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Here, we present a remarkable methodology for unveiling subsurface structures with the potential 
to transform the exploration of mineral and ores resources, as well as the study of volcanic activity. 
By incorporating the Metaheuristic Bat algorithm (MBA) with the second horizontal gravity gradient 
(SHG) and employing variable window lengths, we aim to eliminate the regional effect in gravity data, 
thereby improving the precision of subsurface structure parameter estimation. Through rigorous 
evaluation on synthetic cases, we have demonstrated the robustness of our approach and its ability 
to handle diverse geological complexities and noise levels. Furthermore, our method has been applied 
to actual gravity data from three distinct locations: Canada, India, and Cuba, yielding excellent results 
that confirm the reliability and applicability of our methodology to real-world geological settings. 
We are confident that the use of variable window lengths in the SHG computation, coupled with the 
optimization of the global optimal solution via the Metaheuristic Bat Algorithm, can significantly 
contribute to the enhanced precision of subsurface structural parameter estimation. We hope our 
research will inspire others to explore this groundbreaking methodology and continue advancing the 
field of subsurface structure optimization.
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Gravity data serves as a powerful, non-invasive tool for exploring the Earth’s subsurface, revealing the distribution 
of various rock types, density variations, and hidden structures such as faults, cavities, buried channels, and 
changes in lithology1–5. Gravity surveys have a wide range of applications across multiple fields. They are 
instrumental in identifying potential exploration targets and locating mineral and ore deposits. Additionally, 
these surveys are essential for studying the structure of volcanoes and magma chambers, which helps in assessing 
volcanic hazards6. In the context of climate change, gravity surveys are used to measure the thickness of glaciers 
and ice sheets, providing critical data for understanding environmental shifts. Furthermore, they determine 
the Earth’s shape and its gravitational field, essential for accurate positioning systems like GPS. Finally, gravity 
surveys assist in locating vital groundwater resources, especially in arid regions7–13.

Unveiling the Earth’s subsurface through gravity data analysis presents a formidable scientific challenge. 
Diverse methods have been developed to interpret this data and accurately image hidden subsurface structures. 
These methods can be broadly categorized as follows; Traditional approaches utilize well-established 
mathematical techniques to analyze gravity data. Forward modeling involves creating a theoretical subsurface 
model and calculating its gravitational response to compare with measured data14. Inversion techniques directly 
infer subsurface properties from gravity data, posing significant mathematical challenges15. Additionally, these 
methods often approximate the subsurface with simplified geometric shapes, such as spheres, cylinders, or faults, 
to aid in analysis16. However, more complex models incorporating intricate geological features require additional 
data and computational power, providing a more accurate representation of subsurface17.

Non-Traditional approaches explore advanced algorithms and techniques to extract meaningful insight from 
gravity data. These methods often integrate artificial intelligence, machine learning, and bio-inspired algorithms 
such as the Bat Algorithm18. By addressing complex optimization challenges that the conventional techniques 
may find difficult, these approaches significantly enhance the interpretive power of gravity data analysis. Over 
the past decade, metaheuristic algorithms inspired by natural process have gained substantial attention. Among 
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these, the Bat algorithm, which mimics bats’ echolocation strategies, has proven particularly effective in solving 
intricate optimization problems19,20.

Optimization algorithms play crucial role in gravity data analysis by estimating the parameters of subsurface 
structures. These algorithms are generally classified into two categories: traditional and non-traditional 
(metaheuristic) methods. Traditional optimization techniques, such as Gradient Descent21, Newton-Raphson 
Method22, Simulated Annealing23, and Conjugate Gradient Method24, rely on mathematical rigor and 
gradient-based computations to locate optimal solutions. While they perform efficiently for straightforward 
and well-behaved problems, their effectiveness diminishes in the face of complex, multi-model landscapes 
typical of geophysical data. In contrast, non-traditional metaheuristic algorithms are inspired by natural and 
biological processes, offering significant advantages in exploring complex, high-dimensional search spaces. 
These algorithms, include the Hunger Games Search Algorithm25,26, Genetic Algorithms27, and Particle Swarm 
Optimization28, excel in addressing the challenges posed by irregular and intricate optimization problems 
encountered in gravity data analysis.

The Bat algorithm belongs to the class of non-traditional metaheuristic algorithms and is recognized for 
its dynamic and flexible nature in addressing complex optimization problems. Inspired by the echolocation 
behavior of bats, it introduces a novel strategy for global optimization and has demonstrated significant 
effectiveness in parameters estimation for subsurface structures19. Unlike traditional methods, the Bat algorithm 
offers distinct advantages, particularly its ability to balance exploration and exploitation phases efficiently. By 
dynamically adjusting its strategies during the early stages of optimization, it achieves faster convergence rate29. 
A key strength of the Bat Algorithm lies in its dual capability as both a global and local optimizer, making it well-
suited for handling multi-modal problems commonly encountered in geophysical studies30. Its adaptability and 
robustness across diverse geological environments enhance its reliability, especially when dealing with noisy and 
complex datasets. Despite its advantages, the Bat Algorithm is not without limitations. One notable drawback 
is its computational intensity, particularly when applied to large-scale datasets or highly intricate geological 
scenarios. Additionally, the algorithm’s performance is sensitive to parameter selection, necessitating careful 
tuning to achieve optimal results.

This paper presents a novel enhanced metaheuristic algorithm designed to optimize subsurface structure 
parameters using gravity data. A key innovative of this approach is the incorporation of second horizontal 
gradients (SHG), which effectively reduce the influence of regional data up to the first order, thereby improving 
the accuracy of the results. By integrating SHG with the metaheuristic Bat algorithm (MBA), we achieve precise 
estimations of subsurface structures. The subsurface features are modeled as simple geometric shapes, including 
spheres, horizontal cylinders, and vertical cylinders. This modeling strategy further minimizes the impact of 
regional data and enhances the precision of the outcomes. The proposed algorithm offers a transformative 
approach to subsurface exploration, promising significant advancements in the accurate delineation of subsurface 
features and contributing to the efficient development of subsurface resources.

The subsequent sections of this paper provide an in-depth exploration of our proposed methodology. The 
“Introduction” section offers a comprehensive overview of the significance of gravity data, with particular 
attention to the detailed insights provided by horizontal gradients. The “Methodology” section outlines the 
integration of gravity data, the second horizontal gradients, and the Bat algorithm to optimize subsurface 
structure parameters effectively. In the “Uncertainty Analysis” section, we evaluate the robustness and accuracy 
of the algorithm through validation against various theoretical models subjected to different noise levels. Finally, 
the “Results and Discussion” section highlights the algorithm’s performance using both synthetic and real-world 
field datasets, demonstrating its effectiveness and applicability in real-world scenarios.

The methodology
To achieve accurate results in interpreting gravity data for subsurface model parameters, it is crucial to employ a 
robust inversion algorithm with comprehensive capabilities. This ensures precise assessments of key parameters 
such as the depth, location, and shape of subsurface structures.

