Publications

Export 23 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
S
Haggagy, M. G., L. A. Ahmed, Marwa Sharaky, M. M. ElHefnawi, and M. M. Omran, "SIRT1 as a potential key regulator for mediating apoptosis in oropharyngeal cancer using cyclophosphamide and all-trans retinoic acid.", Scientific reports, vol. 14, issue 1, pp. 41, 2024. Abstract

Although cyclophosphamide (CTX) has been used for recurrent or metastatic head and neck cancers, resistance is usually expected. Thus, we conducted this study to examine the effect of adding all-trans retinoic acid (ATRA) to CTX, to increase efficacy of CTX and reduce the risk of resistance developed. In this study, we investigated the combined effect of ATRA and CTX on the expression of apoptotic and angiogenesis markers in oropharyngeal carcinoma cell line (NO3), and the possible involved mechanisms. ATRA and CTX in combination significantly inhibited the proliferation of NO3 cells. Lower dose of CTX in combination with ATRA exhibited significant cytotoxicity than that of CTX when used alone, implying lower expected toxicity. Results showed that ATRA and CTX modulated oxidative stress; increased NOx and MDA, reduced GSH, and mRNA expression of Cox-2, SIRT1 and AMPK. Apoptosis was induced through elevating mRNA expressions of Bax and PAR-4 and suppressing that of Bcl-xl and Bcl-2, parallel with increased caspases 3 and 9 and decreased VEGF, endothelin-1 and CTGF levels. The primal action of the combined regimen on inflammatory signaling highlights its impact on cell death in NO3 cell line which was mediated by oxidative stress associated with apoptosis and suppression of angiogenesis.

R
Ahmed, L. A., S. A. EL-Maraghy, and S. M. Rizk, "Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats.", Scientific reports, vol. 5, pp. 14043, 2015 Sep 25. Abstract

This study is the first to investigate the role of the KATP channel in the possible protection mediated by nicorandil against cyclophosphamide-induced lung and testicular toxicity in rats. Animals received cyclophosphamide (150 mg/kg/day, i.p.) for 2 consecutive days and then were untreated for the following 5 days. Nicorandil (3 mg/kg/day, p.o.) was administered starting from the day of cyclophosphamide injection with or without glibenclamide (5 mg/kg/day, p.o.). Nicorandil administration significantly reduced the cyclophosphamide-induced deterioration of testicular function, as demonstrated by increases in the level of serum testosterone and the activities of the testicular 3β- hydroxysteroid, 17β-hydroxysteroid and sorbitol dehydrogenases. Furthermore, nicorandil significantly alleviated oxidative stress (as determined by lipid peroxides and reduced glutathione levels and total antioxidant capacity), as well as inflammatory markers (tumour necrosis factor-α and interleukin-1β), in bronchoalveolar lavage fluid and testicular tissue. Finally, the therapy decreased the levels of fibrogenic markers (transforming growth factor-β and hydroxyproline) and ameliorated the histological alterations (as assessed by lung fibrosis grading and testicular Johnsen scores). The co-administration of glibenclamide (a KATP channel blocker) blocked the protective effects of nicorandil. In conclusion, KATP channel activation plays an important role in the protective effect of nicorandil against cyclophosphamide-induced lung and testicular toxicity.

P
Al-Massri, K. F., L. A. Ahmed, and H. S. El-Abhar, "Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor.", Neurochemistry international, vol. 120, pp. 164-171, 2018 Nov. Abstract

