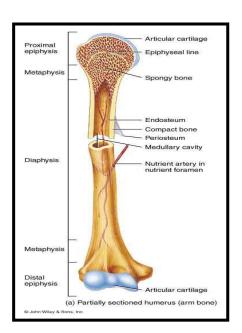
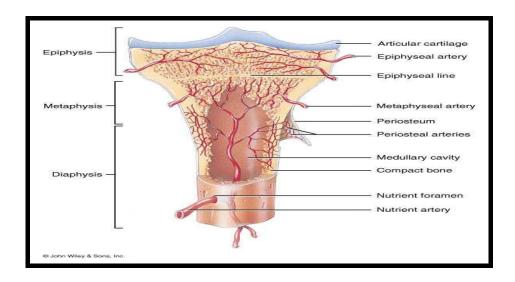

Healing Of Bones

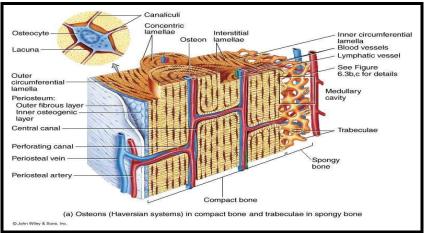
Supervised By Dr. Kawkah


Mahmoud Mohamed Mohamed Morsy 07288 Section: D

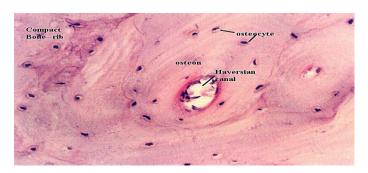

HEALING OF BONE

Bone Anatomy:

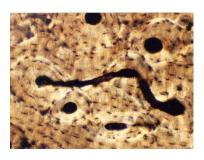
- Diaphysis
- Metaphysis
- Epiphysis Prox/Dist
- Epiphyseal line
- Periosteum
- Compact cortical bone
- Spongy bone
- Articular Cartilage
- Medullary cavity
- Marrow
- Nutrient artery

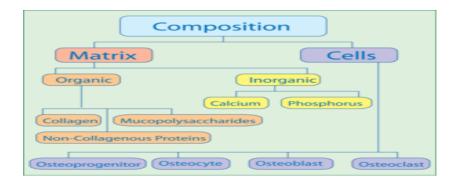

Blood Supply to Bone:

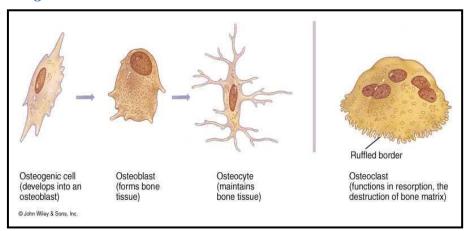
Types of Bone:

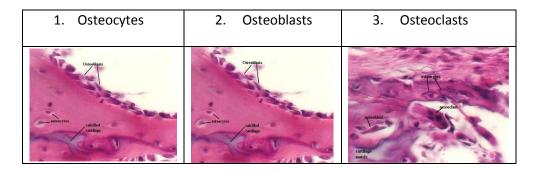

- Lamellar Bone
 - Collagen fibers arranged in parallel layers
 - Normal adult bone
- Woven Bone (non-lamellar)
 - Randomly oriented collagen fibers

- In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions
- Compact Bone


Lamellar Bone:


- Cortical bone
 - Comprised of osteons (Haversian systems)
 - Osteons communicate with medullary cavity by Volkmann's canals


Haversian System:


- · Osteon with central haversian canal containing
 - Cells
 - Vessels
 - Nerves
- Volkmann's canal
 - Connects osteons

A. Osteogenic cells:

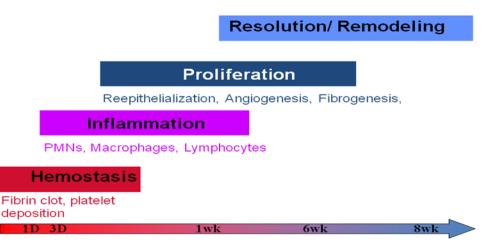
B. Extracellular Matrix

- Organic (35%)
- 1. Collagen (type I) 90%
- 2. Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance)
- Inorganic (65%)
- 1. Primarily hydroxyapatite Ca5(PO4)3(OH)2

Prerequisites for Bone Healing:

- Adequate blood supply
- Adequate mechanical stability

Fractures:

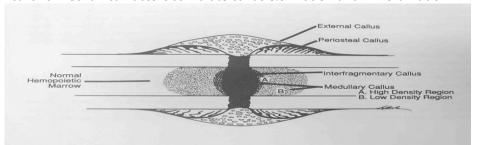

• Break in the bone.