Forward modeling
The gravity measurement at a specific location (xj) along a survey profile (Fig. 1) can be expressed as31–33,

	 gtotal (xj) = gres (xj, z, m, xo, A, q) + greg (xj, xo)� (1)

	
gres (xj, z, m, xo, A, q) = A*zm

[
(xj − xo)2 + z2

]q , j = 1,2, 3, . . . , n� (2)

	 greg (xj, xo) = a (xj − xo) + b � (3)

where gtotal (xj) is the total measured gravity anomaly, gres (xj, z, m, xo, A, q) is the residual anomaly, 
greg (xj, xo) is the regional anomaly, (a, b) are constant values, xj and xo signify the measurement points, in 

meters, and the origin location of the target, z represents the depth, in meters, of the buried source, q is a 
dimensionless shape factor that describes the geometry of the buried mass, and A is the amplitude coefficient 
(mGal.m2q−m), which depend on both shape (q) and another factor (m), yielding g in milligals (mGal), γ is the 
universal gravitational constant is (6.67384*10−11) m3.kg−1.s-2, σ represents the density contrast (gm/cc), and r 
represents the body radius (m). Table 1 presents the different cases of subsurface bodies and their properties.

Scientific Reports |         (2025) 15:5000 2| https://doi.org/10.1038/s41598-025-88350-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Second horizontal gradient (SHG)
The second horizontal gradient (SHG) technique is an essential tool employed to enhance gravity data for the 
estimation of subsurface structure parameters. This method is particularly important for highlighting nuanced 
variations in the gravity field, a concept widely discussed in geophysical literature, which underscores its role 
in improving the resolution of subsurface features34. The use of variable window lengths in computing the SHG 
allows for adaptation to diverse geological conditions, which significantly improves the quality of data used for 
subsurface structures estimation. This approach effectively mitigates the influence of regional data and sharpens 
the resolution of nuanced geological attributes. Asfahani and Tlas35 have corroborated this approach in their 
studies, demonstrating its efficacy in improving data quality.

To remove the regional background, the SHG operator was applied to Eq. (1). For three observation points 
along the gravity profile (xj – 2s, xj, xj + 2s), the SHG (gxx (xj, s)) can be expressed as described by Essa and 
Elhussein36:

	
gxx (xj, s) = gtotal (xj + 2s) − 2gtotal (xj) + gtotal (xj − 2s)

4s2
� (4)

Case µ A q

Horizontal cylinder 1 2πγσ r2 1

Vertical cylinder 0 πγσ r2 0.5

Sphere 1 (4/3) πγσ r3 1.5

Table 1.  Definition of A, q, and µ parameters for the different simple model cases.

 

Fig. 1.  Illustration of three distinct geometric shape models. Panel (a) depicts a model of a vertically oriented 
cylinder model, Panel (b) presents a spherical model, and Panel (c) exhibits a horizontally positioned cylinder 
model.
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gxx (xj, s) = (

((
A*zm/

[
(xj − xo + 2s)2 + z2]q)

+ (a (xj − xo + 2s) + b)
)

. . .

− 2
((

A*zm/
[
(xj − xo)2 + z2]q)

+ (a (xj − xo) + b)
)

. . .

+
((

A*zm/
[
(xj − xo − 2s)2 + z2]q)

+ (a (xj − xo − 2s) + b)
)

. . .
)

/4s2� (5)

where s = 1, 2, 3, …, N separation units are window lengths and xj is the observation data point.
The optimized data acquired through the SHG, employing variable window lengths, serves as input for 

the Bat algorithm’s optimization process. This integration is crucial for refining the estimation of subsurface 
structure parameters.

Metaheuristic bat algorithm (MBA)
Yang37, introduced the Metaheuristic Bat algorithm (MBA), drawing inspiration from the echolocation actions 
of micro-bats. These bats use echolocation to navigate and hunt in the dark, emitting noisy sound pulses within 
a range of 8 to 10 kHz and listening to the echoes bouncing off objects nearby. The Bat algorithm utilizes this 
echolocation behavior as a basis for optimizing objective functions.

The Bat algorithm operates through three key stages, each critical for effective optimization. In the first stage, 
bats use echolocation to measure distances, establishing a baseline for navigating the search space. In the second 
stage, bats fly at a consistent frequency within a specified range [Qmin, Qmax], starting with an initial velocity (Vi) 
and position (Xi), to locate target objects. This stage mimics the exploratory phase where bats search for optimal 
solutions. In the third stage, the loudness (Li) and pulse emission rate (ri) dynamically adjust based on their 
proximity to the target, enhancing the exploitation phase where fine-tuning occurs. The frequency range [Qmin, 
Qmax] corresponds to the wavelength spectrum [Kmin, Kmax], which can be modified to alter the bats’ movement 
range, optimizing their search behavior as per Eqs. (6–8). The algorithm updates loudness and emission rates 
only if new solutions indicate improvement, signaling progress towards the optimal solution37 Eqs. (9, 10). This 
study investigates the impact of optimizing parameters such as frequency (Qi), loudness (Li), and pulse rate (ri) 
on the Bat Algorithm’s convergence rate, exploring various parameter ranges to identify optimal settings for 
enhanced performance.

Figure  2 illustrates the impact of each tunning parameter set (Qi, Li, and ri) on convergence behavior, 
highlighting the optimal set as (Q1 = [0, 5], L1 = 1.0, and r1 = 0.9). This configuration demonstrates the lowest 
Normalized Root Mean Square Error (NRMSE) for the objective function and achieves rapid convergence to the 
optimal solution. The pulse rate (ri) ranges from 0 to 1, representing no pulse emission to maximum emission, 

Fig. 2.  The convergence curves associated with the solution of optimal parameters.
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depending on target proximity. Initial loudness (Li) typically ranges between 1 and 2, decreasing as bats approach 
prey, while pulse emission rate increases. Initially, the initial speed (Vi) at position (Xi) is set to zero at the 
beginning of the Bat algorithm inversion process. Selecting an appropriate frequency or wavelength range is 
crucial, ideally aligning with the domain of awareness before narrowing it down. In this study, a frequency range 
of [0, 5] was identified as optimal after testing various values.

The mention-below equations described the relationship between algorithm parameters, as outlined by 
Yang37.

	 Qt
i = Qmin + (Qmax − Qmin) * β � (6)

	 V(t+1)
i = Vt

i +
(
Xt

i − Xbest
)
* Qt

i � (7)

	 X(t+1)
i = Xt

i + V(t+1)
i � (8)

	 L(t+1)
i = α Lt

i � (9)

	 rti = roi [1 − exp (−γ τ )]� (10)

where, Qi represents the frequency of the ith bat, which is updated in each iteration, β signifies a random vector 
sample from uniform distribution within the range [0, 1], and Xbest denotes currently the global best solution 
among all bat numbers, α and γ are constants, where 0 < α < 1 and γ > 0 and τ is the scaling factor.

The Bat algorithm generates new results from each chosen best solution in the local search using a random 
path, as shown below:

	 Xnew = Xold + ϵ Lt � (11)

where ε is a random number within [-1, 1], and Lt characterizes the average loudness of all bat numbers at the 
existing stage, t represents the number of iterations. In terms of accuracy and performance, the MBA outperforms 
most other algorithms. Essentially, if the frequency variations are replaced by a random parameter and Li=1 and 
ri=1 are set, the bat algorithm effectively becomes the regular particle swarm optimization (PSO)37.

A new code has been developed called the “Inversion MBA”, which offers a promising solution for identifying 
the optimal subsurface sources that accurately represent the real data. This code focuses on significant parameters 
such as depth, location, body shape, and amplitude coefficient (z, xo, q, A, m) to ensure an optimal solution is 
reached. The iterative process involves bats moving randomly within the search space, refining their solutions 
and determining the optimal positions based on solution evaluations. The best solution, characterized by the 
lowest misfit function value, is denoted as the best location (Xbest). In each iteration, the best solutions are 
compared, and the optimal solution is selected. The final best solution (Xbest) is picked after a specified number 
of iterations. The MBA inversion code has undergone thorough testing on various synthetic models before being 
applied to real datasets, ensuring accurate and reliable results.