Anticonvulsant drugs such as pregabalin (PGB) and lacosamide (LCM), exhibit potent analgesic effects in diabetic neuropathy; however, their possible role/mechanisms in paclitaxel (PTX)-induced peripheral neuropathy have not been elucidated, which is the aim of the present study. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i. p) on days 0, 2, 4 and 6. Forty eight hours after the last dose of PTX, rats were treated orally with 30 mg/kg/day of either PGB or LCM for 21 days. Both therapies improved thermal hyperalgesia and cold allodynia induced by PTX. Interestingly, LCM therapy showed no motor impairment that was observed upon using PGB, as demonstrated using rotarod test. Treatment with PGB or LCM restored the sciatic nerve content of the depleted total antioxidant capacity (TAC) and nerve growth factor (NGF), and lessened the elevated contents of nuclear factor kappa B p65 (NF-kB p65), tumor necrosis factor-α (TNF-α), and active caspase-3. On the molecular level, the drugs reduced the protein expression of Notch1 receptor, phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK), and the trajectory interleukin-6/phosphorylated janus kinase 2/phosphorylated signal transducer and activator of transcription 3 (IL-6/p-JAK2/p-STAT3). Therefore, the current study demonstrated a pivotal role for LCM in the management of PTX-induced peripheral neuropathy similar to PGB, but without motor adverse effects via the inhibition of oxidative stress, inflammation and apoptosis, as well as IL-6/JAK/STAT pathway and Notch1 receptor over-expression.

Ahmed, L. A., S. M. Rizk, and S. A. EL-Maraghy, "Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.", Biochemical pharmacology, vol. 138, pp. 193-204, 2017 Aug 15. Abstract

Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

Essam, R. M., L. A. Ahmed, R. M. Abdelsalam, and A. S. El-Khatib, "Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats: Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways.", Life sciences, vol. 222, pp. 245-254, 2019. Abstract

BACKGROUND: Phosphodiestrase (PDE) enzymes are suggested to play a leading role in fibrogenesis of liver where studies showed the possible implication of PDE 1 & 4 in liver injury proposing them as possible targets for treating liver fibrosis.

AIM: The present study was designed to investigate, for the first time, the possible therapeutic effects of selective inhibitors of PDE-1 (vinpocetine) and PDE-4 (roflumilast) in liver fibrosis induced by diethylnitrosamine (DEN) in rats.

MAIN METHODS: Rats were given DEN (100 mg/kg, i.p.) once weekly for 6 weeks to induce liver fibrosis. Vinpocetine (10 mg/kg/day) or roflumilast (0.5 mg/kg/day) was then orally administered for 2 weeks.

KEY FINDINGS: Vinpocetine significantly suppressed the contents of hydroxyproline, transforming growth factor-beta 1 (TGF-β1), nuclear factor-kappa B (NF-κB) whereas roflumilast normalized them. Moreover, tumor necrosis factor-alpha (TNF-α) content and protein expressions of toll-like receptor 4 (TLR4) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly decreased whereas cAMP response element binding (CREB) protein expression was significantly elevated by both treatments. Additionally, vinpocetine and roflumilast up-regulated the gene expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) receptor where roflumilast showed better results. PDE1 and 4 activities were inhibited by vinpocetine and roflumilast, respectively. The superior results offered by roflumilast could be related to the higher cAMP level obtained relative to vinpocetine.

SIGNIFICANCE: Our study manifested the up-regulation of PDE enzymes (1 & 4) in liver fibrosis and addressed the therapeutic role of vinpocetine and roflumilast as PDEIs through a cAMP-mediated TLR4 inflammatory and fibrogenic signaling pathways.

Rasheed, N. A. O., L. A. Ahmed, D. M. Abdallah, and B. M. El-Sayeh, "Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice", Scientific reports, vol. 8, pp. 7880, 1979 Oct, 2018. Abstract

It has been found that NADPH-dependent hydroxylation of dimethylaniline, aniline, p- and o-nitroanisol and lipid peroxidation is inhibited by the tyrosine-copper (II) complex (low molecular weight analog of superoxide dismutase), which is indicative of a possibility of superoxide radicals formation in these reactions. The inhibition of the above-mentioned reactions with Tyr2-Cu2+ is less pronounced or absent, if cumole hydroperoxide is used as cosubstrate instead of NADPH. Differences in the Tyr2-Cu2+ complex effects on the cumule hydroperoxide-dependent xenobiotics hydroxylation and lipid peroxidation catalyzed by various forms of cytochrome P-450, e. g. microsomal, soluble and incorporated into liposomes, have been found. The data obtained suggest that the efficiency of the inhibitory effect of the Tyr2-Cu2+ complex depends on the type of cosubstrates (NADPH, cumole hydroperoxide) and substrates used as well as on the form of cytochrome P-450.

