMANTICS BASED CORRECTNESS FORMALIZATION

This section presents a novel semantics for trace executions
in concurrent programming languages. The proposed semantics
is operational and consists of a set of states and a transition
relation between the states. A state is a triple (γ, L,W ), where
γ captures the contents of local and global variables, L is the
set of threads requiring looks at that point of execution, and W
is the set of global variables being watched by the command
Set0. Definition 4 formalizes the state definition.

Definition 4: • Local locations of thread i are Li =
{li1, li2, . . .}.

• A special global variable is the trace counter denoted
by tc.

• A variable state γ is a partial map from G ∪ ∪iLi to
the set of integers.

• A trace state is a triple (γ, L,W ); L denotes a list
of threads requiring a lock and W denotes the set
of global variables being watched by the statement
”Set0”.

The transition relation of the proposed operational seman-
tics, in the form of a system of inference rules, is shown in
Fig. 5. Some comments are in order. The rule (fs) simulates
the semantics of the statement Duplicatei. This is done via
adding statements of thread i into the set SP of all statements
of the program P after removing the already executed state-
ments from SP . The remaining trace is replaced with the new
trace corresponding to a faithful map for the new set of all
statements.

Theorem 2 formalizes the correctness of the transformation
technique, BinTrcRed, proposed in the previous section. This
is done using the operational semantics detailed above. The
proof of the theorem is built using structure induction on
transformation and semantics rules.

Theorem 2: Let P = {T1} . . . {Tn} be a program and
suppose that Ti has ni statements (i.e. Ti = Si

1; . . . ;S
i
ni

).
Suppose that δP is a trace for P with annotation:

(s01, s
0
2, t

0
1, t

0
2)δP (1)(s

1
1, s

1
2, t

1
1, t

1
2)δP (2)s

2
1, s

2
2, t

2
1, t

2
2) . . .

δP (NP )(s
NP
1 , sNP

2 , tNP
1 , tNP

2 ), (11)

obtained using the analysis technique of Fig. 3. Suppose
that this trace is transomed using BinTrcRed:

(s01, s
0
2, t

0
1, t

0
2)δP (1)(s

1
1, s

1
2, t

1
1, t

1
2) . . . δP (NP )

(sNP
1 , sNP

2 , tNP
1 , tNP

2 ) =⇒ (s0′1 , s
0′
2 , t

0′
1 , t

0′
2 )δ

′
P (1)

(s1′1 , s
1′
2 , t

1′
1 , t

1′
2 ) . . . δ

′
P (NP )(s

NP ′
1 , s

N ′
P

2 , t
N ′

P
1 , t

N ′
P

2 ).(12)

Suppose that for some (γ, L,W ),

tδP : (γ, L,W ) → (γ′, L′,W ′) (13)

and
tδ′

P
: (γ, L,W ) → (γ′′, L′′,W ′′). (14)

Then
(γ′, L′,W ′) = (γ′′, L′′,W ′′). (15)



(rs)
localizei(l, g) : (γ, L,W )→ (γ[li 7→ γ(g), tc 7→ tc+ 1], L,W )

(ws)
Sharei(l, g) : (γ, L,W )→ (γ[g 7→ γ(li), tc 7→ tc+ 1], L,W )

(ls)
Requirei : (γ, L,W )→ (γ[tc 7→ tc+ 1], [i | L],W )

(us)
Releasei(γ, L,W )→ (γ[tc 7→ tc+ 1], L \ i,W )

SP ← (SP \ {δP (1), δP (2), . . . , δP (tc+ 1)}) ∪ {Si
1, . . . , S

i
ni
}

δP ← a faithful map from δP ∪ {tc+ 2, . . . , NP , NP + 1, . . . , NP + ni} to SP

tδP ← the trace of the new δP
(fs)

Duplicatei : (γ, L,W )→ (γ[tc 7→ tc+ 1], L,W )

S ∈ {Initiatei,Readi,Endi}
(js)

S : (γ, L,W )→ (γ[tc 7→ tc+ 1], L,W )

(sgs)
Set1i(g) : (γ, L,W )→

{
(γ[g 7→ 1], L,W ), g /∈W ;
(γ, L,W ), otherwise.