In our novel approach to subsurface parameter estimation, we introduce an algorithm that seamlessly 
integrates second horizontal gradients (SHG) using varying window values. The process unfolds as follows: 
We initiate by generating objective functions based on gravity data sets. These functions serve as fitness criteria 
for evaluating the fit between observed and calculated gravity anomalies. Next, we meticulously apply SHG 
within distinct windows, ensuring robustness across anomalies. The SHG, represented by Eq.  (4), enhances 
the sensitivity of anomaly detection, capturing nuanced variations in the data. Each SHG anomaly becomes a 
potential target for optimization. Our secret weapon lies in the Bat algorithm (BA), inspired by the echolocation 
behavior of bats. The flowchart detailing this algorithm is visually represented in Fig. 3. Here’s how it works: 
We initialize virtual bats within the search space. Each bat corresponds to a potential solution. The parameters 
of the bat algorithm include position (Xi), variables standing for subsurface parameters (e.g., depth (z), origin 
(xo), amplitude coefficient (A), shape factors (q), and (m)). These are randomly selected from the search space. 
Frequencies (Qi), guiding the bat’s movement during optimization. Velocities (Vi), controlling exploration speed. 
Loudness (Li), influencing the bat’s behavior. Pulse rates (ri), introducing randomness.

The objective function (FObj), defined by Eq. (12), and quantifies the fit. It calculates the normal root-mean-
square error (NRMSE) between observed and calculated gravity anomalies. The bat with the least misfit becomes 
(Xbest). While the program hasn’t reached the maximum iterations: Modify frequencies (Eq.  6), and update 
velocities and positions (Eqs. 7, 8) to create fresh solutions, if a random number exceeds (ri) the algorithm selects 
a solution from the best set. Then Generates a local solution around it (Eq. 11). Accept the fresh solutions after 
comparing the current solution with the initial ones, adjust (ri) and (Li) (Eqs. 9, 10), rank the bats that stand for 
the solutions and decide the best solution (Xbest).

After applying BA to different gradient anomalies, we aggregate the results. Calculating their average 
significantly reduces uncertainty and minimizes parameter estimation errors. By leveraging the collective 
intelligence of BA and statistical averaging, our algorithm enhances accuracy in identifying subsurface features. 
The resulting parameter estimates exhibit improved reliability, making them invaluable for geophysical 
exploration.

	
Fobj = 100

Max (gobs) − Min (gobs)

√∑
N
j=1[gobs − gcal]

2

N
� (12)
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Fig. 3.  The flowchart outlines the procedure for the current MBA method.
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where N is the data points numbers, gobs represent the observed gravity and gcal signifies the calculated gravity. 
Initially, Eq. (12) is utilized to calculate misfits, and then the bat with the least misfit is picked as the Xbest.

Results and discussion
Synthetic datasets
The effectiveness of the proposed MBA approach for inverting gravity data under various challenging conditions 
was thoroughly evaluated. We created synthetic datasets with different complexities, including varying noise 
levels, background (regional) effects, and neighboring effects.

By analyzing and comparing the MBA’s performance against established models on these complex datasets, 
we conducted a comprehensive assessment of its ability to manage data imperfections. The robustness and 
reliability of the MBA were rigorously tested, both in terms of handling the original data and in the accuracy of 
the predicted datasets it generates.

Model 1: effect of various noise levels
This study investigates the effectiveness of the MBA scheme in recovering source parameters from simulated 
gravity anomaly data.

We first generated a theoretical gravity anomaly using a specific set of parameters (A = 140 mGal.km, 
z = 7 km, q = 1.0, xo = 0 km, and m = 1). This anomaly was calculated over a 101-kilometer profile length using 
Eq. (2) (Fig. 4a). The resulting data served as a baseline for the analysis. The MBA technique was then applied to 
optimize the inversion process and obtain the most accurate representation of the gravity response. This involved 
analyzing second horizontal gradient anomalies (SHG) for various values of parameter ‘s’ (s = 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10 km) (Fig. 4b). The optimization aimed to minimize the normalized root mean square error (NRMSE) 
of the objective function. Figure 4c depicts the evolution of the minimum NRMSE, signifying the best solution 
overall, across the total number of iterations. The plot shows that the NRMSE reaches its minimum value after 
approximately 50 iterations for all simulated “microbats” (individual elements within the MBA). Additionally, 
Fig. 4d illustrates the average NRMSE for each iteration, indicating convergence towards the optimal solution. 
The successful reduction in the NRMSE suggests the efficacy of the MBA method in retrieving the original 
parameters. This is supported by the evaluation of the generated gravity data. Table  2 displays the average 

Fig. 4.  First model, a horizontal cylinder, in case of noise-free conditions. Panel (a) exhibits the observed 
gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response (depicted 
by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies using 
varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.
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estimated parameters derived from various SHG anomalies. The parameters are as follows: A = 140 ± 0.94 mGal.
km, z = 7 ± 0.047 km, xo = 0 ± 0.04 km, q = 1 ± 0, m = 1 ± 0, these parameters collectively characterize a horizontal 
cylinder. The normalized root mean square error (NRMSE) was found to be 0.000.

To assess the robustness of the MBA technique, we introduced noise into the synthetic data at two levels: 5% 
and 15%.

At a 5% noise level (depicted in Fig. 5), the MBA successfully identified the optimal model parameters by 
minimizing the NRMSE of the goal function (Fig. 5a). The estimated parameters closely resembled the original 
values. Figure 5b displays the SHG anomalies for this case. Figure 5c and d visually represent the convergence 
process through minimum and mean NRMSE values.

Subsequently, Table 3 outlines the results of the estimated parameters post our algorithm’s application to the 
model with a 5% noise level. The estimated parameters are as follows: A = 145 ± 4.55 mGal.km, z = 6.9 ± 0.14 km, 
xo = 0 ± 0.35 km, q = 1 ± 0, m = 1 ± 0. The NRMSE) was determined to be 0.00015.

Fig. 5.  First model, a horizontal cylinder, in case of a 5% noise level condition. Panel (a) exhibits the observed 
gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response (depicted 
by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies using 
varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.
km) 140 10–

500 140 140 138 140 140 140 142 140 140 140 140 ± 0.94

0.000

z (km) 7 1–10 7 7 7 7.1 7 7 6.9 7 7 7 7 ± 0.047

xo (km) 0 -10–
10 0 0 0 0.1 0 0 0 -0.1 0 0 0 ± 0.04

q 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

m 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

Table 2.  Results of parameter estimation for the noise-free horizontal cylinder synthetic model.
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Similarly, at a 15% noise level (depicted in Fig. 6), the MBA approach yielded reasonable results (Fig. 6a). 
The estimated parameters again showed good agreement with the originals. The SHG anomalies are displayed in 
Fig. 6b, and convergence plots (Fig. 6c and d) support these findings. Table 4 presents the results of the estimated 
parameters after applying our algorithm to the model with a 15% noise level. The parameters are: A = 130 ± 5.77 
mGal.km, z = 7.2 ± 0.23 km, xo = 1 ± 1.05 km, q = 1 ± 0, m = 1 ± 0. The NRMSE is 0.00019. Figure 7 shows the 
relative errors for each model parameter, showcasing the robustness and accuracy of our algorithm across under 
varying noise levels. The results highlight the algorithm’s ability to maintain reliable performance, even in the 
presence of substantial noise. These findings emphasize the effectiveness of the MBA technique in accurately 
estimating subsurface parameters, further validating its reliability and robustness in noisy environments.

