A Proposed Design for Cryptography

In Computers Security

	Prof. Dr. Sanaa El Ola Hanafi

Head of Information technology department

Faculty of information and computers 

Cairo university
	Dr. Imane Aly Saroit Ismail

Information technology department

Faculty of information and computers 

Cairo university
	Abou El Ella Abdou Abou El Ella

Senior Operator

Computer Center

Income Tax


Abstract

Cryptography is the only known practical method for protecting information transmitted through communications networks that use land lines, communications satellites, and microwave facilities. It is the only practical means for protecting the confidentiality of information transmitted through potentially hostile environments, where it is either impossible or impractical to protect the information by conventional physical means. 

Two main types of cryptography exist, block cipher and stream cipher, block ciphering are most common than stream cipher. In this paper, we studied the most common two block algorithms, and only one stream cipher algorithm, then we modified the three algorithms and compare between them,[1-2]. 

I- Introduction:

Cryptography is the only known practical method for protecting information transmitted through communications networks that use land lines, communications satellites, and microwave facilities. It is the only practical means for protecting the confidentiality of information transmitted through potentially hostile environments, where it is either impossible or impractical to protect the information by conventional physical means. A cryptographic system properly implemented can prevent much eavesdropping damage. Also, damage resulting from message alteration, message insertion, and message deletion can be avoided. And in some cases a cryptographic system can reduce the severity of problems caused by the accidental exposure of misrouted information.

A cryptographic algorithm can be thought as an extremely large number of transformations, the particular transformation in effect depending on the cryptographic key being used. Each transformation changes sequences of intelligible data (plaintext) into sequences of apparently random data (ciphertext). The transformation from plaintext is known as encipherment or encryption. Each transformation must have a unique inverse operation, also identified by a cryptographic key. The inverse transformation from ciphertext to plaintext is called decipherment or decryption. The term that encompasses both enciphering and deciphering operations is ciphering.


Two main types of cryptography exist, block cipher; which treats the plaintext as blocks with various lengths according to the implementation of the used algorithm, and stream cipher; which treats the plaintext as blocks with length one bit. Block cipher is divided into two categories public-key and conventional key cryptography.

Through our reading we have found that block ciphering are most common than stream cipher, so we decided to study the most common two block algorithms, and only one stream cipher algorithm. Then we have modified the three algorithms and compare between them. 

The rest of the paper is organized as follows. An overview on cryptography in general is illustrated in section 2. In section 3, the studied algorithms are introduced. Results are obtained in section 4, and finally conclusions are given in section 5.

II- Cryptography:

Cryptography has a long and fascinating history. The computers and communications systems in 1960’s brought with it a demand from the private sector in order to protect information in digital form and to provide security services. The possibility exists that unauthorized individual can intercept data by eavesdropping In fact, several methods of eavesdropping exist. 

	1-
	Wiretapping: Interception of individual transmission over communication lines by using hardwire connections.

	2-
	Electromagnetic Eavesdropping: Interception of wireless transmissions.

	3-
	Acoustic Eavesdropping: Interception of sound waves created by the human voice or by printing, punching, or transmitting equipment.


Eavesdropping is completely passive; the opponent only listens to or records information being transmitted. In a passive attack, a tape recording of digital data intercepted from a communication path is made. The data can be reconstructed by analyzing the recording tape or playing it backs into suitable receiving equipment. 

We solve these problems by cryptography, which converts data from its origin picture to ciphering picture which not make sense with intruder, consequently the data in its ciphering picture have not any meaning for the intruder,[1-2].

Cryptography has several categories, the most general are:          

	1-
	Block cipher; which treats the plaintext as blocks with various lengths according to the implementation of the used algorithm. Block ciphering is divided into two categories public-key and conventional key cryptography.

	2-
	Stream cipher; which treats the plaintext as blocks with length one bit.


2.1- Block cipher:

A block cipher transforms a string of input bits of fixed length (an input block) into a string of output bits of fixed length (an output block). Block cipher can be divided into public-key and conventional key cryptography. We refer to the two categories, but go deeply with public-key since it is the most practical category in life [3-5]. 

2.1.1- Conventional key cryptography:


The operation of encipherment and decipherment are as in figure 4.1 and can be described as follows:   

f k (X) = Y
For encipherment.

f k-1 (Y) = X
For decipherment. 

Subscript K designates which particular key (and hence function, fk) is selected out of the set of all possible keys.


Although fk must be one-to-one for decipherment to be possible, it is interesting that a one-to-one function fk can in the simplest case be constructed from a many-to-one function (a function that produces the same output for several different inputs). Let such a many-to-one function be defined as gk. The idea here is to exercise g in the encipherment as well as in the decipherment process.
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Figure 1 Block Cipher (Conventional Cryptography Algorithm)

1- Advantages of Conventional-key cryptography:                                                                        

	1-
	Conventional-key ciphers can be designed to have high rates of data throughput. Some hardware implementations achieve encrypt rates of hundreds of megabytes per second, while software implementations may attain throughput rates in the megabytes per second range.

	2-
	Keys for Conventional-key ciphers are relatively short.

	3-
	Conventional-key ciphers can be employed as primitives to construct various cryptographic mechanisms including pseudo-random number generators

	4-
	Conventional-key ciphers can be composed to produce stronger ciphers. Simple transformations which are easy to analyze, but on their own weak, can be used to construct strong product ciphers

	5-
	Conventional-key encryption is perceived to have an extensive history.


