Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Elgebaly, S. A., C. Van Buren, R. Todd, R. Poston, R. K. Arafa, N. El-Khazragy, D. Kreutzer, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, et al., "Cyclocreatine Phosphate: A Novel Bioenergetic/Anti-Inflammatory Drug That Resuscitates Poorly Functioning Hearts and Protects against Development of Heart Failure.", Pharmaceuticals (Basel, Switzerland), vol. 16, issue 3, 2023. Abstract

Irreversible myocardial injury causes the exhaustion of cellular adenosine triphosphate (ATP) contributing to heart failure (HF). Cyclocreatine phosphate (CCrP) was shown to preserve myocardial ATP during ischemia and maintain cardiac function in various animal models of ischemia/reperfusion. We tested whether CCrP administered prophylactically/therapeutically prevents HF secondary to ischemic injury in an isoproterenol (ISO) rat model. Thirty-nine rats were allocated into five groups: control/saline, control/CCrP, ISO/saline (85 and 170 mg/kg/day s.c. for 2 consecutive days), and ISO/CCrP (0.8 g/kg/day i.p.) either administrated 24 h or 1 h before ISO administration (prophylactic regimen) or 1 h after the last ISO injection (therapeutic regimen) and then daily for 2 weeks. CCrP protected against ISO-induced CK-MB elevation and ECG/ST changes when administered prophylactically or therapeutically. CCrP administered prophylactically decreased heart weight, hs-TnI, TNF-α, TGF-β, and caspase-3, as well as increased EF%, eNOS, and connexin-43, and maintained physical activity. Histology indicated a marked decrease in cardiac remodeling (fibrin and collagen deposition) in the ISO/CCrP rats. Similarly, therapeutically administered CCrP showed normal EF% and physical activity, as well as normal serum levels of hs-TnI and BNP. In conclusion, the bioenergetic/anti-inflammatory CCrP is a promising safe drug against myocardial ischemic sequelae, including HF, promoting its clinical application to salvage poorly functioning hearts.

2021
Mohamed, S. S., N. F. Abdeltawab, W. Wadie, L. A. Ahmed, R. M. Ammar, S. Rabini, H. Abdel-Aziz, and M. T. Khayyal, "Effect of the standard herbal preparation, STW5, treatment on dysbiosis induced by dextran sodium sulfate in experimental colitis.", BMC complementary medicine and therapies, vol. 21, issue 1, pp. 168, 2021. Abstract

BACKGROUND: The standardized herbal preparation, STW 5, is effective clinically in functional gastrointestinal disorders and experimentally in ulcerative colitis (UC). The present study explores whether the beneficial effect of STW 5 involves influencing the intestinal microbiota.

METHODS: UC was induced in Wistar rats by feeding them 5% dextran sodium sulfate (DSS) in drinking water for 7 days. Rats were treated concurrently with STW 5 and sacrificed 24 h after last drug administration. Fecal samples were used to determine changes in the abundance of selected microbial phyla and genera using real-time PCR.

RESULTS: Induction of UC led to dysbiosis and changes in the gut microbiota. The changes included an increase in some genera of the Firmicutes, namely Enterococcus, and a decrease in others, namely Blautia, Clostridium, and Lactobacillus. DSS further induced a marked increase in the abundance of Bacteroidetes and Proteobacteria as well as in the relative abundance of Actinobacteria and its genus Bifidobacterium. Methanobrevibacter levels (phylum Euryarchaeota) were also increased. Microbial dysbiosis was associated with changes in various parameters of colonic inflammation. STW 5 effectively guarded against those changes and significantly affected the indices of edema and inflammation in the UC model. Changes in colon length, colon mass index, inflammatory and apoptotic markers, and histological changes induced by DSS were also prevented.

CONCLUSIONS: Dysbiosis plays a contributing role in the development of DSS-induced UC. Derangements in the microbial flora and associated inflammatory processes were largely prevented by STW 5, suggesting that this effect might contribute towards its beneficial usefulness in this condition.

Elgebaly, S. A., R. Todd, D. L. Kreutzer, R. Christenson, N. El-Khazragy, R. K. Arafa, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, and N. S. El Sayed, "Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure.", International journal of molecular sciences, vol. 22, issue 7, 2021. Abstract

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated (marker of cell damage) and (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects.

OBJECTIVES: To test the hypothesis that Nourin-associated and are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats".

METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline ( = 6), ISO/CCrP (0.8 g/kg/day) ( = 5), control/saline ( = 5), and control/CCrP (0.8 g/kg/day) ( = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day ( = 3) and a higher dose of 1.2 g/kg/day ( = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of and were measured in serum samples using quantitative real-time PCR (qPCR).

RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of and by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function.

CONCLUSIONS: Results suggest a role of Nourin-associated and in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.

