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1. Introduction

The theory of Einsteins Brownian motion provides a microscopic model of diffusion. It is known that quantum mechanics
is related to diffusion by a formal analytic continuation. Hence, the relationship between Brownian motion and quantum
mechanics is vague [1–4]. Ord showed that a random walk model of Brownian motion produces the diffusion equation
[5–7] or the Telegraph equation to describe particle density. It can also be shown that the correlations in the space-time
geometry of Brownian particles obey both the Schroedinger and Dirac equations [8]. For more details see Fig. 6 given by
Ord [8].

The standard diffusion equation (which is also known as Fick’s second law) depends on the continuity equation and the
Fick’s first law which are
ouðx; tÞ
ot

¼ � oJðx; tÞ
ox

; Jðx; tÞ ¼ �D
ouðx; tÞ

ox
; ð1Þ
where Jðx; tÞ is the current of the diffusing object (flux), (which may be technology, concepts, etc.) uðx; tÞ is the distribution
function of the diffusing quantity, and D is the diffusion constant. The resulting standard equation is
ouðx; tÞ
ot

¼ D
o2uðx; tÞ

ox2 : ð2Þ
A basic weakness of this equation is that the flux Jðx; tÞ reacts instantaneously to the gradient of uðx; tÞ; consequently an un-
bounded propagation speed is assumed.

A way to go round this unphysical effect is to solve the diffusion Eq. (2) by the use of Fourier and Laplace transforms.
Applying the Fourier transform in the spatial one-dimension to Eq. (2) and denoting by
Fxfpðx; tÞg ¼ pðk; tÞ; ð3Þ
we get
Fx
o

ot
uðx; tÞ

� �
¼ o

ot
Fxfuðx; tÞg

¼ o

ot
uðx; tÞ ð4Þ
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and
Fx
o2

ox2 uðx; tÞ
( )

¼� Dð2pkÞ2Fxfuðx; tÞg

¼ � Dð2pkÞ2uðx; tÞ; ð5Þ
thus
uðx; tÞ ¼ �Dð2pkÞ2uðx; tÞ: ð6Þ
This linear differential equation has the solution
uðx; tÞ ¼ uðk; t ¼ 0Þe�Dð2pkÞ2t : ð7Þ
Now we take the inverse Fourier transform of Eq. (7)
uðx; tÞ ¼ F�1
k fuðk; t ¼ 0Þe�Dð2pkÞ2tg ð8Þ
Using the convolution theorem we get
uðx; tÞ ¼ F�1
k fuðk; t ¼ 0Þg � F�1

k fe�Dð2pkÞ2tg; ð9Þ
where * is the convolution operator
ðg � hÞðyÞ ¼
Z 1

�1
gðxÞhðy� xÞdx: ð10Þ
Now F�1
k fuðk; t ¼ 0Þg ¼ uðx; t ¼ 0Þ and
F�1
k fe�Dð2pkÞ2tg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

4pDt
p e�

x2
4Dt ð11Þ
therefore
uðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p

Z 1

�1
uð~x;0Þe�

ðx�~xÞ2
4Dt : ð12Þ
This equation is also known as the Poisson integral.
The convolution kernel is the Gaussian bell-curve with width of

ffiffiffiffiffiffiffiffi
4Dt
p

. Consider now an initial condition in the form of a
d-function, uðx;0Þ ¼ dðxÞ. Then
uðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�

x2
4Dt: ð13Þ
So a d-function diffuses out as a Gaussian. If one now considers an arbitrary condition uðx;0Þ as a sum (integral) of d-func-
tions, one can see that the solution uðx; tÞ is the sum (integral) of the diffused d-functions, which have become Gaussian’s.
This helps to get an intuitive understanding of Eq. (12). It is obvious that no matter how large x is and how small t may
be, then uðx; tÞ is nonzero which violates the fact that all physical propagation speeds ðMx

MtÞ are finite. This is specially true
in biological and economics systems where it is known that in many cases propagation speed is typically small. This, math-
ematically speaking, is due to the fact that Eq. (2) is a parabolic partial differential equation.

To overcome this weakness (Fick’s law), Cattaneo in 1948 proposed a modified approach [9–11]. He replaced the consti-
tutive Eq. (1) by
Jðx; tÞ þ s oJðx; tÞ
ot

¼ �D
ou
ox
ðx; tÞ; ð14Þ
where now the flux relaxes, with same given characteristic time constant s. Combining (14) with the equation of continuity
(1), one obtains the modified diffusion equation or (Telegraph equation)
ouðx; tÞ
ot

þ s o2uðx; tÞ
ot2 ¼ D

o2uðx; tÞ
ox2 ð15Þ
for constant D and s.
The corresponding Telegraph reaction diffusion (TRD) equation of (15) is given by [12], this equation is used in many

applications of sciences [13–18], and given as
s o2uðx; tÞ
ot2 þ 1� s df

du

� �
ouðx; tÞ

ot
¼ Dr2uðx; tÞ þ f ðuðx; tÞÞ; ð16Þ
where f ðuÞ is a polynomial function in u.
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The time constant s can be related to the memory effect of the flux J as a function of the distribution u as shown in what
follows.