N
Elgebaly, S. A., R. Todd, D. L. Kreutzer, R. Christenson, N. El-Khazragy, R. K. Arafa, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, and N. S. El Sayed, "Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure.", International journal of molecular sciences, vol. 22, issue 7, 2021. Abstract

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated (marker of cell damage) and (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects.

OBJECTIVES: To test the hypothesis that Nourin-associated and are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats".

METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline ( = 6), ISO/CCrP (0.8 g/kg/day) ( = 5), control/saline ( = 5), and control/CCrP (0.8 g/kg/day) ( = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day ( = 3) and a higher dose of 1.2 g/kg/day ( = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of and were measured in serum samples using quantitative real-time PCR (qPCR).

RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of and by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function.

CONCLUSIONS: Results suggest a role of Nourin-associated and in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.

Ahmed, L. A., and S. A. EL-Maraghy, "Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection.", Biochemical pharmacology, vol. 86, issue 9, pp. 1301-10, 2013 Nov 01. Abstract

Despite of its known cardiotoxicity, doxorubicin is still a highly effective anti-neoplastic agent in the treatment of several cancers. In the present study, the cardioprotective effect of nicorandil was investigated on hemodynamic alterations and mitochondrial dysfunction induced by cumulative administration of doxorubicin in rats. Doxorubicin was injected i.p. over 2 weeks to obtain a cumulative dose of 18 mg/kg. Nicorandil (3 mg/kg/day) was given orally with or without doxorubicin treatment. Heart rate and aortic blood flow were recorded 24 h after receiving the last dose of doxorubicin. Rats were then sacrificed and hearts were rapidly excised for estimation of caspase-3 activity, phosphocreatine and adenine nucleotides contents in addition to cytochrome c, Bcl2, Bax and caspase 3 expression. Moreover, mitochondrial oxidative phosphorylation capacity, creatine kinase activity and oxidative stress markers were measured together with the examination of DNA fragmentation and ultrastructural changes. Nicorandil was effective in alleviating the decrement of heart rate and aortic blood flow and the state of mitochondrial oxidative stress induced by doxorubicin cardiotoxicity. Nicorandil also preserved phosphocreatine and adenine nucleotides contents by restoring mitochondrial oxidative phosphorylation capacity and creatine kinase activity. Moreover, nicorandil provided a significant cardioprotection via inhibition of apoptotic signaling pathway, DNA fragmentation and mitochondrial ultrastructural changes. Interestingly, nicorandil did not interfere with cytotoxic effect of doxorubicin against the growth of solid Ehrlich carcinoma. In conclusion, nicorandil was effective against the development of doxorubicin-induced heart failure in rats as indicated by improvement of hemodynamic perturbations, mitochondrial dysfunction and ultrastructural changes without affecting its antitumor activity.

Rasheed, N. A. O., L. A. Ahmed, D. M. Abdallah, and B. M. El-Sayeh, "Nephro-toxic effects of intraperitoneally injected EGCG in diabetic mice: involvement of oxidative stress, inflammation and apoptosis", scientific reports, vol. 7, pp. 40617 , 2017.
M
KANDIL, E. S. R. A. A. A., R. H. Sayed, L. A. Ahmed, M. A. Abd El Fattah, and B. M. El-Sayeh, "Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson's Disease in Rats.", Molecular neurobiology, vol. 55, issue 5, pp. 4078-4089, 2018. Abstract

Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.