2- Disadvantageous of conventional-key cryptography: 

	1-
	In a two-party communication, the key must remain secret at both ends.

	2-
	In a large network, there are many pairs to be managed.

	3-
	In a two-party communication between entities A and B, cryptographic practice dictates that the key be changed frequently, and perhaps for each communication session.

	4-
	Digital signature mechanisms arising from Conventional-key encryption typically require either large keys for the public verification function or the use of TTP.


2.1.2- Public-key cryptography

Public key cryptography uses an enciphering key (PK) which is in the public domain and a deciphering key (SK) which is kept secret. Anyone can encipher data using the public key of another user, but only those users with knowledge of the secret key can decipher enciphered data. The enciphering algorithm (E) and the deciphering algorithm (D) might be different, though it is possible for E and D to be identical. In the following discussion, it is assumed that E and D are public.

For private data communications, a public-key algorithm must have the following properties:

	1-
	Users must be able to compute a pair of public and private keys, PK and SK, efficiently.

	2-
	Knowledge of PK must not permit SK to be computed efficiently. Note that, there is no requirement that knowledge of SK prevent PK from being computed efficiently.

	3-
	Encipherment followed by decipherment causes the original message (X) to be recovered, that is,

DSK (EPK (X)) = X ( X in the domain of EPK


If, in addition to meeting conditions (1) and (2), the public key algorithm satisfies condition (3), then the algorithm can be used to generate a digital signatures that authenticates the message's sender. 

Greater design restrictions are placed on a public-key algorithm than on a conventional algorithm, because the public-key represents additional information, which the opponent can use to attack the algorithm. A public-key algorithm must be designed to withstand attacks made possible by this additional information.

1-Advantages of public-key cryptography: 

	1-
	Only the private key must be kept secret (authenticity of public keys must, however, be guaranteed).

	2-
	The administration of keys on a network requires the presence of only a functionally trusted TTP.

	3-
	Depending on the mode of usage, a private key/public key pair may remain unchanged for considerable periods of time.

	4-
	Many public-key schemes yield relatively efficient digital signature mechanisms. The key used to describe the public verification function is typically much smaller than for the conventional-key counterpart.

	5-
	In a large network, the number of keys necessary may be considerably smaller than in the conventional-key scenario.


2- Disadvantages of public-key encryption:

	1-
	Throughput rates are slower than Conventional-key.

	2-
	Key sizes are typically much larger than those required for conventional-key encryption.

	3-
	Public-key cryptography does not have as extensive a history as a Conventional-key encryption.


2.1.3- Conventional-key versus public-key cryptography:

Conventional-key and public-key cryptography schemes have various advantages and disadvantages, some of which are common to both.

In a conventional algorithm such as DES, the designer has complete freedom to choose the substitutions permutation, number of rounds, and key schedule (i.e., key bits used in each round) without considering whether the enciphering process reveals the deciphering process. In DES, the deciphering process can be automatically determined if the enciphering key is known, since all steps taken in the enciphering process can easily be retraced to obtain the deciphering process.

On the other hand, in a public-key algorithm it must not be possible to retrace the steps in the enciphering process to determine the deciphering process. Enciphering follows one path and deciphering follows a different path, and knowledge of the former must not reveal the latter.

There are other notable differences between conventional and public-key algorithms. The public-key algorithms invented are easily described in mathematical terms, and rely for their strength on the underlying assumption that a particular, known mathematical problem is difficult to solve. On the other hand, a conventional algorithm like DES is designed so that the mathematical equations describing its operation are so complex that for all practical purposes it is not possible to solve them using analytical methods.

Another difference relates to the disciplines needed to attack an algorithm. With a public-key algorithm, these disciplines appear to be few in numbers and fixed by the algorithm’s mathematical description. With a conventional algorithm, on the other hand, the designer has the freedom to ensure that many (possibly chosen) disciplines are required.

Also, the manner in which keys are generated is different for conventional and public-key algorithms. In a conventional algorithm, the key can be randomly selected in a straightforward ways since knowledge of the enciphering key is equivalent to knowledge of the deciphering key, and vice versa. However, in a public-key algorithm, the relationship between the public and private keys is purposely made obscure (i.e. knowledge of the public key does not reveal the private). Thus, a special procedure is needed to compute the public and private keys, and this procedure must also be computationally efficient.                              

2.2- Stream ciphers

Stream ciphers can be either symmetric-key (conventional key) or public-key. Stream ciphers form an important class of conventional-key encryption schemes. They are, in one sense, very simple block ciphers having block length equal to one. What makes them useful is fact that the encryption transformation can change for each symbol of plaintext being encrypted. In situations where transmission errors highly probable, stream ciphers are advantageous because they have no error propagation. They can also be used when the data must be processed one at a time (e.g. if the equipment has no memory or buffering of data is limited),[6-8].  

2.3- Block verses Stream ciphers: 


Block ciphers process plaintext in relatively large blocks (e.g., n>64 bits). The same function is used to encrypt successive blocks; thus (pure) block ciphers are memory less. In contrast, stream ciphers process plaintext in blocks as small as a single bit, and the encryption function may vary as plaintext is processed; thus stream ciphers are said to have memory. They are sometimes called state ciphers since distinction between block and stream ciphers is not definitive; adding a small amount of memory to a block cipher result in a stream cipher with large blocks.