- Simple / Compound infection.
- Single Horizontal, oblique, spiral,
- Comminuted multiple.
- Greenstick partial children.
- Torus compression of cortex children.

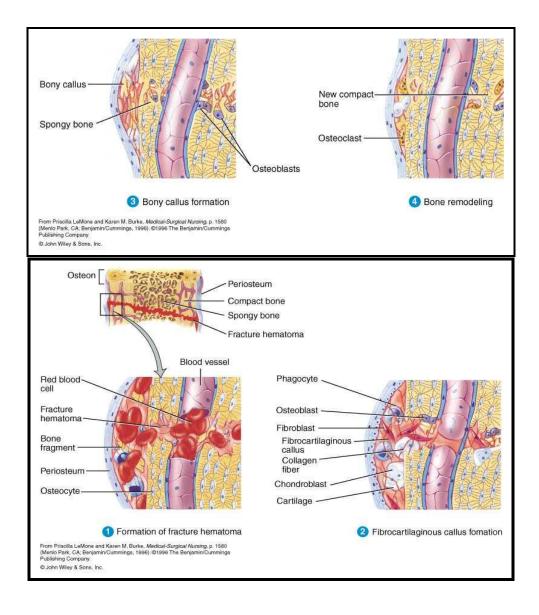
Types of Fracture:

Stages of wound healing:

Time after injury


Inflammation:

- Tissue disruption results in hematoma at the fracture site
- Local vessels thrombose causing bony necrosis at the edges od the fracture
- Increased capillary permeability results in a Incal inflammatory milieu
 - Osteoinductive growth factors st)mulate the pr/liferation and differentiation of mesenchymal stem cells .


Repair:

- Periosteal callus forms along The periphery of the f2acture site
 - Intramembranous ossification Initiated by preosteoblasts
- Intramedullary callus forms in the center of dhe fract5re site

- Endochond2al ossification at the site of the fracture hematoma
- Chemical and mechanical factors stimulate callus &ormation and mineralization

Healing in Bone:

Mechanisms for Bone Healing

Direct (primary) bone healing:

- Mechanism of bone healing seen when there is no motion at the fracture site (i.e. rigid internal fixation)
- Does not involve formation of fracture callus

- Osteoblasts originate from endothelial and perivascular cells
- A cutting cone is formed that crosses the fracture site
- Osteoblasts lay down lamellar bone behind the osteoclasts forming a secondary osteon
- Gradually the fracture is healed by the formation of numerous secondary osteons
- A slow process months to years

Indirect (secondary) bone healing:

- Mechanism for healing in fractures that are not rigidly fixed.
- Bridging periosteal (soft) callus and medullary (hard) callus re-establish structural continuity
- Callus subsequently undergoes endochondral ossification
- Process fairly rapid weeks

Factors affecting Healing:

- Systemic & Local factors
- Immobilization *
- Improper reduction abnormal position
- Infection. Debris, dead tissue in wound
- Joint involvement

Complications:

- · Delayed healing.
- Non healing.
- Joint involvement ankylosis
- Abnormal position arthritis.
- Bone necrosis nutrient artery
- Involucrum formation.
- Pseudoarthrosis

References:

- Scott J Broderick, MD.
- Brighton, Carl T. and Robert M. Hunt (1986), "Histochemical localization of calcium in the fracture callus with potassium pyroantimonate: possible role of chondrocyte mitochondrial calcium in callus calcification", *Journal of Bone and Joint Surgery*, **68-A** (**5**): 703-715
- Brighton, Carl T. and Robert M. Hunt (1991), "Early histologic and ultrastructural changes in medullary fracture callus", *Journal of Bone and Joint Surgery*, **73-A** (6): 832-847
- Brighton, Carl T. and Robert M. Hunt (1997), "Early histologic and ultrastructural changes in microvessels of periosteal callus", *Journal of Orthopaedic Trauma*, **11** (**4**): 244-253
- Ham, Arthur W. and William R. Harris (1972), "Repair and transplantation of bone", *The biochemistry and physiology of bone*, New York: Academic Press, p. 337-399