Model 2: effect of regional anomaly
This section evaluates the MBA performance under more challenging conditions. We introduced a more 
complex scenario by combining: A numerical model with specific parameters (A = 600 mGal.km², z = 2  km, 

Fig. 6.  First model, a horizontal cylinder, in case of a 15% noise level condition. Panel (a) exhibits the observed 
gravity anomaly profile (illustrated by black circles) along-side the computed optimal gravity response 
(depicted by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies 
using varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.
km) 140 10–

500 138 140 142 144 148 146 148 150 152 142 145 ± 4.55

0.00015

z (km) 7 1–10 6.8 7 6.9 7 7 6.8 7.1 7 6.7 6.7 6.9 ± 0.14

xo (km) 0 -10–
10 0.2 0.6 0 -0.2 0.4 -0.4 0 0 -0.6 0 0 ± 0.35

q 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

m 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

Table 3.  Results of parameter estimation for the horizontal cylinder synthetic model with a 5% noise level.
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q = 1.5, xo = 0 km, and m = 1) collectively characterize a sphere body calculated using Eq. (1), a linear regional 
anomaly (1.5*(xj - xo) + 25), and 10% random noise added to the data (Figs. 8 and 9).

Despite the added complexity, the MBA technique was employed to estimate the original spherical parameters 
from the SHG anomalies for various ‘s’ values (s = 1 to 10 km) (Fig. 8b). The results were encouraging. The MBA 
successfully recovered parameters close to the originals: A = 600 ± 9.43 mGal.km², z = 1.9 ± 0.13 km, q = 1.5 ± 0.05, 
xo = 0 ± 0 km, and m = 1 ± 0, with a normalized root mean square error (NRMSE) of 0.00027 (Table 5). This 
indicates a good match between the calculated and the anomaly (Fig. 8a). Similar to previous tests, Fig. 8c shows 
the optimization process. It depicts the evolution of the minimum NRMSE, representing the best overall solution, 
across the total number of iterations. As expected, the NRMSE gradually decreases, reaching its minimum after 
approximately 50 iterations for all “microbats” within the MBA. Figure 8d complements this by illustrating the 
average NRMSE for each iteration, further indicating convergence towards the optimal solution.

After introducing a 10% noise level, the MBA was once again utilized to derive the spherical parameters. 
The resulting estimates were as follows: A = 595 ± 30.46 mGal.km², z = 2 ± 0.28  km, q = 1.4 ± 0.13, xo = 0 ± 
2.31 km, and m = 1 ± 0.12, accompanied with a NRMSE of 0.00014 (Table 6). This suggests a strong agreement 
between the computed and the noisy anomaly (Fig. 9a). The SHG anomalies are displayed in Fig. 9b. In line 
with the original investigation, Fig. 9c portrays the optimization process, illustrating the diminishing NRMSE 
over iterations and converging towards the optimal solution. As anticipated the NRMSE gradually decreases 
achieving its minimum after roughly 50 iterations across all MBA “microbats”. Figure 9d complements this by 

Fig. 7.  The robustness and accuracy of the parameter estimations for the first model under varying noise 
levels.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.
km) 140 10–

500 130 125 135 140 130 120 125 130 130 135 130 ± 5.77

0.00019

z (km) 7 1–10 7.1 6.8 7.4 7.2 7.1 7.4 6.9 7.5 7.2 7.4 7.2 ± 0.23

xo (km) 0 -10–
10 0 1 2 1 -1 2 0 2 1 2 1 ± 1.05

q 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

m 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

Table 4.  Results of parameter estimation for the horizontal cylinder synthetic model with a 15% noise level.
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illustrating the average NRMSE for each iteration, further indicating convergence towards the optimal solution. 
These findings demonstrate the robustness of the MBA method, even when dealing with increased noise levels. 
Figure  10 presents the relative errors for each model parameter, demonstrating the algorithm’s capability to 
accurately estimate subsurface parameters even in the presence of regional anomalies and noise. This highlights 
the robustness and precision of the proposed approach in challenging conditions.

Model 3: Effect of neighboring structures
To evaluate the stability and efficacy of the proposed algorithm, two scenarios were studied. The first scenario 
involved two separated vertical cylinder models. The first model consisted of a body with A1 = 230 mGal.km, 
z1 = 5 km, q1 = 0.5, xo1 = -20 km, and m1 = 0, while the second model consisted of a body with A2 = 200 mGal.
km, z2 = 3 km, q2 = 0.5, xo2 = 25 km, and m2 = 0, these parameters collectively characterize a vertical cylinder 
(Fig. 11a) were computed using Eq. (2) and contaminated with 10% random noise (Fig. 12a). The MBA method 
was used to estimate the model parameters for all SHG anomalies (Figs. 11b and 12b). Table 7, the results show 
that the estimated parameters for the first body are A1 = 225 ± 10.80 mGal.km, z1 = 5.2 ± 0.30 km, q1 = 0.5 ± 0.03, 
xo1 = -20 ± 1.33 km, and m1 = 0 ± 0, the second body are A2 = 205 ± 4.71 mGal.km, z2 = 3 ± 0.18 km, q2 = 0.5 ± 0.05, 
xo2 = 25 ± 0.94 km, and m2 = 0 ± 0, respectively. The NRMSE-misfit is 0.0000023, and the predicted and original 
anomalies comparison is displayed in Fig. 11a. Similarly, Fig. 11c shows the optimization process. The minimum 
NRMSE, representing the best solution overall, decreases steadily across iterations. This indicates convergence 
towards the optimal parameters, achieved after approximately 160 iterations for all “microbats” within the MBA. 
Figure 11d complements this by illustrating the average NRMSE per iteration.

With the introduction of a 10% noise level, the estimated parameters for the first body (A1 = 240 ± 18.26 mGal.
km, z1 = 4.8 ± 0.44 km, q1 = 0.5 ± 0.06, xo1 = -19 ± 2.11 km, and m1 = 0 ± 0) and the second body (A2 = 200 ± 6.67 
mGal.km, z2 = 3.4 ± 0.15  km, q2 = 0.5 ± 0.06, xo2 = 25 ± 1.05  km, and m2 = 0 ± 0) are presented in Table  8. The 
resulting NRMSE-misfit of 0.0000032 indicates a good match between the predicted and original anomalies, 
despite the additional noise (Fig. 12a). The optimization process depicted in Fig. 12c, demonstrates a consistent 
decrease in the minimum NRMSE across iterations, signifying convergence towards the optimal parameters after 
approximately 260 iterations for all “microbats” within the MBA. Figure 12d supplements this by illustrating the 
average NRMSE per iteration, further confirming the convergence towards the optimal solution.