Some of the differences between block and stream ciphers are:

	1-
	The block cipher enciphers a single block of data at one time. It requires a minimum block-size determined by considerations of cryptographic strength. The stream cipher requires no minimum block-size; it can be used to encipher, in the extreme case, on a bit-by-bit basis.

	2-
	In the block cipher, every ciphertext bit is a complex function of every plaintext bit in the corresponding input block. In the stream cipher every ciphertext bit y(i) is related to its corresponding plaintext bit x(i) by a smaple relationship.

	3-
	The block cipher may or may not require an initializing vector; it is allowed to reoriginate. This is because knowledge of the plaintext and its corresponding ciphertext does not reveal information in the same way. That it would in the case of the stream cipher. A cryptographically strong Stream cipher must not re-originate and thus requires an initializing vector.


Through our reading we found that block ciphering are most common than stream cipher, so we decided to study the most common two algorithms using public-key cryptography, and only one stream cipher algorithm. Then we have modified the three algorithms and compare between them. 

III- Studied Algorithms:


In this section, the three studied algorithms are discussed, they are two block cipher (RSA and knapsack) and one stream cipher, then the suggested modification is proposed as well as the parameters used to compare the original and modified algorithms. The section is divided into five subsections, RSA, knapsack and stream cipher algorithms are discussed in the first three subsections. Subsection 4 suggests the modifications and 5 introduce the performance parameters used in the comparison.

3.1- RSA Algorithm:

The RSA algorithm  (named for the algorithms inventors: Rivest, Shamir and Adleman) is based on the fact that in the current computing, art factorization of composite numbers with large prime factors involves extreme computations. Indeed, cumulative experience has shown this problem to be intractable.

To describe the RSA algorithm, the following quantities are defined.

	1-
	p and q are primes
	(secret)

	2-
	r = p*q
	(non-secret)

	3-
	¢(r) = (p-1)*(q-1)
	(secret)

	4-
	SK is the private key
	(secret)

	5-
	PK is the public key
	(non-secret)

	6-
	X is the message (plaintext)
	(secret)

	7-
	Y is the ciphertext
	(non-secret)


A number p (p = 1, 2, 3, . . .) is called prime if its only divisors are the trivial ones, +1 and  + p, otherwise it is called composite.

The following summary describes the procedure for selecting keys and performing the steps of encipherment and decipherment:                   

	1-
	Two secret prime numbers, p and q are selected randomly.

	2-
	The public modulus, r = p*q is calculated.

	3-
	The secret Euler totient function ¢(r) = (p-1 )*(q-1) is calculated.    

	4-
	A quantity, K is selected, which is relatively prime to ¢(r), K is defined as either the secret key, SK, or the public key, PK.

	5-
	The multiplicative inverse of K modulo ¢(r) is calculated using Euclid's         algorithm, and this quantity is defined to be either the public key, PK, or the Secret key, SK, depending on the Choice made in (4).  

	6-
	Encipherment is performed by raising the plaintext, X (whose value is in the range0 to r—l), to the power of PK modulo r, thus producing the Ciphertext, Y (whose value is also in the range 0 to (r-1).

	7-
	Deciphennent is performed by raising the ciphertext Y to the power of SK modulo r.


Pk can be calculated from Sk as follows: Supposing that ¢(r)=(p-1)*(q-1)=2760 and SK=167 is a candidate for the secret key. The following equations can be written:

2760= I67*16 + 88

167= 88*1 + 79

88= 79*1 + 9

79= 9 * 8 + 7

9= 7*1 + 2

7= 2*3 + 1
(1 is the last non-vanishing remainder)

2=1*2

A variation of Euclid's algorithm can be used to find the value of Pk. The goal is to rewrite the previous equations in such a way that the final result is in the form: 

(factorl * Sk) + (factor2* ¢(r))=1. In which case, factorl is interpreted as Pk. (Note that this expression is equivalent to Pk*Sk ( 1 (mod ¢(r).)

Example:

	Let;

So

Let;

So
	p=47, q=61 (both are chosen randomly)

r=p*q=2867

¢(r) = (p-1 )*(q-1)=2760

Sk=167 (chosen randomly)

Pk=1223 (calculated below).


	
	PK*SK ( 1 (mod ¢(r))

	
	With the given parameters (p=47, q=61, Sk=167, ¢(r)=2760), following equation

	
	*
	1 = 7 - 2 * 3

	
	
	Substituting 2 = 9 - 7 * 1

	
	*
	1 =7-9*3+7*3= 7*4 - 9*3

	
	
	Substituting 7 = 79 - 9*8

	
	*
	1=79* 4 - 9 *32 - 9 *3 =79 * 4 - 9 *35

	
	
	Substituting 9= 88-79 *1

	
	*
	1 = 79 *4 - 88 *35 + 79 *35 = 79 *39 - 88 *35

	
	
	Substituting 79= 167 - 88 *1

	
	*
	1 = 167* 39-88 * 39 - 88 35 = 167 *39-88 * 74

	
	
	Substituting 88 = 2760 - 167 * 16

	
	*
	Finally, after substitution, the following solution results:

1 = 167 * 1223 -2760 * 74


From this final results, it can be seen that 1223 is the multiplicative inverse of 167 modulo 2760, and therefore that Pk=1223 is the public key corresponding to Sk=167.

