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Abstract—In this paper we study the problem of finding
semantic relationships between folksonomy tags. We investigate
different methods used to embed tags in the vector space and find
similarities between them using word embedding vectors. We also
present two new methods for embedding tags in the vector space
utilizing labeled Latent Dirichlet Allocation (LDA) and Wikipedia
category links. Related tags are grouped into communities using
an overlapping community detection technique. In order to eval-
uate tag embedding methods, we use three different evaluation
metrics, two of them do not require a ground truth dataset and
the third is based on a manually created dataset of ground truth
communities. Our results show that representing folksonomy
tags using bag of words and embedding this representation in
the vector space yields the best results compared to embedding
co-occurring tags only or embedding tags along with textual
content of tagged documents. We also compare between using
word embedding, Latent Semantic Indexing (LSI), and LDA
to find similarities between bag of words representations of
tags. We show that word embedding outperforms LSI in one
representation, while LDA is hard to beat.

Index Terms—folksonomy, semantic similarity, word embed-
ding, labeled LDA, Stack Overflow, Wikipedia

I. INTRODUCTION

A folksonomy is a set of keywords that are assigned liber-
ally to an information resource by the crowd. The process of
tagging itself is referred to as collaborative tagging. Folkson-
omy tags assigned to an online resource contain information
that complement information found in its body. They are
more than just metadata, they are actually more content and
highlight aspects of meaning that can be absent in the body
of the resource. Folksonomies were designed to be informal
without a specific hierarchy or relationships between tags.
Since it is governed by the crowd, this means it is continuously
changing in an unstructured way. As the number of tags
increases, selecting an appropriate tag for a resource can be
confusing due to the existence of synonymous, homonymous,
and polysemous tags. Finding semantic relationships between
tags helps in recommending appropriate tags to a user tagging
a resource. Related tags can also be used to expand user
queries and disambiguate tags when searching for resources
that are assigned ambiguous tags. Moreover, they can give
insights into the way a particular tag is used in a folksonomy.
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One of the popular collaborative tagging platforms is Stack
Overflow1, a community Question Answering (cQA) forum
for programming professionals. This forum is characterized
by a large folksonomy of tags related to programming. It
contains around 15,621,383 posts and 51,780 tags assigned by
users2. One unique aspect about this platform is the continuous
effort to maintain high quality posts and tags. Posts and
answers are assigned scores by the crowd in order to encourage
content editors to post high quality questions and answers.
Another interesting aspect of Stack Overflow folksonomy is
synonym control. Users can suggest synonymous tags and,
after revision, suggestions can be accepted and synonymous
tags get merged into a single tag. All these aspects ensure that
the data contained in this platform is of high quality.

In this paper our focus is on finding semantic relationships
between tags in Stack Overflow folksonomy. However, our
methods can be applied to any other folksonomy where
tags are applied to textual content. Similar tags can include
synonyms or tags belonging to the same topic. For instance,
“html” and “css” are both related to web design but they
are not synonyms per se. We investigate different methods
that can be used to capture semantic similarities between
folksonomy tags. Methods investigated in this paper include
finding relationships between tags based on the following
representations (1) co-occurrence statistics of tags, (2) textual
content of tagged resources and (3) tag signature, a piece of
text that describes the meaning of a tag.

We utilize labeled LDA [1] and Wikipedia3 category links
in order to create tag signatures. Tags are embedded in the
vector space based on each of these representations and then
similarities between each pair of tags is calculated using
word embedding vectors. Different representations used to
embed tags in the vector space are explained in Section
III-B. Communities of related tags are created afterwards using
overlapping community detection techniques as explained in
Section IV. We evaluate communities using different evalua-
tion metrics and show that the third representation is the best
to capture semantic similarity between folksonomy tags. We
also compare the use of word embeddings, LSI [2] and LDA
[3] to find similarities between bag of words representations

1https://stackoverflow.com/
2Statistics obtained from https://stackoverflow.com/questions and

https://data.stackexchange.com/stackoverflow/query/new respectively
3https://en.wikipedia.org/wiki/Main Page



of tags, where LSI and LDA are considered as baselines. Our
results show that embedding outperforms LSI in one represen-
tation unlike LDA which outperforms word embedding in two
different representations. Evaluation results and discussion are
presented in Section V.

