14

Selected Programming
Language:
Introduction to Python

CS 427
Faculty of Science, Department of Mathematics

Ref:
Richard L. Halterman, LEARNING TO PROGRAM WITH PYTHON, 2011
http://python.cs.southern.edu/pythonbook/pythonbook.pdf

Chapter 3

Expressions and Arithmetic

Contents

= Expressions and Arithmetic
= EXpressions
= Operator precedence and associativity

= Comments

= Errors

= Arithmetic examples
= Algorithms

Expressions

= A literal value like 34 and a variable like x are examples of a
simple expressions.

= Values and variables can be combined with operators to form
more complex expressions.

Listing 3.1: adder.py

valuel = eval (input ('Please enter a number: '))
value2 = eval (input ('Please enter another number: '))

sum = valuel + value2
print (valuel, '+', wvaluel, '='_, sum)

da b

Expressions

Table 3.1: Commonly used Python arithmetic binary operators

Expression Meaning
x+y x added to v, if x and y are numbers
x concatenated to vy, if x and v are strings
xX-Yy x take away v, if x and y are numbers
x*y x times vy, if x and y are numbers
x concatenated with itself y times, if x is a string and y is an integer

v concatenated with itself x times, if vy is a string and x is an integer

x/y x divided by vy, if x and y are numbers

x//y Floor of x divided by v, if x and y are numbers
X%y Remainder of x divided by v, if x and y are numbers
X Rry x raised to y power, if x and y are numbers

All these operators are classified as binary operators because
they operate on two operands

Expressions

= Two operators, + and -, can be used as unary operators. A
unary operator has only one operand.

= The unary operator expects a single numeric expression
(literal number, variable, or more complicated numeric
expression within parentheses) immediately to its right; it
computes the additive inverse of its operand.

X, Y, 2 =3, -4, 0

print (x, y, z)

Expressions

= The following statement

print(-(4 - 5))
within a program would print 1

= The unary + operator is present only for completeness; when
applied to a numeric value, variable, or expression, the
resulting value is no different from the original value of its
operand.

= Omitting the unary + operator from the following statement
X = +y
does not change its behavior.

> K,y = 1,2
T X®Y

> X=BLr(X)
Fxr K

Ill

T X®Y

I:L:LI

> VEXR

Illl

Ty 2K
Illl

) Tuple assignment of 2 integers
) Integer multiplication

) Assignment X as string

meesssssmmms) Duplicate x by y times

) Duplicate x by y times

) Duplicate x twice

Frr 2%y) |Integer multiplication

4

¥y y=3tr(y)) Assignment y as string
Py Y

IEI

> ERY mssssss) Cannot multiply 2 strings

Traceback (most recent call la=st):
File "<pyshell#20:", line 1, in <module>

Xy
TypeError: can't multiply =2equence by non-int of type 'str!
I
»>> Xty) Concatenate x and y
IlEI
> 3Ry) Duplicate x three times
1222
> ¥r3 mss) Duplicate x three times

"222!

Expressions

= All the arithmetic operators are subject to the limitations of the
data types on which they operate.

= 2.0%10
20.0
e 2ER10
1024
= 2%%100
1267650600228229401496703205376
e 2®*1000
10715086071862673209484250490600018105614048117055336074437503883703510511249361
2248931983 TE8E106908581 275009467291 T755314682518714528569231404359845T7 75746980748 0393
40RT7TT4E2423098542107460506237114187 795041 821530464T7498358194126T739876875591655438
4p07706291457119647 768654216 T7660429831652624380837205668069376
e 2.0%1000
2000.0
Fr» 2.0%*1000
1.07150B60718626T73e+301
e 2.0%=100000
Traceback (most recent call las=st):

File "<pyshell#7>", line 1, in <module>

2.0%*=100000

OverflowError: (34, '"Eesult too large')
>33 |

Expressions

= \When we apply the +, -, *, //, %, or ** operators to two
Integers, the result is an integer.

= The / operator applied to two integers produces a floating-
point result.

»»» print (1073, 3/10, 10//3, 3//10)
3.3333333333333335 0.3 3 0

= The process of discarding the fractional part leaving only the
whole number part is called truncation.

=ww 11/3
J.oboboobbbbbbbbbRbs
> 11773

3

Expressions

= Truncation is not rounding.

»»> 1001//100 »»> 1001/100
10 10.01
»x» 109877100 »=>» 108997100
10 10.9%9

= The modulus operator (%) computes the remainder of integer

division; thus, _
»»» print (10%3, 10/3, 10//3)

1 3.33333333333333352 3

>»>» print (3%¥10, 3710, 3I/7/710)
2 0.3 0

Expressions

= Floating-point arithmetic always produces a floating-point
result.