2019
KANDIL, E. S. R. A. A. A., R. H. Sayed, L. A. Ahmed, M. A. Abd El Fattah, and B. M. El-Sayeh, "Hypoxia-inducible factor 1 alpha and nuclear-related receptor 1 as targets for neuroprotection by albendazole in a rat rotenone model of Parkinson's disease.", Clinical and experimental pharmacology & physiology, vol. 46, issue 12, pp. 1141-1150, 2019. Abstract

Hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear receptor related-1 (Nurr1) play pivotal roles in the development and survival of dopaminergic neurons, and deficiencies in these genes may be involved in Parkinson's disease (PD) pathogenesis. Recently, anthelminthic benzimidazoles were shown to promote HIF-1α transcription in vitro and were proposed to activate Nurr1 via their benzimidazole group. Therefore, the aim of this study was to explore the neuroprotective effects of albendazole (ABZ), an anthelminthic benzimidazole, in a rotenone model of Parkinson's disease (PD). Rotenone (1.5 mg/kg) was subcutaneously injected into rats every other day for a period of 21 days, resulting in the development of the essential features of PD. In addition to rotenone, ABZ (10 mg/kg) was administered orally starting from the 11th day. Treatment of rats with ABZ markedly mitigated rotenone-induced histological alterations in substantia nigra (SN), restored striatal dopamine (DA) level and motor functions and decreased the expression of α-synuclein (a disease marker protein). ABZ also enhanced expression of Hypoxia-inducible factor-1 alpha (HIF-1α) in the SN along with its downstream target, vascular endothelial growth factor, promoting neuronal survival. Similarly, ABZ augmented nuclear receptor related-1 (Nurr1) expression in the SN and increased transcriptional activation of Nurr1-controlled genes, which are essential for regulation of DA synthesis; additionally, expression of neurotoxic proinflammatory cytokines that induce neuronal death was suppressed. In conclusion, the present study suggests that ABZ exerts a neuroprotective effect in a rotenone-induced PD model associated with HIF-1α and Nurr1 activation and thus may be a viable candidate for treating PD.

2018
Attalla, D. M., L. A. Ahmed, H. F. Zaki, and M. M. Khattab, "Paradoxical effects of atorvastatin in isoproterenol-induced cardiotoxicity in rats: Role of oxidative stress and inflammation.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 104, pp. 542-549, 2018 Aug. Abstract

Atorvastatin (ATV) was previously shown to improve oxidative stress, inflammation and endothelial dysfunction in several experimental and clinical studies yet other studies have reported a pro-oxidant and damaging effect upon ATV administration. The present study was directed to investigate the effect of ATV pre- and post-treatment in isoproterenol (ISO)-induced cardiotoxicity in rats. Myocardial damage was induced by ISO (5 mg/kg/day, s.c.) for 1 week. ATV (10 mg/kg/day, p.o.) was given for 2 weeks starting 1 week before or after ISO administration. ISO-treated rats showed significant alterations in electrocardiographic recordings, serum creatine kinase-MB (CK-MB) level as well as oxidative stress and inflammatory biomarkers. Moreover, ISO administration resulted in endothelial dysfunction and significant histopathological damage. Pre-treatment with ATV aggravated ISO-induced cardiotoxicity. On the other hand, ATV post-treatment succeeded to significantly improve oxidative stress and inflammatory biomarkers, endothelial dysfunction and myocardial degeneration. These results suggest that ATV might produce a synergistic pro-oxidant effect if given before or along with another pro-oxidant (ISO). Thus, caution should be applied upon the use of statin as a prophylactic therapy for primary cardiovascular disease prevention.

KANDIL, E. S. R. A. A. A., R. H. Sayed, L. A. Ahmed, M. A. Abd El Fattah, and B. M. El-Sayeh, "Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson's Disease in Rats.", Molecular neurobiology, vol. 55, issue 5, pp. 4078-4089, 2018. Abstract

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.

2015
Mohamed, S. S., L. A. Ahmed, W. A. Attia, and M. M. Khattab, "Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats.", Biochemical pharmacology, vol. 98, issue 3, pp. 403-11, 2015 Dec 01. Abstract

Stem cell transplantation has emerged as a promising technique for regenerative medicine in cardiovascular therapeutics. However, the results have been less than optimal. The aim of the present study was to investigate whether nicorandil could offer an additional benefit over bone marrow-derived mesenchymal stem cell therapy in isoproterenol-induced myocardial damage and its progression to heart failure in rats. Isoproterenol was injected subcutaneously for 2 consecutive days at doses of 85 and 170 mg/kg/day, respectively. Nicorandil (3 mg/kg/day) was then given orally with or without a single intravenous bone marrow-derived mesenchymal stem cell administration. Electrocardiography and echocardiography were recorded 2 weeks after the beginning of treatment. Rats were then sacrificed and the ventricle was isolated for estimation of tumor necrosis factor-alpha, vascular endothelial growth factor and transforming growth factor-beta. Moreover, protein expressions of caspase-3, connexin-43 as well as endothelial and inducible nitric oxide synthases were evaluated. Finally, histological studies of myocardial fibrosis and blood vessel density were performed and cryosections were done for estimation cell homing. Combined nicorandil/bone marrow-derived mesenchymal stem cell therapy provided an additional improvement compared to cell therapy alone toward reducing isoproterenol-induced cardiac hypertrophy, fibrosis and inflammation. Notably, combined therapy induced significant increase in angiogenesis and cell homing and prevented isoproterenol-induced changes in contractility and apoptotic markers. In conclusion, combined nicorandil/bone marrow-derived mesenchymal stem cell therapy was superior to cell therapy alone toward preventing isoproterenol-induced heart failure in rats through creation of a supportive environment for mesenchymal stem cells.

Tourism