Publications

Export 3 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Shehata, M., K. Abdou, K. Choko, M. Matsuo, H. Nishizono, and K. Inokuchi, "Autophagy Enhances Memory Erasure through Synaptic Destabilization.", The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 38, issue 15, pp. 3809-3822, 2018 Apr 11. Abstract

There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders.

Inoue, R., K. Abdou, A. Hayashi-Tanaka, S. - I. Muramatsu, K. Mino, K. Inokuchi, and H. Mori, "Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress.", eLife, vol. 7, 2018 06 26. Abstract

Glucocorticoid receptor (GR) is crucial for signaling mediated by stress-induced high levels of glucocorticoids. The lateral nucleus of the amygdala (LA) is a key structure underlying auditory-cued fear conditioning. Here, we demonstrate that genetic disruption of GR in the LA (LAGRKO) resulted in an auditory-cued fear memory deficit for strengthened conditioning. Furthermore, the suppressive effect of a single restraint stress (RS) prior to conditioning on auditory-cued fear memory in floxed GR (control) mice was abolished in LAGRKO mice. Optogenetic induction of long-term depression (LTD) at auditory inputs to the LA reduced auditory-cued fear memory in RS-exposed LAGRKO mice, and in contrast, optogenetic induction of long-term potentiation (LTP) increased auditory-cued fear memory in RS-exposed floxed GR mice. These findings suggest that prior stress suppresses fear conditioning-induced LTP at auditory inputs to the LA in a GR-dependent manner, thereby protecting animals from encoding excessive cued fear memory under stress conditions.

Abdou, K., M. Shehata, K. Choko, H. Nishizono, M. Matsuo, S. - I. Muramatsu, and K. Inokuchi, "Synapse-specific representation of the identity of overlapping memory engrams.", Science (New York, N.Y.), vol. 360, issue 6394, pp. 1227-1231, 2018 06 15. Abstract

Memories are integrated into interconnected networks; nevertheless, each memory has its own identity. How the brain defines specific memory identity out of intermingled memories stored in a shared cell ensemble has remained elusive. We found that after complete retrograde amnesia of auditory fear conditioning in mice, optogenetic stimulation of the auditory inputs to the lateral amygdala failed to induce memory recall, implying that the memory engram no longer existed in that circuit. Complete amnesia of a given fear memory did not affect another linked fear memory encoded in the shared ensemble. Optogenetic potentiation or depotentiation of the plasticity at synapses specific to one memory affected the recall of only that memory. Thus, the sharing of engram cells underlies the linkage between memories, whereas synapse-specific plasticity guarantees the identity and storage of individual memories.