Fig. 8.  Second model, a sphere, with a first-order regional and in case of noise-free condition. Panel (a) 
exhibits the observed gravity anomaly profile (illustrated by black circles) alongside the computed optimal 
gravity response (depicted by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the 
SHG anomalies using varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution 
(FObj) of the bats relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.
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Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.
km2) 600 300–

800 580 570 640 630 585 615 630 575 565 560 595 ± 30.46

0.00014

z (km) 2 1–10 1.8 1.9 2.4 2.3 1.8 1.6 2 2.3 1.7 2.2 2 ± 0.28

xo (km) 0 -10–
10 -3 2 1 -3 0 4 -1 2 0 -2 0 ± 2.31

q 1.5 0–2 1.3 1.4 1.35 1.55 1.3 1.2 1.5 1.65 1.35 1.4 1.4 ± 0.13

m 1 0–2 0.8 1.2 1.1 1 0.9 1.1 1 0.9 1 1 1 ± 0.12

Table 6.  Results of parameter estimation for the spherical synthetic model with a first order regional with a 
10% noise level.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.
km2) 600 300–

800 600 600 590 610 590 600 620 600 590 600 600 ± 9.43

0.00027

z (km) 2 1–10 1.7 1.8 2 1.9 2.1 2 2 1.8 1.9 1.8 1.9 ± 0.13

xo (km) 0 -10–
10 0 0 0 0 0 0 0 0 0 0 0 ± 0

q 1.5 0–2 1.5 1.4 1.6 1.5 1.5 1.45 1.5 1.55 1.5 1.5 1.5 ± 0.05

m 1 0–2 1 1 1 1 1 1 1 1 1 1 1 ± 0

Table 5.  Results of parameter estimation for the spherical synthetic model with a first order regional in the 
absence of noise.

 

Fig. 9.  Second model, a sphere, with a first-order regional and in case of a 10% noise level condition. Panel 
(a) exhibits the observed gravity anomaly profile (illustrated by black circles) alongside the computed optimal 
gravity response (depicted by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the 
SHG anomalies using varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution 
(FObj) of the bats relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.
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In the second scenario, the structures were repositioned closer together. The first model parameters were 
A1 = 230 mGal.km, z1 = 5 km, q1 = 0.5, xo1 = -10 km, and m1 = 0, while the second model parameters were A2 = 200 
mGal.km, z2 = 3 km, q2 = 0.5, xo2 = 10 km, and m2 = 0 (Fig. 13a). Computing using Eq. (2) and contaminated 
with 10% random noise (Fig. 14a). The MBA method was used to estimate the model parameters for all SHG 
anomalies (Figs. 13b and 14b). Table 9, the results show that the estimated parameters for the first body are 
A1 = 235 ± 11.55 mGal.km, z1 = 5.1 ± 0.33 km, q1 = 0.5 ± 0.02, xo1 = -10 ± 1.56 km, and m1 = 0.011 ± 0.01, the second 
body are A2 = 195 ± 8.82 mGal.km, z2 = 2.9 ± 0.18  km, q2 = 0.5 ± 0.03, xo2 = 10 ± 1.16  km, and m2 = 0.01 ± 0.01, 
respectively. The NRMSE-misfit is 0.00000215, and the predicted and original anomalies comparison is displayed 
in Fig. 13a. Similarly, Fig. 13b and c shows the SHG anomalies and the optimization process. The minimum 

Fig. 11.  Third model, two separated structures, in case of noise-free conditions. Panel (a) exhibits the observed 
gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response (depicted 
by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies using 
varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.

 

Fig. 10.  The robustness and accuracy of the parameter estimations for the second model, in case of existence 
of regional anomaly without and with 10% random noise.
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NRMSE, representing the best solution overall, decreases steadily across iterations. This indicates convergence 
towards the optimal parameters, achieved after approximately 150 iterations for all “microbats” within the MBA. 
Figure 13d complements this by illustrating the average NRMSE per iteration.

With the introduction of a 10% noise level, the estimated parameters for the first body (A1 = 225 ± 11.547 
mGal.km, z1 = 5.3 ± 0.094 km, q1 = 0.49 ± 0.022, xo1 = -11 ± 1.247 km, and m1 = 0.01 ± 0.008) and the second body 
(A2 = 210 ± 8.819 mGal.km, z2 = 2.8 ± 0.183 km, q2 = 0.5 ± 0.025, xo2 = 10 ± 1.633 km, and m2 = 0.005 ± 0.005) are 
presented in Table 10. The resulting NRMSE-misfit of 0.0000116 indicates a good match between the predicted 
and original anomalies, despite the additional noise (Fig. 14a). The optimization process depicted in Fig. 14c, 
demonstrates a consistent decrease in the minimum NRMSE across iterations, signifying convergence towards 
the optimal parameters after approximately 80 iterations for all “microbats” within the MBA. Figure  14d 
supplements this by illustrating the average NRMSE per iteration, further confirming the convergence towards 
the optimal solution. Figure 15 highlights the relative errors for each model parameter, affirming the stability 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A1 (mGal.km) 230 100–
600 230 210 215 235 235 225 230 240 220 210 225 ± 10.80

0.0000023

z1 (km) 5 1–10 5.4 5.6 4.8 5 5.2 5 4.8 5.2 5.4 5.6 5.2 ± 0.30

xo1 (km) -20 -30–
30 -20 -18 -20 -20 -23 -19 -21 -19 -20 -20 -20 ± 1.33

q1 0.5 0–2 0.5 0.55 0.5 0.5 0.5 0.55 0.45 0.5 0.5 0.45 0.5 ± 0.03

m1 0 0–2 0 0 0 0 0 0 0 0 0 0 0 ± 0

A2 (mGal.km) 200 100–
600 205 200 210 200 200 205 205 215 205 205 205 ± 4.71

z2 (km) 3 1–10 3 2.9 2.8 3 3.2 3 2.9 2.8 3.4 3 3 ± 0.18

xo2 (km) 25 -30–
30 24 25 24 26 24 25 25 26 24 27 25 ± 1.05

q2 0.5 0–2 0.5 0.5 0.4 0.45 0.5 0.6 0.55 0.5 0.5 0.5 0.5 ± 0.05

m2 0 0–2 0 0 0 0 0 0 0 0 0 0 0 ± 0

Table 7.  Results of parameter estimation for the two separated synthetic model under a noise-free condition.

 

Fig. 12.  Third model, two separated structures, in case of a 10% noise level condition. Panel (a) exhibits the 
observed gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response 
(depicted by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies 
using varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.
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and accuracy of the algorithm in handling complex geological conditions, even with closely spaced structures 
and noise.

Uncertainty analysis
To evaluate the robustness and accuracy of our algorithm, extensive testing was conducted using three different 
theoretical models before applying it to real-world field datasets. This comprehensive approach enabled us to 
assess the algorithm’s performance across a range of conditions and noise levels. The uncertainty analysis was 
performed through three synthetic models, each incorporating varying noise levels, regional effects, neighboring 
structure influences, and variable window lengths. The relative error and standard deviation for each model 
parameter were calculated and presented in Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10; Figs. 7,  10, and 15.

Fig. 13.  Third model, two neighboring structures, in case noise-free condition. Panel (a) exhibits the observed 
gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response (depicted 
by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies using 
varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A1 (mGal.km) 230 100–
600 215 205 250 230 240 255 260 250 255 240 240 ± 18.26

0.0000032

z1 (km) 5 1–10 4.6 4.8 4.5 5.4 5.5 5.2 4.4 4.6 4.8 4.2 4.8 ± 0.44

xo1 (km) -20 -30–
30 -17 -16 -22 -17 -19 -18 -19 -21 -22 -19 -19 ± 2.11

q1 0.5 0–2 0.45 0.45 0.55 0.55 0.6 0.5 0.4 0.55 0.5 0.45 0.5 ± 0.06

m1 0 0–2 0 0 0 0 0 0 0 0 0 0 0 ± 0

A2 (mGal.km) 200 100–
600 195 190 210 205 205 200 205 200 200 190 200 ± 6.67

z2 (km) 3 1–10 3.5 3.2 3.4 3.2 3.6 3.5 3.3 3.4 3.3 3.6 3.4 ± 0.15

xo2 (km) 25 -30–
30 25 24 24 25 25 25 26 24 25 27 25 ± 0.94

q2 0.5 0–2 0.55 0.6 0.5 0.5 0.55 0.45 0.45 0.55 0.45 0.4 0.5 ± 0.06

m2 0 0–2 0 0 0 0 0 0 0 0 0 0 0 ± 0

Table 8.  Results of parameter estimation for the two separated synthetic model under a scenario with a 10% 
noise level.
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In the first synthetic model, the algorithm was tested under three noise conditions: noise-free, 5% random 
noise, and 10% random noise. This model allowed us to assess the impact of different noise levels on parameter 
estimation accuracy. Figure 7 demonstrates the algorithm’s robustness and accuracy across these noise levels, 
illustrating its ability to maintain reliable performance even in the presence of significant noise.