II. RELATED WORK

An overview of a number of methods used to find re-
lated tags is presented in [4]. These methods include tag
co-occurrence in documents, tag co-occurrence by the same
user only, tag co-occurrence in the same document by the
same user, and clustering documents based on their tags.
Co-occurrence based methods assume that co-occurring tags
are similar. Graph clustering techniques and co-occurrence
statistics of tags are used in [5]–[9] to find semantically related
ones. A different method utilizing co-occurrences to group
related tags is introduced in [10]. They build a lattice of
all tags such that co-occurrence relationships between them
are captured. Next, they investigate two lattice partitioning
techniques and how to rank partitions found. All these methods
assume that relationships between tags are based on co-
occurrences only and ignore the semantic aspects for grouping
related tags.

Representing a tag using documents it tags, which is re-
ferred to as tag signature, and then using it to find related tags
is studied in [11]–[14]. These studies use all the documents
assigned a particular tag in order to represent a tag, which
is computationally expensive when applied to tags of a cQA
forum like Stack Overflow. For instance, the tag “multithread-
ing” is assigned to 108,110 questions in Stack Overflow. This
means that a tag is represented by hundreds of thousands
of words. Therefore, a more efficient method needs to be
employed to create tag signature.

External resources such as WordNet and Wikipedia are
used in [15] to find related tags. Their study shows that
associating tags with concepts helps in classifying resources.
Since concepts are more general than terms, they reveal
relationships between tags beyond term matching. Wikipedia
contains more concepts than WordNet, and hence is more ap-
propriate to find the meaning of a diverse set of tags. Tags are
linked to Wikipedia category links or articles directly to help
classify them. However, the number of Wikipedia category
links is large and categories are diverse. Other methods to find
semantic relationships between tags using Wikipedia category
links need to be explored rather than linking tags to categories
directly.

Word embedding techniques are used in [16] to find related
tags. A number of word embedding techniques are applied
to tags and the semantic quality of generated embeddings
is evaluated. To the best of our knowledge, this is the only
study that utilizes embedding vectors to group related tags.
However, it is based on creating embeddings of tags based
on their co-occurrences only. In our work we investigate other
methods used to embed folksonomy tags in the vector space. In
addition to utilizing co-occurrence statistics, we utilize textual
content of tagged resources and tag signatures to embed tags

in the vector space. The first two methods assume that a tag
is a single word that is embedded in the vector space. When
tags are embedded using their co-occurrences, this means that
tags only are embedded in a vector space where related tags
are placed in close proximity to each other. Using textual
content of tagged resources means that a tag is embedded in
a space containing both tags and words in a tagged resource.
On the other hand, tag signatures assume that each tag is a
self contained document consisting of a bag of words.

We propose two efficient methods to create tag signatures
that were not studied in literature for this task previously. Both
methods use keywords produced by labeled LDA for each tag
and keywords of Wikipedia category links related to a tag
to create signatures. After embedding tags in the vector space
using explained methods, an overlapping community detection
technique is used to create communities of related tags. The
quality of generated communities is evaluated using different
evaluation metrics.

Results show that representing a tag using a signature is
better than other methods utilizing co-occurrence statistics or
textual content of tagged resources. We also compare between
different techniques used to embed tag signatures in the vector
space, namely word embedding and LSI, to find similarities
between them. We show that word embedding outperforms
LSI when a tag is represented using labeled LDA keywords.
Moreover, we compare the use of word embedding and LDA
topic probability distributions to find similarities between tag
signatures and show that LDA is hard to beat. This study is
the first study that compares between different methods of
embedding tags in the vector space and finding similarities
between them.

III. REPRESENTING FOLKSONOMY TAGS AND FINDING
SIMILAR ONES

In this section we briefly explain the word embedding model
used in our experiments to embed tags and words in the vector
space. Then we explain different methods utilized to embed
a tag in the vector space. Finally, we show how communities
of related tags are created and the similarity metric utilized to
group tags into communities.