Al-Massri, K. F., L. A. Ahmed, and H. S. El-Abhar, "Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway.", Behavioural brain research, vol. 360, pp. 303-311, 2019. Abstract

Peripheral neuropathy is a common adverse effect observed during the use of paclitaxel (PTX) as chemotherapy. The present investigation was directed to estimate the modulatory effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on pregabalin (PGB) treatment in PTX-induced peripheral neuropathy. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i.p) 4 times every other day. Rats were then treated with PGB (30 mg/kg/day, p.o.) for 21 days with or without a single intravenous administration of BM-MSCs. At the end of experiment, behavioral and motor abnormalities were assessed. Animals were then sacrificed for measurement of total antioxidant capacity (TAC), nerve growth factor (NGF), nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and active caspase-3 in the sciatic nerve. Moreover, protein expressions of Notch1 receptor, phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) were estimated. Finally, histological examinations were performed to assess severity of sciatic nerve damage and for estimation of BM-MSCs homing. Combined PGB/BM-MSCs therapy provided an additional improvement toward reducing PTX-induced oxidative stress, neuro-inflammation, and apoptotic markers. Interestingly, BM-MSCs therapy effectively prevented motor impairment observed by PGB treatment. Combined therapy also induced a significant increase in cell homing and prevented PTX-induced sciatic nerve damage in histological examination. The present study highlights a significant role for BM-MSCs in enhancing treatment potential of PGB and reducing its motor side effects when used as therapy in the management of peripheral neuropathy.

Al-Massri, K. F., L. A. Ahmed, and H. S. El-Abhar, "Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations.", Journal of tissue engineering and regenerative medicine, vol. 14, issue 1, pp. 108-122, 2020. Abstract

Chemotherapeutic drugs may disrupt the nervous system and cause chemotherapy-induced peripheral neuropathy (CIPN) as side effects. There are no completely successful medications for the prevention or treatment of CIPN. Many drugs such as tricyclic antidepressants and anticonvulsants have been used for symptomatic treatment of CIPN. Unfortunately, these drugs often give only partial relief or have dose-limiting side effects. Thus, the treatment of CIPN becomes a challenge because of failure to regenerate and repair the injured neurons. Mesenchymal stem cell (MSC) therapy is a new attractive approach for CIPN. Evidence has demonstrated that MSCs play important roles in reducing oxidative stress, neuroinflammation, and apoptosis, as well as mediating axon regeneration after nerve damage in several experimental studies and some clinical trials. We will briefly review the pathogenesis of CIPN, traditional therapies used and their drawbacks as well as therapeutic effects of MSCs, their related mechanisms, future challenges for their clinical application, and the additional benefit of their combination with pharmacological agents. MSCs-based therapies may provide a new therapeutic strategy for patients suffering from CIPN where further investigations are required for studying their exact mechanisms. Combined therapy with pharmacological agents can provide another promising option for enhancing MSC therapy success while limiting its adverse effects.

H
KANDIL, E. S. R. A. A. A., R. H. Sayed, L. A. Ahmed, M. A. Abd El Fattah, and B. M. El-Sayeh, "Hypoxia-inducible factor 1 alpha and nuclear-related receptor 1 as targets for neuroprotection by albendazole in a rat rotenone model of Parkinson's disease.", Clinical and experimental pharmacology & physiology, vol. 46, issue 12, pp. 1141-1150, 2019. Abstract

Hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear receptor related-1 (Nurr1) play pivotal roles in the development and survival of dopaminergic neurons, and deficiencies in these genes may be involved in Parkinson's disease (PD) pathogenesis. Recently, anthelminthic benzimidazoles were shown to promote HIF-1α transcription in vitro and were proposed to activate Nurr1 via their benzimidazole group. Therefore, the aim of this study was to explore the neuroprotective effects of albendazole (ABZ), an anthelminthic benzimidazole, in a rotenone model of Parkinson's disease (PD). Rotenone (1.5 mg/kg) was subcutaneously injected into rats every other day for a period of 21 days, resulting in the development of the essential features of PD. In addition to rotenone, ABZ (10 mg/kg) was administered orally starting from the 11th day. Treatment of rats with ABZ markedly mitigated rotenone-induced histological alterations in substantia nigra (SN), restored striatal dopamine (DA) level and motor functions and decreased the expression of α-synuclein (a disease marker protein). ABZ also enhanced expression of Hypoxia-inducible factor-1 alpha (HIF-1α) in the SN along with its downstream target, vascular endothelial growth factor, promoting neuronal survival. Similarly, ABZ augmented nuclear receptor related-1 (Nurr1) expression in the SN and increased transcriptional activation of Nurr1-controlled genes, which are essential for regulation of DA synthesis; additionally, expression of neurotoxic proinflammatory cytokines that induce neuronal death was suppressed. In conclusion, the present study suggests that ABZ exerts a neuroprotective effect in a rotenone-induced PD model associated with HIF-1α and Nurr1 activation and thus may be a viable candidate for treating PD.

G
Ahmed, L. A., M. B. Salem, S. H. Seif El-Din, N. M. El-Lakkany, H. O. Ahmed, S. M. Nasr, O. A. Hammam, S. S. Botros, and S. Saleh, "Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: Role of LPS/TLR4 and autophagy pathways.", European journal of pharmacology, vol. 887, pp. 173461, 2020. Abstract

Gut microbiota is a crucial factor in pathogenesis of non-alcoholic steatohepatitis (NASH). Therefore, targeting the gut-liver axis might be a novel therapeutic approach to treat NASH. This study aimed to investigate the therapeutic effects of a probiotic (Lactobacillus reuteri) and metronidazole (MTZ) (an antibiotic against Bacteroidetes) either alone or in combination with metformin (MTF) in experimentally-induced NASH. NASH was induced by feeding rats high fat diet (HFD) for 12 weeks. MTF (150 mg/kg/day) or L. reuteri (2x10 colony forming unit/day) were given orally for 8 weeks; meanwhile, MTZ (15 mg/kg/day, p.o.) was administered for 1 week. Treatment with L. reuteri and MTZ in combination with MTF showed additional benefit compared to MTF alone concerning lipid profile, liver function, oxidative stress, inflammatory and autophagic markers. Furthermore, combined regimen succeeded to modulate acetate: propionate: butyrate ratios as well as Firmicutes and Bacteroidetes fecal contents with improvement of insulin resistance (IR). Yet, the administration of MTF alone failed to normalize Bacteriodetes and acetate contents which could be the reason for its moderate effect. In conclusion, gut microbiota modulation may be an attractive therapeutic avenue against NASH. More attention should be paid to deciphering the crosstalk mechanisms linking gut microbiota to non-alcoholic fatty liver disease (NAFLD) to identify new therapeutic targets for this disease.

E
El-Sawalhi, M. M., and L. A. Ahmed, "Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats.", Chemico-biological interactions, vol. 207, pp. 58-66, 2014 Jan 25. Abstract

Despite the clinical reports, few studies have focused on reducing the cardiotoxicity of cisplatin. In the present study, cardiotoxicity was examined after a single ip injection of cisplatin (7mg/kg) in rats. Apocynin was given in drinking water (600mg/L) for five successive days before and after cisplatin injection. At the end of the experiment, hemodynamic parameters were recorded, animals were sacrificed and serum creatine kinase-MB activity was determined. The whole ventricle was isolated for estimation of tumor necrosis factor-alpha (TNF-α) content, NADPH oxidase, myeloperoxidase and caspase-3 activities in addition to nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor kappa B (NF-κB) gene expressions. Furthermore, oxidative stress markers and antioxidant enzymes were measured in postmitochondrial and mitochondrial fractions. Mitochondrial membrane potential, nuclear DNA fragmentation and cardiomyocyte cross-sectional area were also evaluated. Apocynin was effective against cisplatin-induced decrement in heart rate and blood pressure. Moreover, pretreatment with apocynin notably ameliorated the state of oxidative stress, mitigated inflammation and preserved mitochondrial membrane potential. Apocynin provided also a significant cardioprotection as revealed by alleviating the overexpression of Nrf2, HO-1 and NF-κB, the elevation of caspase-3 activity, the prominent nuclear DNA fragmentation and the decreased cardiomyocyte cross-sectional area. This study highlights the potential role of apocynin in inhibiting cisplatin-induced hemodynamic changes, postmitochondrial and mitochondrial damage as indicated by improvement in the state of oxidative stress, inflammation and apoptosis.