In the second synthetic model, the effect of a first-order regional anomaly was examined under both noise-
free and 10% random noise conditions. Figure  10 showcases the algorithm’s ability to accurately estimate 
parameters despite regional anomalies and noise, highlighting its effectiveness in isolating local anomalies from 
broader regional trends.

The third synthetic model focused on the influence of neighboring structures on parameter estimation. 
Two scenarios were tested: two separated structures and two neighboring structures, with both noise-free and 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A1 (mGal.km) 230 100–
600 255 240 215 230 235 240 235 245 235 220 235 ± 11.547

2.15*10^-
6

z1 (km) 5 1–10 5.5 5.4 5.4 4.9 4.9 4.8 5.3 5.4 4.7 4.7 5.1 ± 0.327

xo1 (km) -20 -30–
30 -9 -8 -11 -10 -10 -11 -8 -9 -11 -13 -10 ± 1.564

q1 0.5 0–2 0.52 0.52 0.48 0.47 0.49 0.48 0.49 0.5 0.53 0.52 0.5 ± 0.021

m1 0 0–2 0.02 0.01 0 0 0.01 0.02 0.02 0 0.02 0.01 0.011 ± 0.009

A2 (mGal.km) 200 100–
600 195 210 205 195 195 200 195 180 185 190 195 ± 8.819

z2 (km) 3 1–10 2.8 2.7 3.1 3.2 3.1 3 2.8 2.7 2.8 2.8 2.9 ± 0.183

xo2 (km) 25 -30–
30 12 8 11 10 9 10 10 9 10 11 10 ± 1.155

q2 0.5 0–2 0.45 0.48 0.49 0.5 0.52 0.54 0.5 0.52 0.52 0.48 0.5 ± 0.026

m2 0 0–2 0.02 0.02 0 0.01 0 0.01 0.02 0.01 0 0.01 0.01 ± 0.008

Table 9.  Results of parameter estimation for the two neighboring synthetic models under a noise-free 
condition.

 

Fig. 14.  Third model, two neighboring structures, in case of a 10% noise level condition. Panel (a) exhibits the 
observed gravity anomaly profile (illustrated by black circles) alongside the computed optimal gravity response 
(depicted by red circles) employing the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies 
using varying ‘s’ window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats 
relative to the number of iterations. Panel (d) shows the average NRMSE of all the bats.
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10% random noise conditions. Figure 15 confirms the algorithm’s stability and accuracy in handling complex 
geological settings with closely spaced structures. This model further validates the algorithm’s robustness in 
diverse subsurface environments. The percentage error in parameter estimation was calculated, and the results 
are visually represented in the corresponding figures, reinforcing the algorithm’s reliability and precision.

Overall, the close agreement between the recovered parameters and the original gravity response, even in 
the presence of noise and complex geological conditions, demonstrates the MBA’s reliability and effectiveness. 
These results suggest that the MBA approach is well-suited for interpreting real-world gravity data impacted by 
various uncertainties.

Real datasets
Mobrun Anomaly, Québec, Canada
The Mobrun gravity anomaly located approximately 34 km northeast of Rouyn-Noranda in Québec, Canada, 
exposes a varied geological landscape characterized by the presence of the Renault Formation38,39. Bordered by 
Destor rocks running from north to south, the Renault Formation displays a mix of large fragmental rhyolitic and 

Fig. 15.  The robustness and accuracy of the parameter estimations for the third model, in case separated and 
neighboring structures without and with 10% random noise.

 

Model 
parameters

True 
model 
parameters

Search 
range

Estimated parameters Avg. 
value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A1 (mGal.km) 230 100–
600 240 235 220 235 225 235 220 210 225 205 225 ± 11.547

1.16*10^-
5

z1 (km) 5 1–10 5.5 5.4 5.3 5.3 5.2 5.2 5.3 5.2 5.3 5.3 5.3 ± 0.094

xo1 (km) -20 -30–
30 -13 -12 -12 -10 -10 -9 -11 -10 -11 -12 -11 ± 1.247

q1 0.5 0–2 0.5 0.52 0.52 0.5 0.48 0.48 0.5 0.46 0.48 0.46 0.49 ± 0.022

m1 0 0–2 0.01 0 0.02 0.02 0 0.01 0.01 0.02 0 0.01 0.01 ± 0.008

A2 (mGal.km) 200 100–
600 220 215 200 210 210 215 200 195 215 220 210 ± 8.819

z2 (km) 3 1–10 2.7 3.1 3.1 2.8 2.7 2.8 2.9 2.7 2.6 2.6 2.8 ± 0.183

xo2 (km) 25 -30–
30 11 8 12 8 9 11 10 12 11 8 10 ± 1.633

q2 0.5 0–2 0.52 0.52 0.48 0.5 0.48 0.48 0.5 0.54 0.52 0.46 0.5 ± 0.025

m2 0 0–2 0.01 0 0 0.01 0 0.01 0 0 0.01 0.01 0.005 ± 0.005

Table 10.  Results of parameter estimation for the two neighboring synthetic model under a scenario with a 
10% noise level.

 

Scientific Reports |         (2025) 15:5000 17| https://doi.org/10.1038/s41598-025-88350-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


andesitic units, contributing to the area’s geological intricacy38,39 (Figs. 16 and 17). In the footwall of the Mobrun 
area, the Copper Hill rhyolite unit predominates, followed by a complex sequence of andesitic-rhyolitic rocks, 
felsic pyroclastic materials, and a layer of massive rhyolite forming the hanging wall39,40. Beneath the primary 
complex lies brecciated rhyolite, adding another layer of geological complexity to the region39,40. Notably, the 
Mobrun deposit, a key point of geological interest in the area, contains two extensive sulfide lens complexes, with 
the primary complex hosting five significant ore bodies39.

A 230 m Gravity profile is taken across the gravity map (Fig. 18)38 and shown in Fig. 19a. Firstly, the SHG 
method was employed using different s values (for s = 1 to 10 m) (Fig. 19b) to remove the regional effect. Then, 
the MBA scheme was applied to estimate pivotal parameters characterizing the Quebec anomaly. The global and 
average NRMSE solutions of the objective function are shown in Fig. 19c and d, respectively. The parameters 
resulting from various window values and their averages are meticulously detailed in Table 11 for comprehensive 
evaluation. The estimated parameters are summarized as follows: A = 80 ± 2.31 mGal.m, z = 48 ± 1.16 m, xo = 0 ± 
1.15 m, q = 1 ± 0.08, m = 1 ± 0.07, these parameters collectively characterize a horizontal cylinder. Furthermore, 
the objective function value corresponding to these estimations is calculated to be 0.00016. To contextualize 
our findings, a comparative analysis with prior research has been undertaken, revealing the following insights. 
The summarized comparisons with existing studies are presented in Table  12, juxtaposing our estimated 
parameters with those from Mehanee40, Biswas33, Singh and Biswas41, Essa et al.42, and Elhussein and Diab43. 
These systematic comparisons illuminate the efficacy of our algorithm in accurately estimating parameters, 
thus augmenting our understanding of the Quebec anomaly’s geological characteristics and contributing to the 
broader geological discourse.