A. Word Embedding Model

Word embedding models belong to predictive distributional
semantic models that try to predict a word from its neigh-
bour words. Their goal is to embed words in the vector
space in order to encode semantic relationships between
them. Moreover, more complex semantic relationships be-
tween words can be derived by applying algebraic oper-
ations to word vectors. For example, V ector(“Man”) −
V ector(“Woman”) + V ector(“King”) results in a vector
that is close to V ector(“Queen”) [17]. Theses models have
been shown to boost the performance of several tasks. Skip-
gram and continuous bag-of-words (CBOW) models intro-
duced by [18] are based on the use of a neural network
structure to learn word representations. Skip-gram models
predict the context of a word given the word itself, while



CBOW models predict a word given its context. These meth-
ods however have the disadvantage of not operating directly
on the co-occurrence statistics of a corpus. They scan a context
window across the whole corpus, and fail to take advantage
of the repetitions present in the data [19]. Another word
embedding model is Global Vectors of word representations
(Glove) [19], which captures the global statistics of a corpus to
represent words as vectors. Glove is a specific weighted least
squares model that uses global words co-occurrence counts
in training, and thus makes efficient use of corpus statistics.
It outperforms other models in several word similarity tasks
[19]. Since finding similarity between words representing tags
is our main goal in this paper, we use Glove to obtain word
vector representations in our experiments.

B. Embedding Tags in the Vector Space

In this subsection, we explain different methods used to
embed tags in the vector space in our study. We first explain
three baseline models and then introduce two new models
which were not studied in literature before for this task.

1) Co-occurrence Statistics (Ecotags): We create Glove
word vectors for each tag using a corpus of co-occurring
tags in Stack Overflow posts. Since co-occurrence relationship
can indicate semantic similarity, we expect this representation
to produce reasonable results in finding related tags. In this
representation only tags are embedded in the vector space.

2) Textual Content of Tagged Resources (Etag): In this
representation a tag is considered one of the content words of a
document. Tags not only are metadata but also complementary
data to document text. Glove word vectors are trained using
both text and tags of Stack Overflow posts concatenated.
Embedding vectors of tags are used subsequently to find
similarities between them.

3) Tag Excerpts (Eex): A tag excerpt is a short piece of
text that describes the meaning of a tag concisely. It is created
by the collaborative tagging platform and therefore it is an
accurate description of the meaning of a tag. An example of a
tag excerpt is shown in Figure 1. Tag excerpts can be used
to identify related tags. In this representation, Glove word
vectors of stemmed content words of an excerpt are used to
find similarities between tags. This representation assumes that
a tag is a document consisting of a bag of words.

youtube
YouTube is a video-sharing website on which users can upload, share,
and view videos.

Fig. 1: Excerpt of “youtube” tag provided by Stack Overflow website

4) Keywords of Labeled LDA (Ellda): Labeled LDA is a
probabilistic graphical model that is considered one variation
of LDA topic modeling technique. It constrains LDA by
defining a one to one correspondence between tags and topics
[1]. This means that the model learns correspondences between
tags and words in a corpus directly. A document is modeled
as a mixture of underlying topics and each word is generated

from a topic. The number of topics is equivalent to the number
of unique tags in a corpus. Labeled LDA provides word-topic
assignments that can be used to represent tags, where a topic
represents a tag. Top N keywords assigned to each tag, KT

N ,
are used in our experiments as a tag signature. These keywords
effectively summarize documents where a tag is present. Word
embedding vectors of keywords are used to find similarities
between tags in the vector space.

5) Keywords of Wikipedia Category Links (Ewiki): We use
Wikipedia as an external resource since it contains lots of
articles about programming technologies that overlap with
Stack Overflow tags. Wikipedia category links related to
each tag are collected from wiki descriptions provided by
Stack Overflow4. Wiki descriptions are first searched for any
Wikipedia link. These links are considered as Wikipedia pages
related to Stack Overflow tags. For instance, Wikipedia articles
extracted from wiki descriptions of tags “c++” and “python”
are shown in Table I. We refer to these articles as WIKIsof .
Next, category links of each extracted article are retrieved
using DBPedia SPARQL endpoint5. We refer to these category
links as CATsof .

