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Background
 So far, we treated urban space as a “continuum”, where 

an entity could travel from any point to any other point

 In reality, urban space is a “discretized space”, where 
travel occurs through discrete facilities such as 
highways, streets, bus routes, subway lines, walkways, 
etc.

 Such discretized space is a “transportation network”

 Network Theory (or Graph Theory) provides useful 
methods to analyze networks



Terms and Notations
 Consider the shown network (aka graph)

 a,b,c,d and e are called nodes, and the set N
includes all nodes

 (a,b),(a,c),(b,a),(b,d),….. are called arcs (or links, 
edges), and the set A consists of all arcs

 Any network/graph is defined as G(N,A)

 Example networks
 Road network

 Nodes: intersections, freeway interchanges

 Links: road sections, freeway sections

 Transit network
 Nodes: transit stops, stations

 Links: route/line segments

 Rail network, telecommunication network,etc.
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Example – Roadway Networks 



Example – Transit Networks 



Terms and Notations (cont’d)
 Arcs could be directed (e.g. arc a,b) or undirected (e.g. arc c,e)

 If A consists of directed arcs only, then G is a directed graph

 If A consists of undirected arcs only, then G is an undirected 
graph

 If A consists of some directed and some undirected arcs, then 
G is a mixed graph (our example network is a mixed graph)

 Arc (a,b) is incident on nodes a and b

 Nodes a and b are called adjacent since they are connected by 
an arc (i.e. a,b)

 Arcs (a,b) and (a,c) are adjacent since they are connected by 
node a

 In an undirected graph, the degree of a node is the number of 
arcs incident on it



Terms and Notations (cont’d)
 In a directed graph

 the in-degree of a node is the number of arcs leading into the 
node

 the out-degree of a node is the number of arcs leading away 
from the node

 A path between 2 nodes is a sequence of adjacent arcs 
and nodes
 A possible path between a and e is: 

a-->c-->d-->e

 We usually write such a path as
 S = {a,c,d,e}

 Could also be written as
 S = {(a,c),(c,d),(d,e)}
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Terms and Notations (cont’d)

a b
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d

 A path is

 simple if each arc appears only once in S

 elementary if each node appears only once in S



Terms and Notations (cont’d)
 A special path is a cycle (e.g. c,d,e,c)

 Any node, i, is connected to node j if there is a path from i to j

 Note that in our example graph, e is not connected to b

 A connected undirected graph is one where a path exists 
between each pair of nodes iN and jN

 A strongly connected directed graph is one where a path 
exists from each node iN to each other node jN, and vice 
versa

 If N’  N and A’  A, then G’(N’,A’) is a subgraph of graph 
G(N,A)

 A tree of an undirected graph is a connected subgraph having 
no cycles 

 A tree of t nodes contains t-1 arcs, and there exists a single 
path between any 2 nodes on the tree

 A spanning tree of G(N,A) is a tree containing all nodes of N



Terms and Notations (cont’d)

 In almost all transportation networks, each link 
(i,j) has a length l(i,j), which can be distance, 
time, cost, etc.

 The length of a path S is L(S) and it is equal to 
the summation of all l(i,j) where (i,j)  S

 The shortest path between 2 nodes i and j will be 
denoted as d(i,j)



Terms and Notations (cont’d)

 Famous network problems
 Shortest Path Problem

 Find the shortest path from an origin node to a destination 
node

 Direct application to dispatching problems

 Applied indirectly to many other network problems

 Travelling Salesman Problem (TSP) – aka Node 
Covering Problem

 Find the shortest route starting from a given node, visiting 
all members of a specified set of nodes at least once, then 
returning to the initial node

 Applications include delivery services, demand-responsive 
bus services,etc.