The message to be enciphered is first divided into a series of blocks such that the value of each block does not exceed r-1. (Otherwise, a unique plaintext representation is not possible.) This could be achieved by substituting a two-digit number for each letter of the message). For example, blank = 00, A = 01, B = 02, . . ., 2 = 26. Thus, the message:
"RSA ALGORITHM" would be written in blocks as 

1819
0100
0112
0715
1809
2008
1300

The first plaintext block, 1819, is enciphered by raising it to the power PK =1223, dividing by r = 2867, and taking the remainder, 2756, as the ciphertext. Likewise, 2756 is deciphered by raising it to the power SK = 167, dividing by r = 2867, and taking the remainder, 1819, as the recovered plaintext. The total ciphertext of the example is as follows: 


2756
2001
0542
0669
2347
0408
1815

Since Pk=10011000111 in binary (or 210 + 27 + 26 + 22 + 21 + 20 or 1024 + 128 + 64 + 4 + 2 + 1), the first plaintext block, 1819, is enciphered as follows:

18191223( 18191024 *181964 * 18194  * 18192   *18191(2756 (mod 2867)

Since Pk contains 11 bits, there are 10 repeated squaring operations needed to compute the intermediate quantities: 18192, 18194, 18198,…., 18191024. The cumulative total is then multiplied by each intermediate result if there is a corresponding 1 bit in the key. Except for the value of the exponent, the operations of encipherment and decipherment are the same,[9-11].

3.2- Trapdoor Knapsack Algorithm:


A public-key algorithm can also be based on the classical problem in number theory known as the knapsack problem. The following is an introduction to this approach: Let A be a non-secret (published) vector of n integers, and let X be a secret vector of n binary digits (0's and 1's). Defining Y to be the dot product of A and X, so:

A = (a1, a2, . . ·, an)

X = (xl, x2, · . ., xn)

Y = A * X = a1x1 + a2x2 +....+anxn
Calculation of Y is simple, involving only a sum of at most n integers. However, finding X from Y and A is generally difficult when n is large and A is properly chosen. This is called the knapsack problem, where one is asked to find X such that A*X = Y, where A and Y are given.

The idea usually is to use some secret quantities to transform the hard knapsack problem into an easy one, this is done by transforming Y to Y' such that Y'=A'*X, using this X can be found easily.

The following summary describes the Knapsack Algorithm used for encipherment and decipherment of X: 

	1-
	Select A' be a secret vector of n integers, such that:

a'I > a'1 + a'2 + . . . + a'i -1  for all i

	2-
	Select two secret numbers r and t randomly, having the following properties:

* r > a1' + a2' + . . . + an'.

* r >t.

* r and t are relatively prime (i.e., gcd (r, t) = 1).

	3-
	From r and t, calculate the secret value s which is the multiplicative inverse of t module r.

	4-
	Select the non secret vector of n integers A, as follows:

ai= a'i *t(mod r)

	5-
	Y to be the dot product of A and X, Y=A*X

	
	To recover X from A and Y, do the following:

	6-
	Calculate Y' = Y*s(mod r)

	7-
	From Y' and A, recover X as follows:

If Y'n is less than a'n, then x'n is set equal to 0 and Y'n-1 is set equal to Y. Otherwise, x'n is set equal to 1 and Y'n-1 is set equal to Y'n-a'n..Now using the computed value of Y'n-2, one can compute the values of x' n-1 and Y'n-2 in a similar manner. The procedure continues until X = (a1, x2, . . .. xn) has been recovered. 


Example:

	Let;
	A' = (15, 92,108,279,563,1172,2243,4468)  
(secret, chosen randomly)

r=9291, t=2393  


 
 
(secret, chosen randomly)

	So,
	r=1025
 
 
 
 
 
 (secret, derived)

calculated as follows:

1 = 136 - 9 * 15

1 = 16 *136 - 16 * 145

1 = 16 * 281 - 31 * 145

1 = 233 * 281 - 31 * 2112

1 = 233 * 2393 - 264 * 2112

1 = 1025 * 2393 - 264 * 9291

	
	A = (8022, 6463, 7587, 7986, 65, 8005, 6592, 7274) 
(non-secret, derived)

Calculated as follows:

a1=15*2393(mod 9291)=8022.

a2=92*2393(mod 9291)=6463.   ….. etc.

	So;
	A message, X = (1, 0,1, 1 ,0 ,0 ,0 ,1) is enciphered using vector A, as follows.

*Calculate Y, 

Y = A * X = (8022 + 7587 + 7986 + 7274) = 30869

	
	To recover X from Y' and A':

Multiplying Y by the secret value of s results Y', 

Y' = Y * s (mod r) = 30869*1025 (mod 9291) = 4870

Since, A' = (15, 92, 108, 279, 563, 1172, 2243, 4468) and Y' = A'*X = 4870

Thus:


x8 = 1,
since Y'8 (= 4870) >a'8  (= 4468)


x7 = 0,
since Y'7 (= 402) <  a'7 ( =2243)


x6 = 0,
since Y'6  (= 402) < a'6 (= 1172)


x5 = 0,
since Y'5  (= 402) < a'5 (= 563)


x4 = 0,
since Y'4  (= 402) < a'4 (= 279)


x3 = 1,
since Y'3  (= 123) > a'3 (= 108)


x2 = 0,
since Y'2  (= 15)   < a'2 (= 92)


x1 = 1,
since Y '1  (= 15)  > a'1 (= 15)

So, X=(l, 0, 1, 1, 0, 0, 0, 1).