Category links of Wikipedia articles can be considered as
“topics” to which these articles belong. Therefore, we think
they can be useful in identifying related Stack Overflow tags,
since each tag is related to a number of articles. Moreover,
we analyzed both WIKIsof and CATsof , and found that
the number of category links shared among Stack Overflow
tags is generally larger than the number of shared Wikipedia
articles. For instance, there are 151 tags that share “Cross-
platform software” category link. On the other hand, the
maximum number of tags that share a Wikipedia article,
“Firefox”, is 15. For that reason we prefer to use category
links in our experiments rather than articles. Category links
related to tags “c++” and “python” are shown in Table I.

Category links irrelevant to programming technologies, such
as “Don’t repeat yourself” and “Dutch computer scientists”,
are manually removed from CATsof to avoid representing
Stack Overflow tags with words irrelevant to their main topic.
For each Wikipedia category link, a set of N keywords
are produced using Labeled LDA. Glove word vectors of
keywords of category links related to a Stack Overflow tag
are used to find similarity relationships with other tags in the
vector space.

C. Calculating Similarity Scores between Pairs of Tags

The distance between a pair of tags using Ecotags and
Etag methods is the Euclidean distance between their em-
bedding vectors, since both methods do not have a bag of
word representation for a tag. For the remaining methods,
we utilize Word Mover’s Distance (WMD) metric [20] in
order to calculate the distance between pairs of tag signatures.
WMD utilizes word embedding vectors such that the semantic
similarity between individual word pairs in two documents is

4Downloaded from https://data.stackexchange.com/stackoverflow/query/new
5http://wiki.dbpedia.org/



Stack Overflow tag Wikipedia article Category links
c++ “C++” “Programming language topics”

“Type safety” “Class-based programming languages”
“Type system#Static typing” “C++ programming language family”

python “Don’t repeat yourself” “Class-based programming languages”
“Python (programming language)” “Object-oriented programming languages”
“Dynamic programming language” “Dutch computer scientists”
“Guido van Rossum”

TABLE I: Wikipedia articles and category links related to “c++” and “python”

used to calculate distance between them. This method has
several advantages (1) it is hyper-parameter free (2) it is
interpretable and straightforward, the distance between two
documents is broken down into distances between their words
(3) it incorporates the valuable information in word embedding
models. WMD allows each wordi in a tag signature t to
be transformed to any wordj in another tag signature t′.
The distance between wordi and wordj is measured using
Euclidean distance as follows c(i, j) = ||xi − xj ||2, where
xi and xj are embedding vectors of words i and j. In other
words, the distance between two tag signatures is the minimum
cumulative distance that words from one signature need to
travel to match the document cloud of another signature. It is
worth mentioning that WMD metric can calculate the distance
between a pair of tag signatures even if their lengths are not
equivalent.

D. Grouping Related Tags

After embedding each tag in the vector space and using
WMD to measure similarity between pairs of tags, we need to
create communities of related tags. Tags can be represented as
a set of connected graph nodes, where edge weights represent
similarity between each couple of nodes. Community detection
techniques are an ideal method to find communities of re-
lated tags. Using overlapping community detection techniques
is more realistic since Stack Overflow folksonomy contains
tags that can belong to multiple communities. For instance,
“windows-phone-8” is related to speech and audio commu-
nity and also mobile technologies community. We explored
different implementations of overlapping community detection
techniques available online. For our experiments we needed a
technique that is (1) fast enough6 to process a large number of
graph edges in a reasonable time, and (2) uses weights of graph
edges to find communities, since semantic similarity between
tags is based on weights. Order Statistics Local Optimization
Method7 (OSLOM) [21] was the most suitable for our task.
Therefore, we report the results of our experiments using
OSLOM tool.

IV. DATASETS AND EXPERIMENTS

The statistics of datasets used are summarized in Table
II. All datasets are tokenized and stemmed using Stanford
CoreNLP toolkit [22]. We refrain from stemming tags in our

6A tool that is fast enough would take at most 24 hours to produce tangible
results using an Intel Core i7 processor and 15 GB RAM laptop.