(wts)
Set0i(g) : (γ, L,W )→ (γ, L,W ∪ {g})

∀1 ≤ u ≤ NP . tδP (u) : (γu, Lu,Wu)→ (γu+1, Lu+1,Wu+1)
(γ, L,W ) = (γ1, L1,W1)
(γ′, L′,W ′) = (γNP+1, LNP+1,WNP+1)

(trs)
tδP : (γ, L,W )→ (γ′, L′,W ′)

Fig. 5. The Transition Relation of The Proposed Semantics.

IV. IMPLEMENTATION AND EVALUATION

In order to investigate the effectiveness and efficiency
of BinTrcRed, several experiments were performed on an
implementation of our proposed technique. BinTrcRed was im-
plemented as a prototype tool for multithreaded Java programs.
The tool includes six phases. The first phase calculates the
number of context switches in the given trace of execution.
The second phase applies the connectivity analysis (Fig. 3)
to annotate each point of the given trace with connectivity
information. The third phase calculates the semantics (Fig. 5)
of the trace. The fourth phase uses the connectivity information
and the optimization rules (Fig. 4) to reduce the trace. The
fifth phase calculates the number of context switches in the
resulted trace. The last phase calculates the semantics of the
resulted trace. Calculating the number of context switches and
semantics before and after transformations makes BinTrcRed
transparent to the programmers.

Four common multithreaded Java benchmarks were the
subject of our experiments. The first benchmark, CTSP, is
a multithreaded solution for traveling salesman problem us-
ing a concurrent bound and branch algorithm. The second
benchmark, CPhilo, simulates the famous dinning philosophers
problem. The third benchmark, CWebDow, is a multithreaded
tool for downloading from servers and servers reflection. The
fourth benchmark, CMerge, is a multithreaded version of
the merge sort algorithm. The experiments were run on a
Windows 7 system whose processor is Intel(R)-Core2(TM)-
i5-CPU-(2.53GHz) and whose RAM is 4GB.

The experimental results are shown in Table I. For the

sake of accuracy, all information are averaged using results
of 100 runs. Parameters used to measure the performance are
the following.

1) LC: Numbers of lines in source programs.
2) TC: Thread counts.
3) SRb: The semantics running-time before transforma-

tion.
4) CR: Connectivity analysis running-time.
5) TR: Trace-transformation running-time.
6) SRa: The semantics running-time after transforma-

tion.
7) CSb: The number of context switches before trans-

formation.
8) CSa: The number of context switches after transfor-

mation.

The following comments about results worth mentioning.
It is noted that the trace-transformation run-time (TR) is
proportional to the original number of context switches. The
semantics run-time before transformation is typically more
than that after transformation. This is justified with the reduc-
tion in the number of context switches. The proposed algorithm
managed to reduce number of context switches by 85.3% on
average. This improves on the result of SimTrace [4] whose
average reduction percentage is 83.8%. Compared to SimTrace,
the binary nature of our proposed technique, BinTrcRed, makes
it more efficient for larger traces. All in all, compared to the
state of the art, these results prove the value and usefulness
(regarding efficiency and trace simplification) of the proposed
techniques. Two important advantages of our proposed tech-



TABLE I. EXPERIMENTAL RESULTS

LC TC SRb CR TR SRa CSb CSa

CPhilo 81 6 4.0 ms 5.0 ms 5.0 ms 3.0 ms 54 8
CMerge 519 18 25.0 ms 29.0 ms 32.0 ms 26.0 ms 541 93
CTSP 709 5 68.0 ms 78.0 ms 97.0 ms 54.0 ms 9617 1143
CWebDow 35175 3 43.0 ms 48.0 ms 42.0 ms 33.0 ms 144 21

nique over related ones is that our technique is supported with
the operational semantics and a correctness proof for each
trace transformation. The correctness proofs have the form
of inference rules derivations. This has many applications;
specially in the proof-carrying code area of research.

