Export 4 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
KANDIL, E. S. R. A. A. A., R. H. Sayed, L. A. Ahmed, M. A. Abd El Fattah, and B. M. El-Sayeh, "Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson's Disease in Rats.", Molecular neurobiology, vol. 55, issue 5, pp. 4078-4089, 2018. Abstract

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.

Didamoony, M. A., A. M. Atwa, and L. A. Ahmed, "Modulatory effect of rupatadine on mesenchymal stem cell-derived exosomes in hepatic fibrosis in rats: A potential role for miR-200a.", Life sciences, vol. 324, pp. 121710, 2023. Abstract

AIMS: Mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a promising approach in regenerative medicine for management of different diseases. However, the maintenance of their efficacy after in vivo transplantation is still a major concern. The present investigation aimed to assess the modulatory effect of rupatadine (RUP) on MSC-EXOs in diethylnitrosamine (DEN)-induced liver fibrosis (LF), and to explore the possible underlying mechanisms.

MAIN METHODS: LF was induced in rats by i.p. injection of DEN (100 mg/kg) once per week for 6 successive weeks. Rats were then treated with RUP (4 mg/kg/day, p.o.) for 4 weeks with or without a single i.v. administration of MSC-EXOs. At the end of the experiment, animals were euthanized and serum and liver were separated for biochemical, and histological measurements.

KEY FINDINGS: The combined MSC-EXOs/RUP therapy provided an additional improvement towards inhibition of DEN-induced LF compared to MSC-EXOs group alone. These outcomes could be mediated through anti-oxidant, anti-inflammatory, anti-necroptotic, and anti-fibrotic effects of RUP which created a more favorable environment for MSC-EXOs homing, and action. This in turn would enhance more effectively miR-200a expression which reduced oxidative stress, inflammation, necroptosis, and subsequently fibrosis as revealed by turning off TGF-β1/α-SMA expression, and hedgehog axis.

SIGNIFICANCE: The present findings reveal that RUP enhanced the anti-fibrotic efficacy of MSC-EXOs when used as a combined therapy. This was revealed through attenuation of PAF/RIPK3/MLKL/HMGB1, and TGF-β1/hedgehog signaling pathways with a significant role for miR-200a.

Al-Massri, K. F., L. A. Ahmed, and H. S. El-Abhar, "Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway.", Behavioural brain research, vol. 360, pp. 303-311, 2019. Abstract

Peripheral neuropathy is a common adverse effect observed during the use of paclitaxel (PTX) as chemotherapy. The present investigation was directed to estimate the modulatory effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on pregabalin (PGB) treatment in PTX-induced peripheral neuropathy. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i.p) 4 times every other day. Rats were then treated with PGB (30 mg/kg/day, p.o.) for 21 days with or without a single intravenous administration of BM-MSCs. At the end of experiment, behavioral and motor abnormalities were assessed. Animals were then sacrificed for measurement of total antioxidant capacity (TAC), nerve growth factor (NGF), nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and active caspase-3 in the sciatic nerve. Moreover, protein expressions of Notch1 receptor, phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) were estimated. Finally, histological examinations were performed to assess severity of sciatic nerve damage and for estimation of BM-MSCs homing. Combined PGB/BM-MSCs therapy provided an additional improvement toward reducing PTX-induced oxidative stress, neuro-inflammation, and apoptotic markers. Interestingly, BM-MSCs therapy effectively prevented motor impairment observed by PGB treatment. Combined therapy also induced a significant increase in cell homing and prevented PTX-induced sciatic nerve damage in histological examination. The present study highlights a significant role for BM-MSCs in enhancing treatment potential of PGB and reducing its motor side effects when used as therapy in the management of peripheral neuropathy.

Al-Massri, K. F., L. A. Ahmed, and H. S. El-Abhar, "Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations.", Journal of tissue engineering and regenerative medicine, vol. 14, issue 1, pp. 108-122, 2020. Abstract

Chemotherapeutic drugs may disrupt the nervous system and cause chemotherapy-induced peripheral neuropathy (CIPN) as side effects. There are no completely successful medications for the prevention or treatment of CIPN. Many drugs such as tricyclic antidepressants and anticonvulsants have been used for symptomatic treatment of CIPN. Unfortunately, these drugs often give only partial relief or have dose-limiting side effects. Thus, the treatment of CIPN becomes a challenge because of failure to regenerate and repair the injured neurons. Mesenchymal stem cell (MSC) therapy is a new attractive approach for CIPN. Evidence has demonstrated that MSCs play important roles in reducing oxidative stress, neuroinflammation, and apoptosis, as well as mediating axon regeneration after nerve damage in several experimental studies and some clinical trials. We will briefly review the pathogenesis of CIPN, traditional therapies used and their drawbacks as well as therapeutic effects of MSCs, their related mechanisms, future challenges for their clinical application, and the additional benefit of their combination with pharmacological agents. MSCs-based therapies may provide a new therapeutic strategy for patients suffering from CIPN where further investigations are required for studying their exact mechanisms. Combined therapy with pharmacological agents can provide another promising option for enhancing MSC therapy success while limiting its adverse effects.