7http://www.oslom.org/

experiments because we found that it can merge concepts that
differ in meaning together. For instance, “io” and “ios” tags
will both become “io” after stemming although each refers to a
different concept: input/output and iPhone OS. Stack Overflow
posts and Wikipedia articles containing less than five words
are discarded.

A. Training Labeled LDA

We train MALLET implementation of Labeled LDA [23]
using two datasets: a sample of Stack Overflow posts and a
sample of Wikipedia articles. In order to obtain a dataset that
can be used to train Labeled LDA in a reasonable time, we
only use posts that contain tags linked to at least one Wikipedia
category link and have an excerpt. Keywords of such tags are
of interest to be able to compare different tag representation
methods. We filtered these posts further using their community
assigned scores such that posts assigned a score greater than
or equal to zero are included. This step ensures that posts used
are of a reasonable quality. A post in our experiments consist
of title, question, in addition to best answer if available. The
total number of posts used after filtering is 2,935,329 posts.
We refer to this dataset as SOFllda.

The second dataset used to train Labeled LDA consists
of Wikipedia abstracts of articles and their category links as
labels. Abstracts are filtered such that only those assigned at
least one category link in CATsof are used. This way we
ensure that we obtain keywords representing category links
related to Stack Overflow tags. The total number of abstracts
used is 115,430. All abstracts are obtained using DBPedia
SPARQL endpoint. We refer to the latter dataset as WIKIllda.
The top N = 20 keywords of Labeled LDA output are used
to represent a tag or a category link. The number of top words
that was shown to capture important vocabulary of a topic is
10-15 as shown in [1], [3]. We use 20 words to ensure that
all relevant words are used.

B. Training Word Embeddings

After training Labeled LDA, each Stack Overflow tag is
represented using KT

20 keywords. In order to be able to find
similarities between tags, we represent each keyword using
Glove word vectors. Since training word embeddings is better
if a large dataset is used, we train Glove using all Stack
Overflow posts that have a community assigned score greater
than or equal to zero. Title of post, tags, question as well as
the best answer, if available, are combined together in training



Num. of posts/articles Vocabulary size Num. of tags/category links
SOFllda 2M+ 111K+ 3K+
WIKIllda 115K+ 149K+ 24K+
SOFwe 10M+ 212K+ 46K+
WIKIwe 4M+ 357K+ 1M+

TABLE II: Datasets used to train Labeled LDA and word embeddings

data. The total number of posts used is 10,854,607. We refer
to this dataset as SOFwe.

Word vectors of Wikipedia category links are also needed in
order to use them to represent each Stack Overflow tag. We
think that this representation is appropriate since Wikipedia
category links are numerous and diverse, 3,657 Wikipedia
category links are linked to 3,616 Stack Overflow tags. There-
fore, representing category links using word vectors will help
place category links close to each other in meaning in close
proximity in the vector space. We train Glove using Wikipedia
dataset that consists of 4,841,864 long abstracts. We refer to
this dataset as WIKIwe. Category links were not included in
the training because their number was large, more than one
million, and including them would affect training speed. We
also do not need their vectors in our experiments.

Word and tag vectors for Eex and Etag are obtained from
the output of training Glove using SOFwe dataset. In this
dataset, tags are part of the content words and each tag has
a word vector representation. Vectors used in Ecotags are
created using co-occurring tags in SOFwe dataset. For this
representation we train Glove using co-occurring tags only
to create tag embeddings. We set the vector size in word
embedding training to M = 800, and the window size is set
to 10. These values are shown to perform best in classifying
short documents [24].

C. Finding Related Tags

The dataset we use consists of 2,154 tags. In order to be
able to compare different methods, these tags must have the
following characteristics (1) each tag has an excerpt in Stack
Overflow wiki, (2) each tag must be represented by exactly
20 keywords produced by Labeled LDA model to make sure
its meaning is captured properly, (3) each tag must be linked
to at least one Wikipedia category link that is represented by
20 keywords produced by Labeled LDA model. The similarity
between 206,288 pairs of co-occurring tags is calculated using
WMD similarity metric. We use gensim8 implementation of
WMD similarity [20], [25], [26]. Since we need to find clusters
of related tags, similarity scores between tags are needed rather
than distance, therefore we use the negative of WMD score.
The negative is 1