Terms and Notations (cont’d)

 Famous network problems (cont’d)

 Chinese Postman Problem (CPP) – aka Edge Covering 
Problem (or Route Inspection Problem)

 Find the shortest route, starting from a given node, travelling 
members of a specified set of arcs at least once, then 
returning to the initial node

 Applications include street sweeping, snow plowing, 
garbage collection, etc.



Shortest Path Problem

 2 types

 Shortest paths from a given node (called “source” 
node) to all other nodes
 Solved using Dijkstra’s Node-Labelling Algorithm

 Shortest paths between all pairs of nodes
 Solved using the Floyd Algorithm
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Shortest Path Problem

 For the mixed graph below, find the shortest 
paths from “a”
 Use Dijkstra’s Node-Labelling Algorithm

 The algorithm consists of beginning at the specified 
node s (the "source" node) and then successively 
finding its closest, second closest, third closest, and so 
on, node, one at a time, until all nodes in the network 
have been exhausted.
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
 Attach to each node x a “label” (d,p)

 In the evolution of the algorithm, each node can be in one 
of two states:
 In the open state, when its label is still tentative; or

 In the closed state, when its label is permanent

length of the shortest 
path from s to x

number of preceding 
node on the shortest 
path from s to x 



Shortest Path Problem
 Dijkstra’s Node-Labelling Algorithm
STEP 1 - To initialize the process set d(s) = 0. p(s) = *;

- set d(j) = ∞, p(j) = - for all other nodes j ≠s; 

- consider node s as closed and all other nodes as open; 
- set k = s (i.e., s is the last closed node)

STEP 2 - To update the labels, examine all edges (k, j) out of the last 
closed node; 

- if node j is closed, go to the next edge; 

- if node j is open, set the first entry of its label to 

d(j) = Min [d(j), d(k) + (k,i)]

STEP 3 - To choose the next node to close, compare the d(j) parts of the 
labels for all nodes that are in the open state. 

- Choose the node with the smallest d(j) as the next node to be 
closed. Suppose that this is node i



Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm (cont’d)

STEP 4 - To find the predecessor node of the next node to be closed, 

i, consider, one at a time, the edges (j, i) leading from 
closed nodes to i until one is found such that

d(i) - (a, i) = d(j)

- Let this predecessor node be j*. Then set p(i) = j*

STEP 5 - Now consider node i as a closed node. 

- If all nodes in the graph are closed, then stop; the procedure is 
finished. 

- If there are still some open nodes in the graph, set k = i and 
return to Step 2.



Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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set i=b --> consider a as the predecessor for b

set b as a closed node



Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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smallest d(j)=7 -- for node c

set i=c --> d is the predecessor for c, since d(c)[7] - (d,c)[2]=d(d)[5]

set c as a closed node
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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set g as a closed node
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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set e as a closed node
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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set h as a closed node
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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smallest d(j)=17 -- for node j

set i=j --> h is the predecessor for j, since d(j)[17] - (h,j)[2]=d(h)[15]

set j as a closed node
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Shortest Path Problem

 Dijkstra’s Node-Labelling Algorithm
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Terminate -- all nodes are closed

-The d(j) part of the label of node j indicates the length of the shortest path from s 
to j, 

- The p(j) part indicates the predecessor node to j on this shortest path.

- By tracing back the p(j) parts, it is easy to identify the shortest paths between s 
and each of the nodes of G.
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Shortest Path Problem
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Shortest Path Problem

 Notes on Dijkstra’s Algorithm

 If ties among node labels occur, choose one of the 
them arbitrarily

 If 2 nodes have the smallest label values at some point and 
qualify to be closed, then choose one of the two arbitrarily

 The algorithm can be used to find the shortest path 
between an origin and one destination

 Terminate when you close the destination node

 Could apply the algorithm repeatedly for each node 
to find the shortest paths between all pairs of nodes

 That is, consider each node at a time as a source and solve

 A more efficient algorithm is the Floyd Algorithm



Shortest Path Problem

 Floyd Algorithm
 Floyd's algorithm is simple to describe, but its logic is 

not particularly easy to grasp. 