Ahmed, L. A., H. A. Salem, A. S. Attia, and M. E. El-Sayed, "Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats.", The Journal of pharmacy and pharmacology, vol. 61, issue 9, pp. 1233-41, 2009 Sep. Abstract

OBJECTIVES: To investigate the possible modification of the cardioprotective effect of amlodipine when co-administered with quercetin in myocardial ischaemia/reperfusion-induced functional, metabolic and cellular alterations in rats.

METHODS: Oral doses of amlodipine (15 mg/kg) and quercetin (5 mg/kg), alone or in combination, were administered once daily for 1 week. Rats were then subjected to myocardial ischaemia/reperfusion (35(min)/10(min)). Heart rates and ventricular arrhythmias were recorded during ischaemia/reperfusion progress. At the end of reperfusion, activities of plasma creatine kinase (CK) and cardiac myeloperoxidase were determined. In addition, cardiac contents of lactate, ATP, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and total nitrate/nitrite (NO(x)) were estimated. Finally, histological examination was performed to visualize the protective cellular effects of different pretreatments.

KEY FINDINGS: Combined therapy provided significant improvement in the amlodipine effect toward preserving cardiac electrophysiologic functions, ATP and GSH contents as well as reducing the elevated plasma CK, cardiac TBARS and NO(x) contents.

CONCLUSION: Quercetin could add benefits to the cardioprotective effect of amlodipine against injury induced in the heart by ischaemia/reperfusion.

Seif El-Din, S. H., M. B. Salem, N. M. El-Lakkany, O. A. Hammam, S. M. Nasr, H. Okasha, L. A. Ahmed, S. Saleh, and S. S. Botros, "Early intervention with probiotics and metformin alleviates liver injury in NAFLD rats via targeting gut microbiota dysbiosis and p-AKT/mTOR/LC-3II pathways.", Human & experimental toxicology, vol. 40, issue 9, pp. 1496-1509, 2021. Abstract

Non-alcoholic fatty liver disease (NAFLD) constitutes a major health problem worldwide and intimately links with obesity and diabetes. This study aimed to explore the therapeutic impact of early treatment with metformin (MTF) alone or in combination with DSM 17938 () + metronidazole (MTZ) in male Sprague Dawley rats with high-fat diet (HFD)-induced NAFLD. Hepatic steatosis was induced by feeding rats HFD for 6 weeks. MTF (150 mg/kg/day) or (2 × 10 colony forming unit/day) were given orally for 4 weeks; meanwhile, MTZ (15 mg/kg/day, p.o.) was administered for 1 week. Administration of + MTZ in combination with MTF produced a superior effect concerning insulin resistance (IR), lipid profile, liver function, oxidative stress, inflammatory and autophagic markers than using each treatment alone. Besides, this combination resulted in disappearance of steatosis, inflammation and vacuolation within hepatic architecture. Moreover, it normalized short chain fatty acids (SCFAs) as well as faecal contents. In conclusion, early treatment with MTZ in combination with MTF could prevent NAFLD progression and liver injury through targeting gut dysbiosis, inflammation and autophagic pathways.