(1+WMD) , as implemented in gensim.
Next, overlapping communities are extracted using OSLOM

tool. The technique implemented by the tool has a number of
parameters: (1) t: the p-value used for optimizing statistical
significance for clusters, (2) cp: coverage parameter that is
used to decide between taking some clusters or their union
and (3) r: the number of runs used to find clusters. First, we

8https://radimrehurek.com/gensim/similarities/docsim.html

run the community detection technique using different values
for each parameter. t is assigned to values {0.1, 0.3, 0.5, 0.9}.
cp is assigned to values {0.2, 0.5, 0.8}. r is assigned to
values {10, 20, 30, 40, 50}. We test our community detection
technique with all combinations of these values. To determine
which values are the best, we investigate modularity, clustering
coefficient and F1 measure, explained in Section V. In most
cases the best values where achieved when t = 0.5 and
cp = 0.8, therefore, we used these values in our experiments.
We report evaluation results using r = {10, 20, 30, 40, 50}.
In order to validate evaluation scores and calculate statistical
significance of improvement where appropriate, communities
of each run in our experiments are generated five times using
different seeds for the community detection algorithm. Our
evaluation results are the average scores of the five runs.

V. EVALUATION AND DISCUSSION

Since a complete gold set of Stack Overflow communities is
not publicly available, we first use modularity [27] and cluster-
ing coefficient [28] metrics to evaluate the quality of generated
communities. However, for the sake of completeness, we also
create a manual subset of communities and evaluate them
using F-measure. Our scores are the average scores of the
five runs generated by the community detection algorithm for
each value of r for different methods. One tailed paired t-test
was used to measure statistical significance of improvement at
95% level of confidence.

Modularity computes the difference between the number of
edges in a community and the number of edges expected to
appear in the same sub-graph in the “null-model”, a model
used to verify if a graph has a community structure. The
higher the modularity, the greater the difference between edge
density in a sub-graph and expected value in the null-model.
We calculate modularity Q for a community structure R for
our weighted graph using the following equation [29]:

Q(R) =

cn∑
i=1

[
Ii
m
−
(
2Ii +Oi

2m

)2]
(1)

where Ii is the sum of the weights of edges between nodes in
a community Ci, m is the sum of the weights of edges in the
graph, Oi is the sum of weights on edges from nodes in Ci

to nodes outside, and cn is the total number of communities.
Clustering coefficient measures local cohesiveness of a

community and is defined for every node v ∈ Ci as the fraction
of its connected neighbours. We use the weighted clustering
coefficient introduced in [30] and calculate the average score
for a community structure as follows:



cc(R) =
1

cn

cn∑
i=1

(
1

|Ci|
∑
v∈Ci

1

si(ki − 1)∑
j,h

(wij + wih)

2
aijaihajh

) (2)

where si is the strength of node v, which is the total weight
of its connections and ki is the degree of node v. aij , aih, ajh
is a triangle in Ci.

Modularity and clustering coefficient do not require a gold
dataset. However, F-measure is more commonly used and
its results are easier to understand. Therefore, we create 7
communities manually, containing 431 tags, by defining topics
then finding tags belonging to each topic to calculate F1 scores
of generated communities. Topics included are “database”,
“algorithms”, “machine learning”, “memory management”,
“mobile development”, “speech and video” and “web develop-
ment”. F1 scores are calculated for pairs of tags as explained
in [31] as follows.
• True positive (TP): a pair is present in at least one gold

community and one community produced by our method.
• False positive (FP): a pair is not present in any gold

community but is present in at least one output commu-
nity.

• True negative (TN): a pair is not present in any gold
community or output community.

• False negative (FN): a pair is present in at least one gold
community and is not present in any output community.