Phenaimata gravity anomaly, Gujarat, India
The Phenaimata gravity anomaly, situated in the Narmada-Tapti tectonic zone (NTTZ) in Gujarat, India, 
poses a fascinating geological puzzle where igneous complexity intersects with tectonic dynamics. Situated 
north of the Narmada River, the Phenaimata igneous complex stands as a testament to the intricate geological 
formations shaped by the region’s tectonic evolution44. Comprising a mix of plutonic and volcanic rock types, 
including basalt, layered gabbro, diorite, nepheline-syenite, lamprophyres, and granophyres, the Phenaimata 
plug showcases a dynamic interplay of magmatic processes45,46 (Figs. 20 and 21). The particular significance lies 
in the prevalence of orthopyroxene gabbro within the Phenaimata igneous complex, representing a crucial stage 

Fig. 16.  The geological map of the Noranda property in Canada, adapted from38. The open squares symbolize 
the mines currently in operation, while the closed squares denote the mines that have ceased production.
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in the magmatic evolution and differentiation of the intrusive body44. Petrological modeling suggests that the 
formation of gabbroic rocks within the complex is intricately linked to magma accumulation in the crust, along 
with assimilation and fractional crystallization processes46.

Geophysical investigations, including Bouguer gravity anomaly mapping, have unveiled the distinctive 
gravitational signature of the Phenaimata igneous exposure47,48. An elliptical-shaped anomaly closure to the 
north of the complex aligns with the orientation of the Narmada-Tapti tectonic zone, underscoring the tectonic 
control exerted on the regional gravity field47,48.

To unravel the subsurface architecture and gravitational anomalies accompanying the Phenaimata complex, 
a meticulous north–south BB’ 31 km profile was extracted perpendicular to the closure anomaly in the Bouguer 
gravity map47,48 (Fig. 22). Through the judicious application of separation techniques, the BB’ residual gravity 
anomaly profile was derived (Fig. 23a), providing invaluable insights into the geological underpinnings shaping 
the Phenaimata gravity anomaly47,48.

Firstly, the SHG method was employed using different s values (for s = 1 to 10 km) (Fig. 23b) to remove the 
regional effect. Then, the MBA process was applied to estimate pivotal parameters (Table 13). The global and 
average NRMSE solutions of the objective function are shown in Fig. 23c and d, respectively. The estimated 
parameters are summarized as follows: A = 1095 ± 5.27 mGal.km2, z = 5.45 ± 0.08  km, xo = 1 ± 1.41  km, 
q = 1.5 ± 0.06, and m = 1 ± 0.06, these parameters collectively characterize a spherical body. These estimations 
represent a significant advancement in our understanding of the Phenaimata anomaly’s geological characteristics.

For comparison with previous studies, a comprehensive comparison was conducted, incorporating 
findings from Essa and Diab19 (Table 14). This systematic analysis underscores the efficacy and reliability of 
our algorithm in accurately estimating parameters, contributing to a deeper understanding of the Phenaimata 
anomaly’s geological nuances. With these results, significant progress has been made in unraveling the geological 
complexities of the Phenaimata anomaly and enhancing our understanding of Gujarat’s broader geological 
landscape.

Fig. 17.  Geological Map of the Mobrun Property shows the Rock Units and Structural Features (After38).
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Camaguey chromite anomaly, Cuba
The chromite deposits found in the Camaguey District of Cuba present a fascinating geological mystery. Here, 
serpentinized dunite and peridotite rocks intersect with feldspathic lithologies, creating a unique geological 
setting that is ripe for exploration49–51 (Fig. 24).

In a groundbreaking endeavor, Davis et al.49 led an exploration campaign under the auspices of the United 
States Geological Survey. Their goal was to meticulously collect gravity data to uncover the mysterious subsurface 
structure of the chromite-bearing ore deposits in the Camaguey District. This detailed data collection initiative 
aimed to map out the structural framework and density anomalies associated with the chromite mineralization, 
providing crucial insights into the geological origins and economic potential of the deposits.

The resultant gravity map (Fig. 25)49, meticulously crafted over the Camaguey chromite deposits, serves as 
a cartographic testament to the intricate interplay of gravitational forces and geological heterogeneities shaping 
subterranean realm49. Figuratively etched onto this geological canvas are the spatial delineations and density 
gradients delineating the chromite-bearing lithologies, signifying the gravitational im-print of the underlying 
mineralization.

To augment the understanding of the subsurface structure, a gravity profile perpendicular to the chromite 
deposit’s strike was meticulously extracted from the residual gravity map50. The profile spanning a length of 89 m 
(Fig. 26a), this gravity profile serves as a veritable Rosetta Stone, unlocking the gravitational secrets harbored 
within the subterranean realm.

By applying our suggested procedure, which started by applying Second Horizontal Derivative using different 
s values (for s = 1 to s = 10 m) (Fig. 26b) Then, the Bat Algorithm optimization was applied to estimate pivotal 
parameters characterizing the Camaguey anomaly. The global and average NRMSE solutions of the objective 
function are shown in Fig. 26c and d, respectively. The estimated parameters, meticulously obtained through the 
application of various window values and their averages, are presented in Table 15 for comprehensive assessment. 
For the Camaguey anomaly, the estimated parameters are summarized as follows: A = 22.99 ± 0.19 mGal.m, 
z = 14.72 ± 0.22 m, xo = -1 ± 1.16 m, q = 1 ± 0.13, and m = 1 ± 0.06, these parameters collectively characterize a 
horizontal cylinder. These estimations offer valuable insights into the geological structure and characteristics of 
the Camaguey anomaly compared to the data from the drilled wells (Fig. 27). To facilitate a thorough comparison 
with existing studies, we have juxta-posed our estimated parameters with those reported in previous works. 
The summarized comparisons, inclusive of findings from Mehanee40, Biswas33, Ekinci et al.50, Essa et al.42, and 
Elhussein and Diab43, are meticulously presented in Table 16.

Fig. 18.  The Mobrun gravity anomaly map (modified and redrawn after38). The line marked as AB represents 
the gravity anomaly profile (see Fig. 19) that is open to interpretation.
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These systematic comparisons shed light on the efficacy and reliability of our algorithm in accurately 
estimating parameters, thus contributing to a deeper understanding of the Camaguey anomaly’s geological 
intricacies.

Finally, our algorithm demonstrates excellent performance across a variety of synthetic scenarios with 
differing complexities, including variations in noise levels, regional influences, and multi-model effects. Its 

Model parameters Mehanee 40 Biswas 33 Singh and Biswas 41 Essa et al. 42 Elhussein and Diab 43 Present Study

A (mGal.m) 80 79.5 38.47 75.33 80 ± 2.31

z (m) 47 47.7 46.69 47 46 48 ± 1.16

xo (m) 2.5 2.37 2 2 0 ± 1.15

q 1 1 1 0.91 1 1 ± 0.08

m 1 ± 0.07

Table 12.  Comparative analysis of the retrieved model parameters for the Mobrun anomaly in Quebec, 
Canada, derived from our algorithm and those reported in previous studies.