»»» print(10.0/3.0, 3.0/10.0, 10.0//3.0, 3//710.0)
3.3333333333333335 0.3 3.0 0.0

= |ntegers can be represented exactly, but floating-point
numbers are imprecise approximations of real numbers.

= Floating-point numbers are not real numbers, so the result
cannot be represented exactly without infinite precision.

Expressions

| e imprecise.py - E:;/courses/Python course/codes/imprecise.py (3.7.0)
| File Edit Format Run Options Window Help

- O

'fone = 1.0
one third = 1.0/3.0
zerg = one - one third - one third - one third
. |print('cne =', one, ' one third =', one third, ' zeroc =', Zero)

File Edit Shell Debug Options Window Help

Python 3.7.0 (v3.7.0:1bf8%cc5083, Jun 27 2018, 04:58:51) [M5C w.1914 o4 bit (AMD&

4)] on win32
Type "copyright™,
i

EESTART: E:/courses/Python course : i :
one = 1.0 one third = 0.3333333333333333 (Zero = 1.1102230246251565e-16
>35> | T

Numerical error

"credits" or "license ()" for more information.

Expressions

= |n Listing 3.3 (imprecisel0.py) lines 3—6 make up a single
Python statement.

= QOrdinarily a Python statement ends at the end of the source
code line.

= \When the interpreter is processing a line that ends with a \, it
automatically joins the line that follows.

Listing 3.3: imprecisel0.py

one = 1.0

one tenth = 1.0/10.0

Zero = one — one_tenth - one tenth - one tenth \
— one_tenth - one_tenth - one_tenth \
- one_tenth - one_tenth - one_tenth \

- pne_ tenth

= <R = L o e

print ('one =', one, ' one_tenth =', one_tenth, ' zero =', zero)

Expressions

= EXxpressions may contain mixed elements; integer and
floating-point.

= \When an operator has mixed operands—one operand an
iInteger and the other a floating-point number—the interpreter
treats the integer operand as floating-point number and
performs floating-point arithmetic.

I
[l S8

X
y

I
=
o
N

Operator Precedence and Associativity

= \When different operators appear in the same expression, the
normal rules of arithmetic apply. All Python operators have a
precedence and associativity:

* Precedence—when an expression contains two different kinds of
operators, which should be applied first?

« Associativity—when an expression contains two operators with
the same precedence, which should be applied first?

= As in normal arithmetic, multiplication and division in Python
have equal importance and are performed before addition and
subtraction. We say multiplication and division have
precedence over addition and subtraction.

Operator Precedence and Associativity

= The multiplicative operators (*, /, //, and %) have equal
precedence with each other, and the additive operators
(binary + and -) have equal precedence with each other.

The multiplicative operators have precedence over the
additive operators.

= As In standard arithmetic, in Python if the addition is to be
performed first, parentheses can override the precedence
rules.

= Multiple sets of parentheses can be arranged and nested in
any ways that are acceptable in standard arithmetic.

Operator Precedence and Associativity

Table 3.2: Operator precedence and associativity.

Operators Associativity
Unary +, -
Binary *,/,% Left
Binary +, - Left
Binary = Right

= The operators in each row have a higher precedence than the
operators below it.

= Operators within a row have the same precedence.

Operator Precedence and Associativity

= The assignment operator supports a technique known as
chained assignment.

= The code
W=X=Yy = zZ

should be read right to left.

= As In the case of precedence, parentheses can be used to
override the natural associativity within an expression.

= The unary operators have a higher precedence than the
binary operators, and the unary operators are right
associative.

Comments

= Good programmers annotate their code by inserting remarks
that explain the purpose of a section of code or why they
chose to write a section of code the way they did. These
notes are meant for human readers, not the interpreter. It is
common in industry for programs to be reviewed for
correctness by other programmers or technical managers.

= Any text contained within comments is ignored by the Python
Interpreter. The # symbol begins a comment in the source
code.

= The comment is In effect until the end of the line of code:

Compute the average of the values |
|

avg = sum / number |

Comments

= Good programmers annotate their code by inserting remarks
that explain the purpose of a section of code or why they
chose to write a section of code the way they did.

= Any text contained within comments is ignored by the Python
Interpreter. The # symbol begins a comment in the source
code.

= The comment is in effect until the end of the line of code:

Compute the average of the values
avg = sum / number

avg = sum / number # Compute the average of the values

Errors

In Python, there are three general kinds of errors:
= syntax errors, (translation phase)
= run-time errors, and
= |ogic errors.