The trapdoor knapsack public-key algorithm is illustrated by the following example:

A' = (15, 92,108,279,563,1172,2243,4468)  
       (secret, chosen randomly)

r = 9291                                                                       (secret, chosen randomly)

t = 2393                                                                       (secret, chosen randomly)

s = 1025                                                                       (secret, drived)

A = (8022, 6463, 7587, 7986, 65, 8005, 6592, 7274) (non-secret, derived) 

A message

                                X = (1, 0, 1, 1, 0, 0, 0, 1)

is enciphered using vector A, as follows.

                                 Y = A*X = (8022 + 7587 + 7986 + 7274) = 30869

Multiplying Y by the secret value of s results in 

Y' = Y * s (mod r) = 30869*1025 (mod 9291) = 4870

Subsequently, X = (1, 0, 1, 1, 0, 0, 0, 1) is recovered from Y' = 4870 and vector A', as previously shown [12-14].

3.3- Stream cipher (Vernam):


A stream cipher (Fig.2) employs a bit-stream generator to produce a stream of binary digits called a cryptographic bit-stream, which is then combined either with plaintext (via the ( operator) to produce ciphertext, or with ciphertext (via the ( ' operator) to recover plaintext. Thus encipherment and decipherment are defined by X( R=Y and Y( R=X, respectively. Fig.3 shows an example of encipherment and decipherment a plaintext.
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Fig.2 Stream cipher Concept
	
	Plaintext


0101

                                                (
Cryptographic Bit-Stream
0011
Ciphertext


0110

Ciphertext


0110

                                                (
Cryptographic Bit-Stream
0011
Plaintext


0101

Fig.3  Example of encipherment and decipherment a plaintext


For practical reasons, the bit-stream generator must be implemented as an algorithmic procedure, so that both users can produce the cryptographic bit-stream. In such an approach, the bit-stream generator is a key-controlled algorithm and must produce a cryptographic bit-stream, which is cryptographically strong. The ciphering algorithm (G) uses a cipher text (k) to generate a cryptographic bit stream (R).

Since the cryptographic key (K) is a constant quantity, the cryptographic bit-stream (R) or block of bits produced at each iteration of the ciphering algorithm, will not change if it depends only on K. In this case, once the opponent has obtained R, he can decipher any intercepted ciphertext without ever knowing the key (K), which is unacceptable, the stream cipher must not start from the same initial conditions in a predictable way. The stream cipher must not start from the same initial conditions in a predictable way, and thereby regenerate the same cryptographic bit-stream at each iteration of the algorithm. In other words, the stream cipher must not re-originate. So, an unpredictable cryptographic bit-stream, another quantity, defined as the initializing vector (Z), must be introduced into the ciphering process. Z which is kept non secret must have the following properties: 

	1-
	Random Z is produced by some natural phenomenon whose statistics have been demonstrated to be random, and Z has enough combinations so that the probability of repeating is extremely small.

	2-
	Pseudo-random Z is produced by a deterministic process, whose period (the interval between equal recurring values) is extremely large compared to the length of Z, and whose value have the statistical properties of randomness.

	3-
	Non-repeating; under certain conditions, Z can be produced by a process that may be predictable but, whose period before repeating is so large that for practical purposes it is of no concern. A 64-bit non-resettable counter would satisfy this condition. Even if the opponent obtains the cryptographic bit-stream associated with one counter setting, he cannot determine what the bit-stream will be for a different counter setting.


Fig.4 shows the encipherment of first block of a plaintext using a stream cipher.
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Fig.4 Encipherment of first block of a plaintext using a stream cipher.

The following summary describes the Vernam algorithm for encipherment and decipherment of X: 

	1-
	Generate the initializing vector Z.

	2-
	Intermediate vector (U) can be obtained by concatenating zeros bits to z (function h). It may not equal to the length of the initializing vector Z. A function h* is introduced to define how U(l) is obtained from Z:  U(1) = h*(Z).\

	3-
	Intermediate vector (U) is x-ored (() with the key K using function (g).

	4-
	Encipherment of the first block of plaintext is given by:   Y(l) = X(l) ( gK(U(I))



In order to obtain the next initializing vectors, the following is done: Let the intermediate initializing vector at time i U(i), be a function h of the previous initializing vector, U(i - 1), as well as an additional feedback quantity:

U(i) = h[U(i—1), feedback quantity ]

However, since U(l) equals h*(Z), it follows that U(2) is given by

U(2) = h [h*(Z), feedback quantity]

Initializing vectors must satisfy the same conditions as the initializing vector Z.  The function h must therefore not introduce a bias into the ciphering process that could make the U values predictable. The special case where the feedback is obtained from the cryptographic bit-stream is defined as the key auto-key cipher. One property of this cipher is that an error in the ciphertext produces an error only in the corresponding bit positions of the recovered plaintext (i.e., there is no error expansion due to the ciphering process).