V. RELATED WORK

Towards finding bug cases in error traces, many algo-
rithms [7], [8] for checking software models have been pro-
posed. Most of these algorithms aim at building counterex-
amples in case of finding a bug and aim also at reducing
error traces. Required changes in thread scheduling to get an
error that is concurrency-based was achieved by an extended
version of delta debugging [9]. Assuming the existence of rely-
guarantee proofs for concerned properties, in [10] concurrent
programs were verified. Although the proposed technique in
the current paper relies on producing reductions in single
traces, the techniques mentioned above rely on comparing
related traces. Clearly, focusing on reducing a single trace is
more practical and efficient but creates a more complicated
scenario.

A static approach, SimTrace, to trace simplification is
proposed in [4]. The idea behind SimTrace is to use de-
pendence graphs to model events. Rather than introducing a
trace theorem for equivalence, in [4] it is proved that results
of SimTrace are sound. Hence in this approach re-execution
of program for the sake of validation is not required. The
use of a dependence relation [4] is a common practice in
treating trace optimizations. Checking violations of atomicity
was achieved in [11] via the introduction of concept of guarded
independence. To minimize the cardinality of the causality
relationship, the concept of sliced causality was introduced
in [12]. This was done by reducing the typical dependencies
among commands. Other research [13] considered all possible
valid executions that may result from a trace. This was done
using a model for maximal causality. The rule of dependence
relation is achieved in our proposed technique, BinTrcRed, by
the connectivity analysis which is simpler and more powerful
than the mentioned techniques due to simplicity of inference
rules as they were explained earlier.

Analyzers fixing bounds on context switches allowed by
multi-threaded programs dates back to the work in [14] which
also reduces context switches using sequential transformations.
Using Boolean programs, the context-bounded analysis prob-
lem was proved to be decidable in [15]. This was proved also
for Boolean programs equipped with heaps and for program
models with infinite memories in [16] and in [17], respectively.
The context-bounded analysis hence groups an unbounded
and large group of the concurrent programs semantics, but
somehow and to some extent impairs these semantics. This is
so as there is no control whatsoever on the length of executions
among context switches.

In [15], a theory of context-bounded analysis was devel-
oped for concurrent programs. Up to the bound, this theory
is both sound and complete. Results concerning sequential
pushdown systems [18], in particular their model checking,
were used to develop this theory. Many model checkers have
been proposed for concurrent programs [19]. The problem with
all these checkers is that they use a representation of the stacks
of threads. Non-termination may occur due to such stacks.
Other techniques [20] for verifying concurrent programs that
are automated have also been developed. The idea in these
techniques is to use an automatically established model of the
environment to separately check each process. This checking
model suffers from being imprecise and stackless. Therefore
such techniques are not complete, but sound.

There are many interesting directions for future work as
the following. Type systems (similar to that in [21], [22])
can be a tool for studying the theoretical foundations of
transformation techniques. Building semantics (denotational)
as in [23] and [24] for the mathematical checking of the
soundness of this paper’s transformation is a promising idea.

VI. CONCLUSION

This paper presented a novel technique for reducing the
number of context switching in concurrent programs. This has
the advantage of improving the quality of concurrent softwares
as their error debugging becomes much easier with less number
of context switching. To achieve this goal the paper presented
a new connectivity analysis that annotates the join-points of a
given trace with a connectivity information. Such information
determines the largest segment to which a statement in the
trace belongs. The proposed techniques have the form of
systems of inference rules. To formalize the efficiency and
correctness of proposed techniques, the paper also presented
a new operational semantics for concurrent programs. Results
of experiments confirming the effectiveness of the proposed
technique were also shown in the paper.
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