Arithmetic Examples

File
File tempconv.py

Author: ERick Halterman

Last modified: August 22, 2011

Converts degrees Fahrenheit to degrees Celsius

Based on the formula found at
http://en.wikipedia.org/wiki/Conversion of units of temperature
Prompt user for temperature to convert and read the supplied value
degreesF = eval (input ({"'Enter the temperature in degrees F: '))

Perform the conversion

degreesC = 5/% = |(degreesF - 32):

Eeport the result

print {(degreesF, '\ 'degrees F =', degreesC, 'degrees C'H

Edit Format Run Options Window Help

He e He e e e e

EESTART: E:/courses/Python course/codes/tempconv.py
Enter the temperature in degrees F: 212

212 '"degreez F = 100.0 degree=z C

e

RESTART: E:/courses/Python course/codes/tempconv.py
Enter the temperature in degrees F: 32
32 'degrees F = 0.0 degrees C

Arithmetic Examples

Listing 3.7: timeconv.py

File timeconv.py

l
2
3 |# Get the number of seconds

4 |seconds = eval (input ("Please enter the number of seconds:"))

5 |# First, compute the number of hours in the given number of seconds

6 |# Note: integer division with possible truncation

7 |hours = seconds // 3600 # 3600 seconds = 1 hours

8 |# Compute the remaining seconds after the hours are accounted for

9 |seconds = seconds % 3600

10 |# Next, compute the number of minutes in the remaining number of seconds
1l |[minutes = seconds // 60 # 60 seconds = 1 minute

12 | # Compute the remaining seconds after the minutes are accounted for

13 | seconds = seconds % 60

14 | # Report the results

15 |print (hours, "hr,", minutes, "min,", seconds, "sec")

Fleasze enter the numker of seconds:10000

o,

Z hr, 46 min, 40 =ec

W= D M B =] SR oh s L b e

5

w

Arithmetic Examples

Listing 3.8: enhancedtimeconv.py

File enhancedtimeconv.py

Get the number of seconds
seconds = eval (input ("Please enter the number of seconds:"))

First, compute the number of hours in the given number of seconds

Note: integer division with possible truncation

hours = seconds // 3600 # 3600 seconds = 1 hours

Compute the remaining seconds after the hours are accounted for
seconds = seconds % 3600

Next, compute the number of minutes in the remaining number of seconds
minutes = seconds f/ 60 # 60 seconds = 1 minute

Compute the remaining seconds after the minutes are accounted for
seconds = seconds % 60

d _RePort the results Flease enter the number of seconds:10000
print (hours, ":", sep="", end="") -

Compute tens digit of minutes 2:46:40

tens = minutes // 10 [

Compute ones digit of minutes Please enter the number of seconds:11000
ones = minutes % 10 . Y

. 3:03:20
print (tens, ones, ":", sep="", end="")

Compute tens digit of seconds
tens = seconds // 10

Compute ones digit of seconds
ones = seconds % 10

print (tens, ones, sep ="")

More Arithmetic Operators

= Any statement of the form | X op= exp

IS equivalent to

X = X Op exp;

where
* X IS a variable.

e Op= IS an arithmetic operator combined with the assignment
operator; for our purposes, the ones most useful to us are +=, -=,
*=, [=, /=, and %-=.

* exp IS an expression compatible with the variable

X = x4+ 1 x += 1

x —= 1 # Same as x = x - 1;

More Arithmetic Operators

Similarly;
X =y + z; mmm) X=X *x (y + 2);

The version using the arithmetic assignment does not require

parentheses. The arithmetic assignment is especially handy if a
variable with a long name must be modified; consider

temporary_filename_ length = temporary filename_ length / (y + z);

Versus
temporary filename_ length /=y + z;

Do not accidentally reverse the order of the symbols for the
arithmetic assignment operators

Algorithms

= An algorithm is a finite sequence of steps, each step taking a
finite length of time, that solves a problem or computes a
result.

= A computer program is one example of an algorithm.

= The ordering of steps is very important in a computer
program.

Listing 3.9: faultytempconv.py
File faultytempconv.py

Establish some variables | degreeSC IS preassigned |

e R T before the calculation
Define the relationship between F and C

degreesC = 5/9x (degreesF - 32)

Prompt user for degrees F

degreesF = eval (input ('Enter the temperature in degrees F: '))
Report the result

print (degreesF, "degrees F =', degreesC, 'degrees C')

2 8 o =] oh e b =

Algorithms

= As another example, suppose x and y are two variables in
some program.

= How would we interchange the values of the two variables?

We want x to have y’s original value and y to have x’s original
value.

= This code may seem reasonable: X = ¥y
y = X

= The problem with this section of code is that after the first
statement is executed, x and y both have the same value (y’s
original value). The second assignment is superfluous and
does nothing to change the values of x ory.

Algorithms

= The solution requires a third variable to remember the original
value of one the variables before it is reassigned. The correct
code to swap the values is

temp = x

X =y
y = temp

= \We can use tuple assignment to make the swap even simpler:

X, V=V, X \

Thank you