There are many ways to design a key auto-key cipher. The component comon to all of these designs is that the feedback must be obtained from the cryptographic bit-stream. In general, the following relationships hold for a key auto-key cipher:

Y (i) = X (i) ( R (i)

X (i) = Y (i) (  R (i)

Where 

R (i) = gK  (U (i));                 1(i(t  
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Where U (l) = h*(Z) is the initial seed value, U(i) is the new seed at iteration i >1, and h is a simple function of the two arguments.

Stream cipher can be illustrated with an example as follows:

1. Suppose that the cryptographic bit stream              Z = 0011

2. We cocatinate Z with zeros producing U(1)                  0000

                                                                                           --------

                                                                            U(1)  =  00110000

3. We X-oring U(1) with the key                           K   =  00111100

                                                                                       ---------------

4. We obtain R(1) as follows                                R(1) = 00001100   

5. We X-oring R(1) with the plaintext                       X = 01011001

                                                                                       ---------------

6. We obtain the ciphertext Y as                               Y = 01010101


We can recover the original plaintext from cipher text as follows

1. We use cipher text to obtain original plaintext as Y = 01010101

2. X-oring Y with the with R(1) as follows          R(1) = 00001100

                                                                                       ---------------

3. The original plaintext X is obtained as follows     X = 01011001
3.4- Suggested Modification:

Our discussion starts with the question: “How does the intruder know that he can go throw the algorithm and can break it?" The answer is: "if from the ciphertext, he can obtain a text that make sense with him”. Our purpose is making the intruder fell always that he cannot obtain a text that make sense with him. So the question becomes: "How can we make the text not make sense with the intruder?" The proposed answer that it can be accomplished by the next two steps:

	1-
	Rearrangement every two sequenced characters. 

For example if the text is:  “KNAPSACK ALGORITHM”

This will give the following text:  “NKPAASKCA GLROTIMH ” 

	2-
	Rearrangement the whole text.

After this rearrangement the text will be: “HMITORLG ACKSAAPKN”

Which is changed totally from the original text. 


3.5- Performance parameters:

In order to compare the original algorithms with the modified algorithm, some performance parameters must be measured, these parameters are:

	1-
	The probability of breaking the algorithm and producing the original text, which is calculated mathematically.

	2-
	The execution time of the algorithm. No mathematical formula exists to calculate this time, instead it was measured by executing the two compared algorithms on the computer and measure the time.


IV-Results:

4.1- RSA results: 


In order to prove that the modified algorithm is better than the original one, the probability of breaking both the original and modified algorithms and the execution time are measured. This section is divided into two subsections, the first one measures the probability of breaking the original and modified RSA algorithms, while the second measures their execution time.

4.1.1-The probability measure:


In this subsection, probability of breaking the original and modified RSA algorithms is measured.

1-The probability measures for the original algorithm (RSA):


Some considerations are taken while calculating the probability of breaking the original algorithm (RSA):

	1-
	Probability of discovering the quantity p, under the assumption that 100<p<1000, is equal (1/900).

	2-
	Probability of discovering the quantity q, under the assumption that 100<q<1000, is equal (1/900).

	3-
	Probability of discovering the alphabetic codes, known that we had made a new alphabetic code for every character, is equal (1/256) n ,where n= (length of text/2).

	
	So, total probability algorithm for RSA = (1/900)*(1/900)*(1/256) n


2-The probability measures for the modified algorithm (RSA1):


In order to calculate the probability of breaking the modified algorithm (RSA1), same considerations for the original algorithm are taken, plus the following two:

	4-
	Probability of recognizing the rearrangement every two sequenced characters, is equal to (1/2)n ,where n= (length of text/2).

	5-
	Probability of recognizing the rearrangement of the whole text characters, is equal to 1/ concatenation nC1=(1/ nC1).

	
	So, total probability algorithm for RSA1= (1/900)*(1/900)*(1/256)n*(1/2)n* (1/nC1)
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Fig. 5 The probability for the original and

modified RSA algorithms in scale1:10-100
	         Because of the very low probability resulted, it was so difficult to represent it by a graph, so a scale of 1:10-100 was taken to produce results in table 1, and fig.5.

Length

RSA prob.
RSA1 prob.
100

150

200

250

0.2524049443

0.0613235222

0.0187237899

0.0009788087

0.1597601485

0.0455526807

0.0024893804

0.0009148792

Table 1

The probability for the original and

modified RSA algorithm in scale1:10-100



From the previous results, it is clear that the probability of breaking the modified algorithm RSA1 is lower than the original algorithm RSA by a proper difference. For example, with text of length 250 characters, the difference may reach (1/1040). Also, this difference increases with the increase of the text length, [15-16]. 

4.1.2- Execution time measures:                                                                                


In this subsection, the execution time needed for both the original and modified RSA algorithms is measured. Three variables exist in RSA algorithms, p, q and text length. The execution time is calculating in the following cases:

	Both text length and p are constant but q is changed.
	1-

	Both text length and q are constant but p is changed.
	2-

	Both p and q are constant but text length is variable.
	3-
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Fig 6.a

Text length and p are constant, but q changes.
	Figures 6.a to 6.c show the execution time in millisecond in the three cases respectively. From these figures, it is noticed that although the execution time increases with the increasing of text length, p and q value, the difference between the execution time of the original and the modified one, does not increase with these increases.