 

Model parameters Search range
Estimated parameters

Avg. value ± Uncertainty Fobjs = 1 m s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m s = 8 m s = 9 m s = 10 m

A (mGal.m) 0–300 78 80 82 84 76 80 80 82 80 78 80 ± 2.31

0.00016

z (m) 10–100 47 48 46 47 49 48 50 48 48 49 48 ± 1.16

xo (m) -10–10 -1 -2 0 0 1 1 2 0 0 -1 0 ± 1.15

q 0–2 1.05 1 0.9 0.95 1 1 1.15 0.9 0.95 1.1 1 ± 0.08

m 0–2 1 1 0.9 0.95 1.05 1.1 0.9 1 1.1 1 1 ± 0.07

Table 11.  Results of parameter estimation for the Mobrun anomaly, Quebec, Canada.

 

Fig. 19.  First field dataset, Mobrun gravity anomaly, interpretation. Panel (a) illustrates the observed gravity 
anomaly profile (marked by black circles), the computed optimal gravity response (indicated by blue circles) 
using the MBA algorithm technique, and the calculated optimal gravity response (depicted by purple asteroids) 
by43. Panel (b) demonstrates the SHG anomalies using various ‘s’ window values. Panel (c) depicts the NRMSE 
of the global optimum solution (FObj) of the bats relative to the number of iterations. Panel (d) shows the 
average NRMSE of all the bats.
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efficacy is further validated through real-world applications, such as the Mobrun sulfide deposit in Canada, the 
Phenaimata igneous complex intrusion in India, and the Camaguey chromite deposits in Cuba.

The algorithm effectively balances the exploration and exploitation phases, achieving rapid convergence and 
adaptability to complex optimization challenges. This is largely due to the integration of the MBA and SHG 
techniques, which enhance the delineation of subsurface anomalies. By accentuating anomaly boundaries and 
minimizing the impact of regional gravity fields, the algorithm facilitates more precise and reliable parameter 
estimation for subsurface structures.

However, despite these strengths, the method has certain limitations. Its computational demands can be 
significant, particularly when applied to large datasets or highly complex geological settings. Furthermore, the 
algorithm’s performance is sensitive to parameter configurations, requiring meticulous tuning to optimize its 
outcomes.

Conclusions
Our proposed algorithm has demonstrated exceptional effectiveness in accurately estimating parameters related 
to subsurface geological bodies, both in real-world and synthetic scenarios. Through rigorous analysis and 
optimization, we have achieved precise estimations for crucial parameters, including amplitude coefficient, 
depth, horizontal location, shape factor, and shape change coefficient. The validation of our algorithm across 
diverse geological settings such as anomalies in Quebec (Canada), Phenaimata (India), and Camaguey (Cuba), 
as well as through synthetic models, consistently yielded accurate results, underscoring the robustness and 
reliability of our approach in handling complex geological data. We strongly recommend that researchers adopt 
our algorithm for geological investigations, as it provides a powerful tool for accurately estimating subsurface 

Fig. 20.  The geological and tectonic features of the Deccan traps surrounding the Phenaimata igneous 
intrusion (After45).
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geological parameters. Our approach outperforms existing methodologies in both accuracy and efficiency, 
incorporating advanced techniques like the second horizontal gradient (SHG) method and the metaheuristic Bat 
algorithm (MBA). Furthermore, the adaptability of our algorithm to various geological scenarios, noise levels, 
and data complexities emphasizes its versatility and applicability across a wide range of research domains. We 
encourage researchers to incorporate our algorithm into their workflows to enhance the accuracy and reliability 
of their geological analyses and interpretations. The adaptability and versatility of our algorithm highlight the 
potential for innovative technology to revolutionize research in deciphering subsurface geological structures 
with unprecedented precision and efficiency.

Fig. 21.  The geological features of the Deccan traps surrounding the Phenaimata igneous intrusion (After45). 
The location of the gravity profile shown in the figure as BB’.
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Fig. 23.  Second field dataset, Phenaimata gravity anomaly, interpretation. Panel (a) illustrates the observed 
gravity anomaly profile (marked by black circles) and the computed optimal gravity response (indicated by 
blue circles) using the MBA algorithm technique. Panel (b) demonstrates the SHG anomalies using various ‘s’ 
window values. Panel (c) depicts the NRMSE of the global optimum solution (FObj) of the bats relative to the 
number of iterations. Panel (d) shows the average NRMSE of all the bats.

 

Fig. 22.  This figure shows the original data of the profile BB’, and a geological model beneath the gravity profile 
(After45,52).
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Model parameters Essa and Diab 19 Present Study

A (mGal.km2) 960 1095 ± 5.27

z (km) 5.3 5.45 ± 0.08

xo (km) 1 1 ± 1.41

q 1.5 1.5 ± 0.06

m 1 1 ± 0.06

Table 14.  Comparative analysis of the retrieved model parameters for the Phenaimata anomaly in Gujarat, 
India, obtained through our algorithm and those reported in previous studies.

 

Model parameters Search range
Estimated parameters

Avg. value ± Uncertainty Fobjs = 1 km s = 2 km s = 3 km s = 4 km s = 5 km s = 6 km s = 7 km s = 8 km s = 9 km s = 10 km

A (mGal.km2) 800–1300 1090 1090 1105 1095 1090 1100 1090 1095 1095 1100 1095 ± 5.27

0.0000024

z (km) 1–10 5.4 5.45 5.5 5.5 5.6 5.3 5.45 5.5 5.4 5.4 5.45 ± 0.08

xo (km) -10–10 2 1 2 -1 3 0 2 -1 0 2 1 ± 1.41

q 0–2 1.5 1.5 1.45 1.4 1.6 1.55 1.5 1.45 1.5 1.55 1.5 ± 0.06

m 0–2 0.95 0.95 0.95 1.05 1 0.95 1.05 1.05 0.95 1.1 1 ± 0.06

Table 13.  Results of parameter estimation for the Phenaimata anomaly, Gujarat, India.
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Fig. 24.  The geographical position and geological characteristics of the Camaguey District after51.
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Fig. 25.  The Camaguey gravity anomaly map redrawn and modified after49. The line marked as AB represents 
the gravity anomaly profile (see Fig. 26) that is open to interpretation.
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Model parameters Search range
Estimated parameters

Avg. value ± Uncertainty Fobjs = 1 m s = 2 m s = 3 m s = 4 m s = 5 m s = 6 m s = 7 m s = 8 m s = 9 m s = 10 m

A (mGal.m) 0–50 3 2.7 3 2.8 3.1 3.1 3.1 3.2 3.2 2.7 2.99 ± 0.19

0.00012

z (m) 10–20 14.5 14.5 14.7 14.8 14.7 15 14.5 15 15 14.5 14.72 ± 0.22

xo (m) -10–10 0 -1 -1 -1 -2 1 0 -2 -3 -1 -1 ± 1.16

q 0–2 0.9 1.1 1.1 1.2 0.8 0.9 0.9 1 1 1.1 1 ± 0.13

m 0–2 0.95 1 0.95 1 1 1.05 1.1 0.9 1 1.05 1 ± 0.06

Table 15.  Results of parameter estimation for r the Camaguey anomaly, Cuba.

 

Fig. 26.  Third field dataset, Camaguey gravity anomaly, interpretation. Panel (a) illustrates the observed 
gravity anomaly profile (marked by black circles), and the computed optimal gravity response (indicated by 
blue circles) using the MBA algorithm technique, and the calculated optimal gravity response (depicted by 
purple asteroids) by43. Panel (b) demonstrates the SHG anomalies using various ‘s’ window values. Panel (c) 
depicts the NRMSE of the global optimum solution (FObj) of the bats relative to the number of iterations. Panel 
(d) shows the average NRMSE of all the bats.
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