 The algorithm, in parallel with a convenient 
procedure for maintaining a record of the shortest 
paths



Shortest Path Problem

 Floyd Algorithm

 To begin, we number the n nodes of the graph 
G(N, A) with the positive integers 1, 2, . . ., n. 

 Then, two matrices, a distance matrix, D(0), 
and a predecessor matrix, P(0), are set up with 
elements



Shortest Path Problem

 Floyd Algorithm
STEP 1 Set k = 1.

STEP 2 Obtain all the elements of the updated 
distance matrix D(k) from the relation below

STEP 3 Obtain all the elements of the updated 
predecessor matrix p(k) by using equation 
below

STEP 4 If k = n, stop; if k < n, set k = k + 1 and return 
to step 2



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)
From D(5) and P(5), 

 The shortest path from node 1 to node 5 has length 
d(1,5) = 8 units

 This shortest path is the path {1, 3, 4, 2, 5}. 

 To identify that shortest path, we examined row 1 of the 
P(5) matrix

 Entry p5 says that the predecessor node to 5 in the path 
from 1 to 5 is node 2; 

 then, entry p5(1, 2) says that the predecessor node to 2 in 
the path from 1 to 2 is node 4; 

 similarly, we backtrace the rest of the path by examining 
p5(1, 4) = 3 and p5(1, 3) = 1. 

 In general, backtracing stops when the predecessor node is 
the same as the initial node of the required path.



Shortest Path Problem (continued)

 Floyd Algorithm - Example (cont’d)
From D(5) and P(5),

 The shortest path from node 4 to node 3 is d(4, 3) = 8 
units long

 The path is {4, 2, 1, 3}. The predecessor entries that 
must be read are, in order, p5(4, 3) = 1, p5(4, 1) = 2, 
and finally p5(4, 2) = 4 -- at which point we have 

"returned" to the initial node.

 Check Sections 6.2.3 and 6.2.4 for an 
application of Floyd Algorithm



Computational Complexity of 
Algorithms

 A question may arise as to which algorithm is 
more efficient to compute the shortest path for 
all pairs of nodes.

 Algorithm complexity is usually measured by 
the number of elementary operations required

 Elementary equations include addition, subtraction, 
multiplication, division, comparison, branching

 Complexity is measured by the elementary 
operations to reach the “worst-case conditions”



Computational Complexity of 
Algorithms (cont’d)

 For the Floyd algorithm, each iteration includes
 (n-1)2 additions - (Step 2)

 (n-1)2 comparisons and updates - (Step 2)

 (n-1)2 comparisons and updates of the predecessor 
matrix - (Step 3)

 3 operations before looping to the next iteration: 
check if the current iteration=n (number of nodes), 
update iteration counter and branching to Step 2

 With n iterations, the number of elementary 
iterations (T)
 T = n . [3(n-1)2 + 3] = 3n3 – 6n2 + 6n



Computational Complexity of 
Algorithms (cont’d)

 As n increases, T is determined largely by 3n3

  we say that the complexity of the Floyd algorithm 
is O(n3), or the algorithm requires O(n3) time

 We can show that using Dijkstra’s algorithm to 
find the shortest path between all pairs is also 
O(n3) complex
 From any given source node to all other nodes, it is 

O(n2)

 To find the shortest path between all nodes, repeat 
the algorithm n time. 