It is clear that the execution time of the modified RSA1 algorithm is always greater than that of the original one, but this difference is too small ((0.005msec).
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 Fig 6.c

p and q are constant, but text length changes
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 Fig 6.b

Text length and q are constant, but p changes


Fig.4 The execution time of original and modified RSA algorithms

4.1.3- Conclusion: 

It has been noticed that there is a trade off between probability and time exists. The modified algorithm RSA1 spends more time than the original algorithm RSA, but the difference between them is quite small ((0.005msec). The probability of breaking the modified algorithm is smaller than that of the original one by a proper value ((1/1040for a text length of 250). Also this difference increases with the increase of the text length. So, looking at the progress of probability for modified algorithm and the extra small time in execution, it is clear that there are no comparisons since we cannot compare the huge progress in probability with the negligible extra time which is less than 0.01millisecond. As final result, we can say that the modified algorithm is much useful than the original one,[17-20].

4.2- Knapsack algorithm results:                                                            


In order to prove that the modified algorithm is better than the original one, the probability of breaking both the original and modified algorithms, as well as the execution time are measured. This section is divided into two subsections, the first one measures the probability of breaking the original and modified algorithms, while the second measures their execution time.

4.2.1-The probability measures:

In this subsection, the probability of breaking the original and modified algorithms is measured.

1- The probability measures for the original knapsack algorithm (Knap):   


The following considerations are taken while calculating the probability of breaking the original knapsack algorithm:

	1-
	Probability of finding the value of r, under the assumption that it was represented  in 32 bits, which equal (1/ 232).

	2-
	Probability of finding the value of t, under the assumption that it was represented in 32 bits, which equal (1/ 232).

	
	So, total probability algorithm knap= (1/232)*(1/232)


2- The probability measures for the modified knapsack algorithm (Knap1):

In order to calculate the probability of breaking the modified algorithm (knapsack1), same considerations for the original algorithm are taken, plus the following two:

	Probability of recognizing the rearrangement every two sequenced characters, is equal to (1/2)n, where n= (length of text/2).
	3-

	Probability of recognizing the rearrangement of the whole text characters, is equal to 1/ concatenation nC1=(1/ nC1).
	4-

	So, total probability algorithm for knap1=(1/ 232)*(1/ 232)*(1/2)n*(1/ nC1 )
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 Fig 7. The probability for the original and

modified Knap algorithms in scale1:10-10
	          Because of the very low probability resulted, it was so difficult to represent it by a graph, so a scale of 1:10-10 was taken to produce results in table 2, and fig.7.

Length

Knap prob.
Knap1 prob.
100

150

200

250

0.054

0.054

0.054

0.054

0.0012057

0.0000702

0.0000334

0.0000019

Table 2

The probability for the original and modified Knap algorithm in scale1:10-10



From the previous results, it is clear that the probability of breaking the modified algorithm knap1 is lower than the original algorithm knapsack with a proper difference which for example reach (1/1038) with text length of 250 characters. It has been notice that this difference increases with the increase of the text length. Considering that on the average any message consists of thousands of characters, the difference of probability will increase thousands times,[15-16].

4.2.2-Execution time measures:     

            In this subsection, the execution time needed for both the original and modified Knapsack algorithms is measured.   

	            Figure 8 shows the execution time in millisecond for both the original and modified knapsack algorithms. From this figure, it is noticed that although the execution time increases with the increase of text length, the difference between the execution time of the original and the modified one, does not increase with this increase by a noticeable quantity.

            It is clear that the execution time of the modified  algorithm (Knap1) is always greater than that of the original one, but this difference is too small ((0.003msec).
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and modified knapsack algorithms


4.2.3- Conclusion:

There is also a trade off between probability and time. Knap1 algorithm spends more time than Knap, but the difference between them is quite small ((0.003msec). The probability of breaking knap1 is much smaller than that of Knap one by a proper value ((1/1038for a text length of 250). Also this difference increases with the increase of the text length. So, comparing the progress of probability for Knap and Knap1, and the extra small time in execution, has no meaning since we cannot compare the huge progress in probability with the negligible extra time which is less than 0.003 millisecond. As final result, we can say that the modified algorithm is much better than the original one [21-22].

4.3- Stream cipher results: 


As for the previous two methods, the probability of breaking both the original and modified algorithms, as well as their execution time are calculated in order to prove that the modifications done lead to better results. The section is divided into two subsections, the first one measures the probability of breaking the original and modified stream cipher algorithms, while the second measures the execution time of the original and modified stream cipher algorithms.

4.3.1- The probability measures:


In this subsection, the probability of breaking the original and modified algorithms is measured.
1- Probability measures for the original stream cipher algorithm:


The following considerations are taken while calculating the probability of breaking the original stream cipher algorithm:

	1-
	Probability of knowing the quantity of initial vector Z, under the assumption that it is represented in 8 bits, is equal (1/28)

	2-
	Probability of knowing the quantity of initial vector K, under the assumption that it is represented in 8 bits, is equal (1/28)

	
	So, total probability algorithm for Stream = (1/28)*(1/28)


2-The probability measures for modified stream cipher algorithm:


In order to calculate the probability of breaking the modified algorithm (Stream1), same considerations for the original algorithm are taken, plus the following two:

	3-
	Probability of recognizing the rearrangement every two sequenced characters, is equal to (1/2)n, where n= (length of text/2).