Another motive for TRD comes from media with memory [14] where the flux J is related to the density u through a relax-
ation function KðtÞ as follows
Jðx; tÞ ¼ �
Z t

0
Kðt � t0Þuxðx; t0Þdt0: ð17Þ
We will see that, with a suitable choice for KðtÞ, the standard Telegraph equation is obtained; Indeed, let us compute the left-
hand side of the Eq. (14). For our generalization (17), we get
Jðx; tÞ þ s oJðx; tÞ
ot

¼ � s o

ot
þ 1

� �Z t

0
Kðt � t0Þ ouðx; t0Þ

ox
dt0: ð18Þ
Hence by comparing with Eq. (14) it appears clear that we must have
sKð0Þ ¼ D; s o

ot
KðtÞ þ KðtÞ ¼ 0:
Solving this differential equation, we obtain the relaxation function that makes the non-local theory of transport compatible
with the Cattaneo equation
KðtÞ ¼ D
s

exp � t
s

� �
:

This further supports that Telegraph diffusion equation is more suitable for economic and biological systems than the usual
one since, e.g., it is known that we take our decisions according to our previous experiences so memory effects are quite
relevant.

In this paper, we concentrate our work on the following spacial form of Eq. (16), namely
s o2uðx; tÞ
ot2 þ 1� s df

du

� �
ouðx; tÞ

ot
¼ o2uðx; tÞ

ox2 þ ð1� unÞ; ð19Þ
which we will call the generalized Telegraph Fisher’s equation (GTFE).

2. Factorization procedure for nonlinear ordinary second-order differential equations

Factorization of second-order linear differential equations is a well established technique to find solutions in an algebraic
manner [19–24]. Rosu and Cornejo found one particular solution once the nonlinear equation is factorized with the use of
two first-order differential operators [19]. They used the method for equations of types:
u00 þ cu0 þ f ðuÞ ¼ 0 ð20Þ
and
u00 þ gðuÞu0 þ f ðuÞ ¼ 0 ð21Þ
where 0 means the derivative D ¼ d
dz, gðuÞ and f ðuÞ are polynomials in u. We concentrate our work in this paper on equation of

the type (21).
Now, Eq. (21) can be factorized as
½D�u2ðuÞ�½D�u1ðuÞ�u ¼ 0; ð22Þ
which leads to the equation
u00 � du1

du
uu0 �u1u0 �u2u0 þu1u2u ¼ 0; ð23Þ
or
u00 � u1 þu2 þ
du1

du
u

� �
u0 þu1u2u ¼ 0: ð24Þ
Comparing (24) and (21) we find
gðuÞ ¼ � u1 þu2 þ
du1

du
u

� �
and f ðuÞ ¼ u1u2u: ð25Þ
If Eq. (21) can be factorized as in Eq. (22), then a first particular solution can be easily found by solving
½D�u1ðuÞ�u ¼ 0:
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3. The generalized Telegraph Fisher’s equation

We can write the GTFE as
sutt þ 1� s df
du

� �
ut ¼ uxx þ f ðuÞ; f ðuÞ ¼ uð1� unÞ: ð26Þ
It is clear that when s ¼ 0, Eq. (26) reduces to the generalized Fisher equation [19].
Using the coordinate transformation z ¼ x� ct (c is the propagation speed) in Eq. (26) we obtain the following nonlinear

ordinary differential equation
u00 þ cð1� sÞ
ð1� c2sÞ þ

csð1þ nÞ
ð1� c2sÞ un

� �
u0 þ 1

ð1� c2sÞuð1� unÞ ¼ 0; 1� c2s > 0; ð27Þ
or
u00 þ Aþ Bun½ �u0 þ Cuð1� unÞ ¼ 0; ð28Þ
where
A ¼ cð1� sÞ
ð1� c2sÞ ; B ¼ csð1þ nÞ

ð1� c2sÞ ; C ¼ 1
ð1� c2sÞ : ð29Þ
Eq. (27) in standard form (21) takes the form (28), where
gðuÞ ¼ Aþ Bun: ð30Þ
Using operator notation, Eq. (28) takes the form
D2 þ gðuÞDþ Cf ðuÞ
u

� �
u ¼ 0; ð31Þ
The factorization of (31) leads to
½D�u2ðuÞ�½D�u1ðuÞ�u ¼ 0; ð32Þ
and then
u00 � ½u2 þu1 þ
du1

du
u�u0 þu1u2u ¼ 0: ð33Þ
Comparing (33) and (28) we obtain the conditions on u1 and u2 as
�ðu2 þu1 þ
du1

du
uÞ ¼ gðuÞ; u1u2 ¼

Cf ðuÞ
u

; ð34Þ
therefore
u1u2 ¼ Cð1� unÞ ¼ Cð1þ u
n
2Þð1� u

n
2Þ; C ¼ ab: ð35Þ
Now, choosing u1 and u2 such that
u1ðuÞ ¼ að1� u
n
2Þ; u2ðuÞ ¼ bð1þ u

n
2Þ; ð36Þ
where C is an arbitrary constant that must be determined.
Substituting from (36) into (34) we obtain
ðaþ bÞ þ b� a� an
2