 Therefore, it is O(n3)



Computational Complexity of 
Algorithms (cont’d)

 The complexity of Floyd and Dijkstra Algorithms is the 
same, O(n3), under worst-case conditions. 
 Although it is true that Dijkstra Algorithm is more flexible and 

can thus better take advantage of special network structures

 On the other hand, Floyd Algorithm is easier to program on a 
computer

 Both algorithms are considered polynomial (as apposed to
exponential ones)

 Both algorithms are considered exact (as apposed to
heuristic ones); that is, they are guaranteed to terminate 
given sufficient time with an optimal solution



Minimum Spanning Tree (MST) 
Problem

 Recall

 A tree of an undirected graph is a connected subgraph
with no cycles

 A tree with t nodes has t-1 arcs

 A single path exists between any 2 nodes on a tree

 A spanning tree of the graph G(N,A) has n nodes and
n-1 links

 The MST problem has direct applications in
problems of transportation network design, and
node-covering problems



Minimum Spanning Tree (MST) 
Problem (cont’d)
 Consider the case in which map locations of n

rural towns are given along with a matrix listing
the Euclidean distances between all possible
pairs of towns. The MST produces the minimum
length of roads needed to connect, directly or
indirectly, all pairs of towns



Minimum Spanning Tree (MST) 
Problem (cont’d)
 MST vs. “Steiner problem”

 The latter has the same objective as the former but
allows the introduction of artificial "nodes”

 The total line length needed to connect the four points
can be further reduced. The solution to Steiner's
problem in this case involves creation of two artificial
nodes, the total length of the Steiner tree is 1 + √3



Minimum Spanning Tree (MST) 
Problem (cont’d)

 MST Problem for an Undirected Graph
 Find a shortest-length spanning tree of G(N,A)

 This problem arises when we are designing networks 
(e.g. transit network design)

 Note that for a given graph G(N,A), MST may not be 
unique (more on this later)



Minimum Spanning Tree (MST) 
Problem (cont’d)

 Fundamental Property
 The shortest link out of any sub-tree (during the 

construction of the MST) must be a part of the MST

 There is no specific assumptions about the procedure 
for constructing the MST

 Begin the procedure with n trees, with each tree consisting of 
a single isolated node and no links

 Connect any arbitrarily chosen tree (node) to its nearest tree 
(node) and continue this procedure until all nodes are finally 
connected

 Corollary
 In an undirected network G, the link of the shortest 

length out of any node is part of the MST



Minimum Spanning Tree (MST) 
Problem (cont’d)

 MST Algorithm (section 6.3.1)

 STEP 1
 Begin at some arbitrary node, say node i. Find the node 

closest to i, say j, and connect it to i 

 Break ties, if any, arbitrarily

 STEP 2
 If all nodes have been connected, stop

 If there are still isolated nodes, go to Step 3.

 STEP 3
 Find the one among the still isolated nodes which is closest 

to the already connected nodes and connect it with the 
already connected nodes 

 Break ties, if any, arbitrarily. Return to Step 2



Minimum Spanning Tree (MST) 
Problem (cont’d)

 MST Example

 Find the MST for this network, starting at node A



Minimum Spanning Tree (MST) 
Problem (cont’d)

 MST Example

1) G is closest to A, G and 
the link (A, G) first 
become part of the MST

2) Break the tie 
between F and C
Choose C

3) Choose B, 
with link (C,B)

4) Choose F, 
with link (G,F)

5) Choose E, 
with link (F,E)

6) Choose D, 
with link (E,D)

STOP 
No nodes left



Minimum Spanning Tree (MST) 
Problem (cont’d)

 MST Example

Total length for the MST
(5+6+5+6+5+5) = 32

A

G

(5)

(6)

(6) (5)

(5)

(5)
F

E

D

C

B

If you choose G, 
you will get the 
same MST --

Try it again with 
link (C,F)= 5



Routing Problems…

 Design of routes for vehicles or people. These routes 
must be designed so that they traverse in an exhaustive 
way the streets in a neighborhood 
 called edge-covering problem

 e.g. cleaning and sweeping of streets

 The Chinese Postman’s Problem

 Alternatively, the objective may be to visit a set of given 
geographical points in a city in order to provide some 
service there or for delivery purposes
 called node-covering problem

 e.g. the distribution of newspapers to newsstands

 The Travelling Salesman Problem


