
“

”

Selected Programming

Language:

Introduction to Python

CS 427

Faculty of Science, Department of Mathematics

Ref:

Richard L. Halterman, LEARNING TO PROGRAM WITH PYTHON, 2011

http://python.cs.southern.edu/pythonbook/pythonbook.pdf

Chapter 3

Expressions and Arithmetic
2

Contents

Expressions and Arithmetic

Expressions

Operator precedence and associativity

Comments

Errors

Arithmetic examples

Algorithms

3

Expressions

 A literal value like 34 and a variable like x are examples of a

simple expressions.

 Values and variables can be combined with operators to form

more complex expressions.

4

Expressions

Table 3.1: Commonly used Python arithmetic binary operators

All these operators are classified as binary operators because
they operate on two operands

5

Expressions

 Two operators, + and -, can be used as unary operators. A

unary operator has only one operand.

 The unary operator expects a single numeric expression

(literal number, variable, or more complicated numeric

expression within parentheses) immediately to its right; it

computes the additive inverse of its operand.

6

Expressions

 The following statement

print(-(4 - 5))

within a program would print 1

 The unary + operator is present only for completeness; when

applied to a numeric value, variable, or expression, the

resulting value is no different from the original value of its

operand.

 Omitting the unary + operator from the following statement

x = +y

does not change its behavior.

7

8 Tuple assignment of 2 integers

Integer multiplication

Assignment x as string

Duplicate x by y times

Duplicate x by y times

Duplicate x twice

9

Duplicate x three times

Integer multiplication

Assignment y as string

Cannot multiply 2 strings

Concatenate x and y

Duplicate x three times

Expressions

 All the arithmetic operators are subject to the limitations of the

data types on which they operate.

10

Expressions

When we apply the +, -, *, //, %, or ** operators to two

integers, the result is an integer.

 The / operator applied to two integers produces a floating-

point result.

 The process of discarding the fractional part leaving only the

whole number part is called truncation.

11

Expressions

 Truncation is not rounding.

 The modulus operator (%) computes the remainder of integer

division; thus,

12

Expressions

 Floating-point arithmetic always produces a floating-point

result.

 Integers can be represented exactly, but floating-point

numbers are imprecise approximations of real numbers.

 Floating-point numbers are not real numbers, so the result

cannot be represented exactly without infinite precision.

13

Expressions

14

Numerical error

Expressions

 In Listing 3.3 (imprecise10.py) lines 3–6 make up a single

Python statement.

Ordinarily a Python statement ends at the end of the source

code line.

When the interpreter is processing a line that ends with a \, it

automatically joins the line that follows.

15

Expressions

 Expressions may contain mixed elements; integer and

floating-point.

When an operator has mixed operands—one operand an

integer and the other a floating-point number—the interpreter

treats the integer operand as floating-point number and

performs floating-point arithmetic.

16

Operator Precedence and Associativity

When different operators appear in the same expression, the

normal rules of arithmetic apply. All Python operators have a

precedence and associativity:

• Precedence—when an expression contains two different kinds of

operators, which should be applied first?

• Associativity—when an expression contains two operators with

the same precedence, which should be applied first?

 As in normal arithmetic, multiplication and division in Python

have equal importance and are performed before addition and

subtraction. We say multiplication and division have

precedence over addition and subtraction.

17

Operator Precedence and Associativity

 The multiplicative operators (*, /, //, and %) have equal

precedence with each other, and the additive operators

(binary + and -) have equal precedence with each other.

The multiplicative operators have precedence over the

additive operators.

 As in standard arithmetic, in Python if the addition is to be

performed first, parentheses can override the precedence

rules.

Multiple sets of parentheses can be arranged and nested in

any ways that are acceptable in standard arithmetic.

18

Operator Precedence and Associativity

Table 3.2: Operator precedence and associativity.

 The operators in each row have a higher precedence than the

operators below it.

 Operators within a row have the same precedence.

19

Operator Precedence and Associativity

 The assignment operator supports a technique known as

chained assignment.

 The code

should be read right to left.

 As in the case of precedence, parentheses can be used to

override the natural associativity within an expression.

 The unary operators have a higher precedence than the

binary operators, and the unary operators are right

associative.

20

Comments

 Good programmers annotate their code by inserting remarks

that explain the purpose of a section of code or why they

chose to write a section of code the way they did. These

notes are meant for human readers, not the interpreter. It is

common in industry for programs to be reviewed for

correctness by other programmers or technical managers.

 Any text contained within comments is ignored by the Python

interpreter. The # symbol begins a comment in the source

code.

 The comment is in effect until the end of the line of code:

21

Comments

 Good programmers annotate their code by inserting remarks

that explain the purpose of a section of code or why they

chose to write a section of code the way they did.

 Any text contained within comments is ignored by the Python

interpreter. The # symbol begins a comment in the source

code.

 The comment is in effect until the end of the line of code:

22

Errors

In Python, there are three general kinds of errors:

syntax errors, (translation phase)

run-time errors, and

logic errors.

23

Arithmetic Examples24

Arithmetic Examples25

Arithmetic Examples26

More Arithmetic Operators

 Any statement of the form

is equivalent to

where

• x is a variable.

• op= is an arithmetic operator combined with the assignment

operator; for our purposes, the ones most useful to us are +=, -=,

*=, /=, //=, and %=.

• exp is an expression compatible with the variable

27

More Arithmetic Operators28

Similarly;

The version using the arithmetic assignment does not require

parentheses. The arithmetic assignment is especially handy if a

variable with a long name must be modified; consider

Versus

Do not accidentally reverse the order of the symbols for the

arithmetic assignment operators

Algorithms

 An algorithm is a finite sequence of steps, each step taking a

finite length of time, that solves a problem or computes a

result.

 A computer program is one example of an algorithm.

 The ordering of steps is very important in a computer

program.

29

degreesC is preassigned

before the calculation

Algorithms

 As another example, suppose x and y are two variables in

some program.

 How would we interchange the values of the two variables?

We want x to have y’s original value and y to have x’s original

value.

 This code may seem reasonable:

 The problem with this section of code is that after the first

statement is executed, x and y both have the same value (y’s

original value). The second assignment is superfluous and

does nothing to change the values of x or y.

30

Algorithms

 The solution requires a third variable to remember the original

value of one the variables before it is reassigned. The correct

code to swap the values is

We can use tuple assignment to make the swap even simpler:

31

Thank you
32

