
“

”

Selected Programming

Language:

Introduction to Python

CS 427

Faculty of Science, Department of Mathematics

Ref:

Richard L. Halterman, LEARNING TO PROGRAM WITH PYTHON, 2011

Richard L. Halterman, Fundamentals of Python Programming, 2017

http://python.cs.southern.edu/pythonbook/pythonbook.pdf

Chapter 8*

More on Functions
2

Lambda Expressions

Ordinarily, in order to call a function, we must know its name.

 Invoking functions without using their names directly.

 The evaluate function calls f. The name f refers to one of

evaluate’s parameters; there is no separate function named f

specified by def

 Python supports the definition of simple, anonymous functions

via lambda expressions. The general form of a lambda

expression is

3

Lambda Expressions

Assignments are not possible within lambda expressions, and loops

are not allowed.

A lambda expression can involve one or more function invocations.

4

Lambda Expressions

 A lambda expression can involve one or more function

invocations.

 The lambda expression in the following statement is legal:

One interesting aspect of lambda functions is that they form

what is known as a closure.

 A closure is a function that can capture the context of its

surrounding environment.

 Listing 8.15 (closurein.py) demonstrates a simple closure.

5

Lambda Expressions

 The main function’s local variable a is not passed as a

parameter; instead, it is embedded within the lambda code of

the first parameter. The variable a is encoded into the lambda

expression.

6

Lambda Expressions

 For an example of a closure transporting a captured local

variable out of a function, which includes a function that

returns a function (lambda expression) to its caller.

7

Lambda Expressions

We can assign a variable to a lambda expression:

 It is equivalent to:

We can define an anonymous function and invoke it

immediately;

8

Chapter 9*

Objects
9

Objects

 Python is object oriented. Most modern programming

languages support object-oriented (OO) development to one

degree or another. An OO programming language allows the

programmer to define, create, and manipulate objects.

Objects bundle together data and functions.

 Like other variables, each Python object has a type, or class.

The terms class and type are synonymous.

 In object-oriented programming, rather than treating data as

passive values and functions as active agents that manipulate

data, we fuse data and functions together into software units

called objects.

10

String Objects

 The general form of a method call is

11

******ABCD

ABCD

>>>>>>>>>>>ABCD

ABCD

12

13

[ABCDEFGHBCDIJKLMNOPQRSBCDTUVWXYZ]

[ABCDEFGHBCDIJKLMNOPQRSBCDTUVWXYZ]

3

String Objects

 The str class provides a __getitem__ method that returns the

character at a given position within the string.

 Since the method’s name begins with two underscores (__),

the method is meant for internal class use and not for clients.

 The __getitem__ method is special, as clients can access it

via a special syntax:

14

String Objects

 The square brackets when used with an object in the manner

shown above invoke that object’s __getitem__ method.

 In the case of string objects the integer within the square

brackets, known as an index, represents the distance from the

beginning of the string from which to obtain a character.

15

String Objects

 The expressions len(s) and s.__len__() are functionally

equivalent. Instead of calling the __len__

method directly, clients should use the global len function.

16

File Objects

 Fortunately, Python’s standard library has a file class that

makes it easy for programmers to make objects that can store

data to, and retrieve data from, disk.

 The formal name of the class of file objects we will be using is

TextIOWrapper, and it is found in the io module.

 Since file processing is such a common activity, the functions

and classes defined in the io module are available to any

program, and no import statement is required.

17

File Objects

 The statement

 creates and returns a file object (literally a TextIOWrapper

object) named f. The first argument to open is the name of the

file, and the second argument is a mode.

 The open function supports the following modes:

• 'r' opens the file for reading

• 'w' opens the file for writing; creates a new file

• 'a' opens the file to append data to it

18

File Objects

 If the second argument to the open function is missing, it

defaults to 'r', so the statement f = open(fname) is equivalent

to f = open(fname, 'r')

 Once you have a file object capable of writing (opened with

'w' or 'a') you can save data to the file associated with that file

object using the write method.

 For a file object named f, the statement f.write('data') stores

the string 'data' to the file.

19

File Objects

 The three statements

writes the text 'datacomputeprocess' to the file.

20

File Objects

 If our intention is to retrieve the three separate original strings,

we must add delimiters to separate the pieces of data.

Newline characters serve as good delimiters:

 This places each word on its own line in the text file. The

advantage of storing each piece of data on its own line of text

is that it makes it easier to read the data from the file with a

for statement. :

21

File Objects

We also can read the contents of the entire file into a single

string using the file object’s read method:

 Given the text file from above, the code

assigns to s the string 'data\ncompute\nprocess\n'.

22

File Objects

 The open method opens a file for reading or writing, and the

read, write, and other such methods enable the program to

interact with the file.

When the executing program is finished with its file processing it

must call the close method to close the file properly.

 Failure to close a file can have serious consequences when

writing to a file, as data meant to be saved could be lost.

 Every call to the open function should have a corresponding call

to the file object’s close method.

23

File Objects

24

 If the file data.dat does not exist or there are issues such as

the user does have sufficient permissions to read the file, the

executing program will raise an exception.

File Objects

25

 Since it is important to always close a file after opening it, Python offers a

simpler way to automatically closes the file when finished.

 It uses the with/as statement to create what is known as a context

manager that ensures the file is closed..

 uses the with/as statement to create what is known as a context manager

that ensures the file is closed.

File Object

26

Fraction Objects

 The fractions module provides the Fraction class. Fraction

objects model mathematical rational numbers; that is, the

ratio of two integers. Rational numbers contain a numerator

and denominator.

27

3/4

3

4

0.75

1/8

7/8

Fraction object

Fraction Objects

 The Fraction(3, 4) expression returns a reference to the newly

created fraction object, and the statement f1 = Fraction(3, 4)

binds the variable f1 to this object.

 The expression f1.numerator represents the numerator

instance variable of object f1.

 Python reserves special names for some methods. The

Fraction class provides a method named __add__.

28

Fraction Objects

 The Fraction class includes a number of these special

methods that exploit syntactic sugar; examples include the

following (f and g reference Fraction objects):

29

Object Mutability and Aliasing

We have two Fraction objects and three variables bound to

Fraction objects. We say that f1 aliases f3.

Aliasing can be an issue for mutable objects.

30

Thank you
31