D
Ahmed, L. A., R. H. Abd El-Rhman, A. M. Gad, S. K. Hassaneen, and M. F. El-Yamany, "Dibenzazepine combats acute liver injury in rats via amendments of Notch signaling and activation of autophagy.", Naunyn-Schmiedeberg's archives of pharmacology, vol. 394, issue 2, pp. 337-348, 2021. Abstract

Paracetamol is a commonly used over-the-counter analgesic and antipyretic drug. Nevertheless, an overdose of paracetamol leads to hepatic necrosis that can be lethal. This study aimed to assess the potential hepatoprotective effects of dibenzazepine, a Notch inhibitor, against acute liver injury in rats via interfering with oxidative stress, inflammation, apoptosis, autophagy, and Notch signaling. Silymarin (200 mg/kg, p.o.) or dibenzazepine (2 mg/kg, i.p.) were administered to rats for 5 days before a single hepatotoxic dose of paracetamol (800 mg/kg, i.p.). Pretreatment with silymarin and dibenzazepine significantly mitigated oxidative stress, inflammatory and apoptotic markers induced by paracetamol hepatotoxicity where dibenzazepine showed greater repression of inflammation. Furthermore, dibenzazepine was found to be significantly more efficacious than silymarin in inhibiting Notch signaling as represented by expression of Notch-1 and Hes-1. A significantly greater response was also demonstrated with dibenzazepine pretreatment with regard to the expression of autophagic proteins, Beclin-1 and LC-3. The aforementioned biochemical results were confirmed by histopathological examination. Autophagy and Notch signaling seem to play a significant role in protection provided by dibenzazepine for paracetamol-induced hepatotoxicity in rats, which could explain its superior results relative to silymarin. Graphical abstract.

C
Elgebaly, S. A., C. Van Buren, R. Todd, R. Poston, R. K. Arafa, N. El-Khazragy, D. Kreutzer, M. A. Rabie, A. F. Mohamed, L. A. Ahmed, et al., "Cyclocreatine Phosphate: A Novel Bioenergetic/Anti-Inflammatory Drug That Resuscitates Poorly Functioning Hearts and Protects against Development of Heart Failure.", Pharmaceuticals (Basel, Switzerland), vol. 16, issue 3, 2023. Abstract

Irreversible myocardial injury causes the exhaustion of cellular adenosine triphosphate (ATP) contributing to heart failure (HF). Cyclocreatine phosphate (CCrP) was shown to preserve myocardial ATP during ischemia and maintain cardiac function in various animal models of ischemia/reperfusion. We tested whether CCrP administered prophylactically/therapeutically prevents HF secondary to ischemic injury in an isoproterenol (ISO) rat model. Thirty-nine rats were allocated into five groups: control/saline, control/CCrP, ISO/saline (85 and 170 mg/kg/day s.c. for 2 consecutive days), and ISO/CCrP (0.8 g/kg/day i.p.) either administrated 24 h or 1 h before ISO administration (prophylactic regimen) or 1 h after the last ISO injection (therapeutic regimen) and then daily for 2 weeks. CCrP protected against ISO-induced CK-MB elevation and ECG/ST changes when administered prophylactically or therapeutically. CCrP administered prophylactically decreased heart weight, hs-TnI, TNF-α, TGF-β, and caspase-3, as well as increased EF%, eNOS, and connexin-43, and maintained physical activity. Histology indicated a marked decrease in cardiac remodeling (fibrin and collagen deposition) in the ISO/CCrP rats. Similarly, therapeutically administered CCrP showed normal EF% and physical activity, as well as normal serum levels of hs-TnI and BNP. In conclusion, the bioenergetic/anti-inflammatory CCrP is a promising safe drug against myocardial ischemic sequelae, including HF, promoting its clinical application to salvage poorly functioning hearts.

B
Ahmed, L. A., F. Y. Abdou, A. A. Elfiky, E. A. Shaaban, and A. A. Ain-Shoka, "Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity:", Cardiovascular toxicology, vol. 21, issue 2, pp. 127-141, 2021. Abstract

Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.