	4-
	Probability of recognizing the rearrangement of the whole text characters, is equal to 1/ concatenation nC1=(1/ nC1).

	
	So, total probability algorithm for Stream1= (1/28)*(1/28)*(1/2)n*(1/nC1)

	
As in the other two algorithms, resulted probabilities are too low, it was too difficult to represent it by a graph, so a scale of 1:10-10 was taken to produce results in table 3, and fig.9.

Length

Stream prob.
Stream1 prob.
100

150

200

250

0.474341649

0.474341649

0.474341649

0.474341649
0.0111206

0.00508606

0.00030143

0.00014332
Table 3

The probability for the original and modified Stream algorithm in scale1:10-10
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 Fig 9. The probability for the original and

modified Stream algorithm in scale1:10-10


From the previous results, it is clear that the probability of breaking the modified algorithm stream1 is lower than the original algorithm stream with a proper difference which for example reach with length 250 characters to (1/1039). It has been noticed that this difference increases with the increase of the text length,[15-16].

4.3.2-Execution time measures: 

            In this subsection, the execution time needed for both the original and modified Stream algorithms is measured.              

	            Figure 10 shows the execution time in millisecond for both the original and modified Stream cipher algorithms. From this figure, it is noticed that although the execution time increases with the increase of text length, the difference between the execution time of the original and the modified one, does not change with this increase by a noticeable quantity.

            It is clear that the execution time of the modified algorithm is always greater than that of the original one, but this difference is too small ((0.002msec). 
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4.3.3- Conclusion:

As in the previous two methods, a trade off exists between probability and execution time. The modified algorithm Stream1 spends more time than the original algorithm Stream, but the difference between them is quite small ((0.002msec). The probability of breaking the modified algorithm is smaller than that of the original one by a proper value ((1/1039for a text length of 250). Also this difference increases with the increase of the text length. So, looking at the progress of probability for modified algorithm and the extra small time in execution, no comparisons can be done; we cannot compare the huge progress in probability with the negligible extra time. As final result, we can say that the modified algorithm is much better than the original one.

4.4-Comparison between the three algorithms:

In this subsection a comparison between the three modified algorithms is done. Our comparison essentially depends on the previous mentioned factors, probability of breaking the algorithm and execution time for the algorithm. Figures 11 and 12 show the probability of breaking the algorithms and execution time needed for them respectively. As usual, since the resulted probabilities are very low, a scale of 1:10-100 was taken to produce fig.11.
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From the previous figures, it was noticed that the probability of breaking the algorithm is the least in case of the modified RSA1 algorithm. For example with text length 250, the difference in probability between RSA1 and knapsack1 algorithm ((1/10-289) and between RSA1 and stream1 ((1/10303). Also this difference increases with the increase of the text length.
For the execution time, it is clear that the highest one was spent in case of RSA1, but the difference between it and that of the other two algorithm is quite small. For example with text length 250, the difference in execution time between RSA1 and knapsack1 algorithm ((0.153989) and between RSA1 and stream1 ((0.16399). This difference does not increase with the increase of the text length by a noticable quantity.
So, a trade off between probability and time exists. Comparing the progress of probability for modified algorithm RSA1with the extra small time in execution has no meaning, since we cannot compare the huge progress in probability with the negligible extra time.

As final result, we can say that the modified RSA1 algorithm is much better than the other two modified algorithms.

V-Conclusion:


In the paper, three cryptographic algorithms are studied, RSA and knapsack algorithms following block cipher concept, the third one is the stream cipher algorithm. Same modifications have been done for the three algorithms, a comparison is done between each algorithm and its modified one. finally, comparison is done between the three modified algorithms. The following conclusions were deduced:

	*
	Probability of breaking any modified algorithm is always smaller than that of the original one by a proper number. The difference in probability between each original and modified algorithm increase with the increase of the text length.

	*
	Execution time needed for any modified algorithm is always greater than that of the original one by a very small number (less than a millisecond). The difference in execution time between each original and modified algorithm does increase with the increase of the text length by a noticable quantity.

	*
	The very small increase needed to execute eah modified algorithm is negligible comparing to the huge increase in probability of breaking the algorithm.

	
	So, each modified algorithm is better than his original.

	*
	Probability of breaking the modified RSA algorithm is always smaller than that of the other two modified algorithms by a proper number. The difference in probability between the modified RSA and the other two modified algorithms increase with the increase of the text length.

	*
	Execution time needed for the modified RSA algorithm is always greater than that of the other two modified algorithms by a very small number (less than a millisecond). The difference in execution time between the modified RSA and the other two modified algorithms does not change increase with the increase of the text length by a noticable quantity.

	*
	The very small increase needed to execute the RSA modified algorithm is negligible comparing to the huge increase in probability of breaking this algorithm.

	
	So, the modified RSA algorithm (RSA1) is better than the modified knapsack and the modified stream cipher algorithms [23-25].
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Figure 4.3:The flowchart that describe the steps of execution of modified RSA1 algorithm  
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