Elhady, M. A., A. A. A. Khalaf, M. M. Kamel, and P. A. Noshy, "Carvacrol ameliorates behavioral disturbances and DNA damage in the brain of rats exposed to propiconazole.", Neurotoxicology, vol. 70, pp. 19-25, 2019 01. Abstract

Propiconazole (PCZ) is an ergosterol biosynthesis inhibiting fungicide. Carvacrol (CAR) is a monoterpenoid phenol that has various beneficial health effects. The current research was designed to study the impact of PCZ on the behavior of rats and its ability to induce DNA damage in neurons as well as to clarify the ameliorative effect of CAR against these toxic impacts. Sixty Sprague-Dawley rats were randomly and equally divided into 4 experimental groups and treated daily by oral gavage for 2 months as follows: Group 1 (control); group 2 treated with PCZ (75 mg/kg); group 3 treated with CAR (50 mg/kg) and group 4 treated with both PCZ and CAR. Behavioral tests demonstrated that exposure to PCZ had a deleterious effect on psychological, motor and cognitive neural functions. Additionally, antioxidant enzyme activities, SOD and GSH-Px, were declined in brain tissue following exposure to PCZ. Moreover, comet assay revealed a high percent of DNA damage in the brain of rats exposed to PCZ. On the other hand, CAR administration ameliorated the harmful effects induced by PCZ through a protective mechanism that involved the improvement of neural functions and attenuation of oxidative stress and DNA damage.

Noshy, P. A., M. A. Elhady, A. A. A. Khalaf, M. M. Kamel, and E. I. Hassanen, "Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats.", Neurotoxicology, vol. 67, pp. 141-149, 2018 07. Abstract

Propiconazole (PCZ) is a triazole fungicide extensively used in agriculture. Carvacrol (CAR) is a naturally occurring phenolic monoterpene which has various biological and pharmacological effects. The present study was designed to investigate the neurobehavioral toxic effects of PCZ in albino rats and to evaluate the ameliorative role of CAR against such toxic effects. Sixty adult male rats were used in this investigation; they were randomly and equally divided into 4 groups: control group, PCZ group, CAR group and PCZ + CAR group. PCZ (75 mg/kg) and/or CAR (50 mg/kg) were administered daily by oral gavage for 8 weeks. Behavioral investigation clearly demonstrated the negative impact of PCZ on psychological, motor and cognitive brain functions. Exposure to PCZ also adversely affected the measured oxidative stress and lipid peroxidation parameters in brain tissue. A significant decrease in activity of acetylcholinesterase enzyme in neural tissue was also observed in PCZ-exposed rats. Histopathological examination of the cerebrum, cerebellum, and hippocampus showed various histopathological lesions after exposure to PCZ which were confirmed by immunohistochemical examination. On the other hand, co-administration of CAR ameliorated most of the undesirable effects of PCZ.