A. Word Embedding Results

Table III shows scores of both evaluation metrics. The
highest modularity scores for most methods are achieved when
r = 10. Increasing the number of runs beyond this value does
not result in improvement except for Eex and Ellda which
reach their best modularity scores at r = {20, 30} respectively.
The same applies to clustering coefficient. Increasing the
number of runs also results in higher scores for Eex and Ellda

methods at r = {50, 30} respectively.
Results of modularity show that Ewiki is the best method

since no other method outperformed it using different values
of r. On the other hand, Ewiki method outperforms Etag ,
Eex and Ellda at r = {20, 10, 10}. Although Etag and Ellda

achieved the highest scores at different values of r, both
were outperformed by other methods. For instance, Eex and
Ewiki outperform Etag at r = 20. Etag outperforms Ellda

at r = {10, 50} while Ellda outperforms it at r = {20, 30}.
Clustering coefficient results also agree with modularity. All
methods failed to outperform Ewiki, while the latter outper-
formed Etag , Eex and Ellda at r = {20, 10, 10}. Although
Ecotags has the highest clustering coefficient scores at r = 10,
Ellda outperformed it at r = 40. Ellda also has the highest
scores at r = {30, 40}, however, Ecotags, Etag and Ewiki

outperform it at r = 10.
Table IV shows F1 scores for r = {10, 20, 30, 40, 50}.

Increasing the number of runs also results in improvement

for Eex, Ellda and a slight improvement in Ewiki. This
evaluation metric shows that Eex and Ellda are the best
methods. Eex outperforms Ecotags and Etag at r = {30, 40}.
Ellda outperforms Ecotags and Etag at r = {30, 40}. No
other method outperformed Eex. On the other hand, Ellda was
outperformed by Etag when r = 10. Ewiki did not outperform
any other method and no other method outperformed it as well.

Overall, the three evaluation metrics introduced differ in the
way each use to asses the quality of communities produced by
each method. However, we generally find that the best methods
for finding related tags according to them are Eex, Ellda and
Ewiki. Therefore, we conclude that using bag of words to
represent folksonomy tags is better than using co-occurrence
statistics or representing them as part of the textual content of
documents they tag.

B. Comparing Word Embedding to LSI and LDA

We compare the use of LSI and word embedding to embed
tag signatures in the vector space and find similarities between
them. We use gensim implementation [32] with default param-
eters to train LSI using two corpora: SOFwe and WIKIwe.
Tag signatures are mapped using trained model into LSI
vector space. Euclidean similarity, calculated as the inverse of
euclidean distance, is used to measure similarity between LSI
vectors of tags. Table V shows F1 scores of LSI compared
to word embedding. Using word embedding to embed tag
signatures created using labeled LDA (Ellda) outperforms
embedding those signatures using LSI (LSIllda) when r = 30.

We also compare the use of word embedding and LDA topic
probability distributions in order to find similarities between
tag signatures. We train LDA using SOFllda and WIKIllda
corpora with 100 topics and default parameters. Next, we
obtain probability distributions for each tag signature. We find
similarity between probability distributions using Hellinger
similarity, the inverse of Hellinger distance [33]. Table V
shows F1 scores of LDA compared to word embedding.
Using LDA with labeled LDA and Wikipedia tag signatures,
LDAllda and LDAwiki, outperforms word embedding results,
Ellda and Ewiki, when r = 10. LDA is more focused on
modeling topics in documents compared to word embeddings,
which embed single words in the vector space and then find
distances between documents based on word distances. We
expect that this is the reason why LDA outperformed word
embeddings.

C. Error Analysis

In order to analyze results further, we calculated confusion
matrix for the best word embedding model, Ellda at r = 30,
shown in Table VI. In this matrix, rows correspond to gold
communities and columns correspond to predicted commu-
nities. We notice that the number of false negative pairs is
large, 8,287 pairs, compared to 3,359 false positive pairs.
We further analyze communities of false negative and false
positive pairs as illustrated in Table VII. This table shows
confusion between gold and output communities if it occurred
> 100 times. Left table shows gold communities, their sizes,



Q(R) r = 10 r = 20 r = 30 r = 40 r = 50
Ecotags 0.148 0.138 0.142 0.138 0.143
Etag 0.147 0.136 0.140 0.138 0.146
Eex 0.141 0.142 0.142 0.139 0.143
Ellda 0.142 0.147 0.147 0.141 0.143
Ewiki 0.148 0.144 0.145 0.139 0.143

cc(R) r = 10 r = 20 r = 30 r = 40 r = 50
Ecotags 0.040 0.036 0.037 0.034 0.038
Etag 0.040 0.034 0.034 0.036 0.038
Eex 0.034 0.036 0.037 0.036 0.038
Ellda 0.035 0.037 0.039 0.038 0.036
Ewiki 0.038 0.036 0.037 0.035 0.037

TABLE III: Modularity and clustering coefficient scores. Bold values are statistically significant higher than at least one other method in
the same run.