	 

u

n
2 ¼ ðAþ BunÞ; ð37Þ
then
ðaþ bÞ ¼ A; ðb� a� an
2
Þ ¼ 0; ð38Þ
which implies that
a ¼ 2A
nþ 4

; b ¼ Cðnþ 4Þ
2A

;

then
a ¼ �
ffiffiffi
C
p

kn; b ¼ �
ffiffiffi
C
p

k�1
n ; kn ¼

n
2
þ 1

	 
�1
2
; ð39Þ
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u1ðuÞ ¼ �
ffiffiffi
C
p

knð1� u
n
2Þ; u2ðuÞ ¼ �

ffiffiffi
C
p

k�1
n ð1þ u

n
2Þ: ð40Þ
The corresponding factorization is
½D�
ffiffiffi
C
p

k�1
n ð1þ u

n
2Þ�½D�

ffiffiffi
C
p

knð1� u
n
2Þ�u ¼ 0; ð41Þ
and the compatible first-order differential equation is
½D�
ffiffiffi
C
p

knðu
n
2 � 1Þ�u ¼ 0: ð42Þ
By direct integration we get
u�ðzÞ ¼ 1� exp
ffiffiffi
C
p
ðkn � k�1

n Þðz� z0Þ
h i�2

n
; ð43Þ
where z0 is the integration constant.
The solution Eq. (43) in hyperbolic form is given as
uþðzÞ ¼ 1
2
� 1

2
tanh

ðkn � k�1
n Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2sÞ

p ðz� z0Þ
" #" #2

n

; ð44Þ

u�ðzÞ ¼ 1
2
� 1

2
coth

ðkn � k�1
n Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2sÞ

p ðz� z0Þ
" #" #2

n

: ð45Þ
Putting s ¼ 0 in (44) and (45) we find an exact particular solution for the generalized Fisher’s equation [19,25]. In Fig. 1, we
show a plot of the solution uþ for different values of s and n ¼ 3:

Considering now the factorization of Eq. (32) by choosing
u1ðuÞ ¼ að1þ u
n
2Þ; u2ðuÞ ¼ bð1� u

n
2Þ: ð46Þ
The change of order of the factorization brackets gives
½D�
ffiffiffi
C
p

k�1
n ð1� u

n
2Þ�½D�

ffiffiffi
C
p

knð1þ u
n
2Þ�u ¼ 0; ð47Þ
and therefore the compatibility is with the different first-order equation
½D�
ffiffiffi
C
p

knð1þ u
n
2Þ�u ¼ 0; ð48Þ
then the direct integration gives the solution
u�ðzÞ ¼ ð�1Þ
2
n½1� exp½

ffiffiffi
C
p
ðkn � k�1

n Þðz� z0Þ���
2
n ð49Þ
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he solution uþ of Eq. (44) for different values of s, namely, the normal, dashed and solid graphs represent the solutions for s ¼ 20, 10, 0,
ely, at t ¼ 2, c ¼ 0:2, z0 ¼ 0, and n ¼ 3.
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Fig. 2. The solutions u1 and ul for l ¼ 1:1, 1.2, 1.3, 2, 3, at t ¼ 2, c ¼ 0:2, z0 ¼ 0, s ¼ 5 and n ¼ 2.
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or
uþðzÞ ¼ 1
2
� 1

2
tanh

�ðkn � k�1
n Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2sÞ

p ðz� z0Þ
" #" #2

n

; ð50Þ

u�ðzÞ ¼ 1
2
� 1

2
coth

�ðkn � k�1
n Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2sÞ

p ðz� z0Þ
" #" #2

n

: ð51Þ
Following the work of Reyes and Rosu [26–28], we find a two-parameter solution for the special case when n ¼ 2. In this case
u1ðuÞ ¼ að1þ uÞ and u2ðuÞ ¼ bð1� uÞ, one particular solution is obtained from (43) as
u1ðzÞ ¼ 1� exp � ðz� z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� c2sÞ

p
 !" #�1

; ð52Þ
and Eq. (42) is transformed to the following Riccati equation
u0 �
ffiffiffi
C
p

knðu� 1Þu ¼ 0: ð53Þ
The two-parameter solution is obtained from (52) and (53) as
ulðzÞ ¼ u1ðzÞ þ
exp ðz�z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�c2sÞ
p
� �

1� expð ðz�z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�c2sÞ
p Þ

� ��1

l 1� expð ðz�z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�c2sÞ
p Þ

� �
� 1

� � : ð54Þ
It is clear from Fig. 2 that when jlj runs from zero to infinity, the above parametric solution goes from the trivial solution
u ¼ 0 to the the particular solution u ¼ u1.
4. Conclusions

We applied the factorization scheme to the generalized Telegraph Fisher’s equation and exact particular solution have
been found. The exact particular solution for the generalized Fisher’s equation was obtained as a particular case of the gen-
eralized Telegraph Fisher’s equation. We found that the factorization technique is easier and more efficient than other meth-
ods used to find particular solutions [29].
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