Ahmed, L. A., A. F. Mohamed, E. A. Abd El-Haleim, and D. M. El-Tanbouly, "Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats.", Frontiers in pharmacology, vol. 12, pp. 651150, 2021. Abstract

Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in -Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.

Ahmed, L. A., O. F. Hassan, O. Galal, D. I. N. A. F. Mansour, and A. El-Khatib, "Beneficial effects of benfotiamine, a NADPH oxidase inhibitor, in isoproterenol-induced myocardial infarction in rats.", PloS one, vol. 15, issue 5, pp. e0232413, 2020. Abstract

BACKGROUND: Acute myocardial infarction (AMI) remains the most common cause of morbidity and mortality worldwide. The present study was directed to investigate the beneficial effects of benfotiamine pre- and post-treatments in isoproterenol (ISO)-induced MI in rats.

METHODS: Myocardial heart damage was induced by subcutaneous injection of ISO (150 mg/kg) once daily for two consecutive days. Benfotiamine (100 mg/kg/day) was given orally for two weeks before or after ISO treatment.

RESULTS: ISO administration revealed significant changes in electrocardiographic recordings, elevation of levels of cardiac enzymes; creatinine kinase (CK-MB) and troponin-I (cTn-I), and perturbation of markers of oxidative stress; nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and markers of inflammation; protein kinase C (PKC), nuclear factor-kappa B (NF-κB) and metalloproteinase-9 (MMP-9). The apoptotic markers (caspase-8 and p53) were also significantly elevated in ISO groups in addition to histological alterations. Groups treated with benfotiamine pre- and post-ISO administration showed significantly decreased cardiac enzymes levels and improved oxidative stress, inflammatory and apoptotic markers compared to the ISO groups.

CONCLUSION: The current study highlights the potential role of benfotiamine as a promising agent for prophylactic and therapeutic interventions in myocardial damage in several cardiovascular disorders via NADPH oxidase inhibition.

A
El-Sahar, A. E., N. A. Shiha, N. S. El Sayed, and L. A. Ahmed, "Alogliptin Attenuates Lipopolysaccharide-Induced Neuroinflammation in Mice Through Modulation of TLR4/MYD88/NF-κB and miRNA-155/SOCS-1 Signaling Pathways.", The international journal of neuropsychopharmacology, vol. 24, issue 2, pp. 158-169, 2021. Abstract

BACKGROUND: Endotoxin-induced neuroinflammation plays a crucial role in the pathogenesis and progression of various neurodegenerative diseases. A growing body of evidence supports that incretin-acting drugs possess various neuroprotective effects that can improve learning and memory impairments in Alzheimer's disease models. Thus, the present study aimed to investigate whether alogliptin, a dipeptidyl peptidase-4 inhibitor, has neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation and cognitive impairment in mice as well as the potential mechanisms underlying these effects.

METHODS: Mice were treated with alogliptin (20 mg/kg/d; p.o.) for 14 days, starting 1 day prior to intracerebroventricular LPS injection (8 μg/μL in 3 μL).

RESULTS: Alogliptin treatment alleviated LPS-induced cognitive impairment as assessed by Morris water maze and novel object recognition tests. Moreover, alogliptin reversed LPS-induced increases in toll-like receptor 4 and myeloid differentiation primary response 88 protein expression, nuclear factor-κB p65 content, and microRNA-155 gene expression. It also rescued LPS-induced decreases in suppressor of cytokine signaling gene expression, cyclic adenosine monophosphate (cAMP) content, and phosphorylated cAMP response element binding protein expression in the brain.

CONCLUSION: The present study sheds light on the potential neuroprotective effects of alogliptin against intracerebroventricular LPS-induced neuroinflammation and its associated memory impairment via inhibition of toll-like receptor 4/ myeloid differentiation primary response 88/ nuclear factor-κB signaling, modulation of microRNA-155/suppressor of cytokine signaling-1 expression, and enhancement of cAMP/phosphorylated cAMP response element binding protein signaling.