F1 r = 10 r = 20 r = 30 r = 40 r = 50
Ecotags 54.53 50.49 48.94 50.01 54.22
Etag 56.15 49.48 50.85 50.36 53.42
Eex 54.96 50.60 54.81 54.40 52.62
Ellda 49.76 51.10 56.78 53.47 52.54
Ewiki 52.46 51.30 52.13 51.30 53.09

TABLE IV: F1 scores of communities for r = {10, 20, 30, 40, 50}.
Bold values are statistically significant higher than at least one

other method in the same run.

r = 10 r = 20 r = 30 r = 40 r = 50
Eex 54.96 50.60 54.81 54.40 52.62
Ellda 49.76 51.10 56.78 53.47 52.54
Ewiki 52.46 51.30 52.13 51.30 53.09
LSIex 49.21 54.32 51.98 50.03 52.76
LSIllda 55.84 51.98 52.75 53.88 50.95
LSIwiki 53.07 54.59 53.07 49.30 52.93
LDAex 53.82 49.83 54.47 53.30 52.78
LDAllda 55.69 53.76 52.24 51.04 50.88
LDAwiki 56.42 51.52 50.59 50.24 51.12

TABLE V: F1 scores of communities, bold values indicate results
that are statistically significant better comparing embeddings and
LDA. Underlined values indicate results statistically significant

better comparing embeddings and LSI.

and the number of tag pairs that were not successfully assigned
to each community, i.e. false negatives. Right table shows
communities produced by our method, their sizes, and the
number of tag pairs erroneously assigned to one cluster, i.e.
false positives.

We notice that the community containing web development
related tags has the largest number of erroneous pairs. This
is due to the large number of tags in this community and the
diversity of tags related to web development. Also, community
detection algorithm can capture relationships between tags that
may not be captured using manual annotation. Tables VIII
and IX illustrate confusion between different communities for
false positives and false negatives. To produce both tables
we manually assigned a title to communities produced by
our method. In Table VIII, the first column lists gold com-
munities of false positive pairs of tags. The second column
lists communities produced by our method. Third column lists
number of times communities in first column were confused

Same community Different communities
Same community 9,548 8,287
Different communities 3,359 59,006

TABLE VI: Confusion matrix of community detection results.

for communities in second column. In most cases, confused
communities are actually related to each other, for instance,
“Mobile” community and “Speech and Audio” communities
are closely related and are confused for “Mobile” community.
Also, “Mobile” and “Web Development” are confused for
“Web Development”, both are closely related.

The same applies to confusion in false negative pairs shown
in Table IX. We even notice that our method produced two
different “Database” communities, and this resulted in 360
pairs of false negatives although pairs of tags were correctly
assigned to database communities. These results show that it
is difficult to produce accurate gold communities manually for
our task. Most Stack Overflow tags are also related to each
other which makes the task of producing gold communities
even more difficult.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of finding semantic
similarities between folksonomy tags. We investigate different
methods used to embed tags in the vector space in order to
create communities of semantically related tags. To the best
of our knowledge, this is the first study investigating different
tag embedding methods. Methods studied in this paper utilize
co-occurrence statistics of tags, textual content of tagged
documents, in addition to creating tag signatures for each tag
in order to embed a tag in the vector space. We present two
new methods for creating tag signatures utilizing labeled LDA
and Wikipedia category links. Studied methods are evaluated
using three different evaluation metrics. Our results show that
embedding tags in the vector space using signatures is the best
method compared to other studied methods. We also show
that word embedding of signatures outperforms LSI in finding
related tags when labeled LDA is used to create tag signatures,
while LDA outperforms word embedding when used with
labeled LDA and Wikipedia tag signatures.

For the future, we aim at investigating word embedding
methods focused on documents rather than words to embed
tag signatures in the vector space.
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