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Abstract

We present a modification of the second order nonlinear partial
differential equation that describe the dynamics of population
reproduction and by using the factorization method, we find a particular
exact solution for the modified equation.

1. Introduction

The dynamics of population reproduction and spatial distribution was
studied in terms of a two-dimensional continuous flow model by
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Beckmann [5-8] by constructing a second order nonlinear partial
differential equation [6]. Ahmed and Abdusalam have found that, delay is
an important factor in studying the model proposed by Beckmann [6]. We
have used the telegraph reaction diffusion to modify the equation for
spatial population dynamics [1-4]. Rosu and Cornejo [10, 13] have proved
that for some nonlinear second order ordinary differential equations it is
a very simple task to find one particular solution once the nonlinear
equation is factorized with the use of two first order differential
operators. As we know that there is no exact solution for the model and
its modification [4, 6]. The paper is organized as follows: In Section 2, we
summarize and generalize the factorization scheme of ordinary
differential equations with polynomial nonlinearities, and this leads to
an easy finding of analytical solutions. In Section 3, we use the
factorization method to find an explicit particular solution for our
modified equation.

2. Factorization Procedure for Nonlinear Ordinary

Second Order Differential Equations

Factorization of second order linear differential equations is a well
established technique to find solutions in an algebraic manner
[11, 12, 14]. Rosu and Cornejo found one particular solution once the
nonlinear equation is factorized with the use of two first order
differential operators [9, 13]. They use the method for equations of types:

( ) ,0=+′γ+′′ ufuu (1)

and

( ) ( ) ,0=+′+′′ ufuugu (2)

where γ is a constant, ( )ug  and ( )uf  are polynomials in u.

We concentrate our work in this paper on a new type of differential
equation, namely:

( ) ( ) ( ) ,0=+′+′′ ufuuguuh (3)

where ′ means the derivative ( ) ( )uguh
dz
dD ,,=  and ( )uf  are

polynomials in u.
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Now, equation (3) can be factorized as

( ) ( )[ ] ( )[ ] ,012 =ϕ−ϕ− uuDuDuh (4)

which leads to the equation

( ) ( ) ( ) ,02121
1 =ϕϕ+′ϕ−′ϕ−′ϕ−′′ uuuuhuu

du
d

uhuuh (5)

or

( ) ( ) ( ) .021
1

21 =ϕϕ+′




 ϕ+ϕ+ϕ−′′ uuu

du
d

uhuhuuh (6)

Comparing (6) and (3), we find

( ) ( ) ( ) ,1
21 





 ϕ+ϕ+ϕ−= u

du
d

uhuhug (7)

and

( ) .21 uuf ϕϕ= (8)

If ( )uf  is a polynomial function, then ( )ug  will have the same order as

the bigger of the factorizing functions ( )u1ϕ  and ( ),2 uϕ  and will also be a

function of the constant parameters provided by the function ( ).uf

3. Modified Equation for Spatial Population Dynamics

In this section, we will obtain an exact particular solution for our
modified equation for spatial population dynamics [4] by using the
method presented in Section 2.

The modified equation for spatial population dynamics is given by [4]:

( ) ( ),21 ufuubmu
du
dfu xxttt +−−=


 τ−+τ

( ) ( ),2ubuauuf +−= (9)

where b, a, m are positive constants, u is the population density and τ is a

time constant. It is clear that when ,0=τ  equation (9) reduces to the

Beckmann [5-8] second order nonlinear partial differential equation [6].
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Using the coordinate transformation ctxz −=  ( c is the propagation

speed) in equation (9), we obtain the following nonlinear ordinary

differential equation

[ ] [ ] ( ) ,02
21010 =+′+++′′+ ufuuauaauubb (10)

where

( ) ( ) .3,2,1,2, 2101
2

0 τ−=τ−=τ−==τ+−= cacbaacambcmbb (11)

The standard form of equation (10) is

( ) ( ) ( ) ,0=+′+′′ ufuuguuh (12)

where ( ) ( )uguh ,  and ( )uf  are polynomials and given as

( ) ( ) ( ) ( ).,, 22
21010 ubuauufuauaaugubbuh +−=++=+= (13)

Equation (12) can be written using operator notations in the form

[ ( ) ( ) ( )] ,02 =++ uuFDugDuh (14)

where ( ) ( ) .
u
ufuF =

The factorization of (14) leads to

( ) ( )[ ] ( )[ ] ,012 =ϕ−ϕ− uuDuDuh (15)

and then,

( ) ( ) ( ) .021
1

12 =ϕϕ+′



 ϕ−ϕ−ϕ−+′′ uuu

du
d

uhuhuuh (16)

Comparing (16) and (14), we obtain the conditions on 1ϕ  and 2ϕ  as

( ) ( ) ( ) ( )., 21
1

12 uFugu
du
d

uhuh =ϕϕ=ϕ−ϕ−ϕ− (17)

Therefore

( )( ).21
2

21 α−α−=+−=ϕϕ uuubua

Now, choosing 1ϕ  and 2ϕ  such that
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where λ is an arbitrary constant which must be determined and

.4,
2

4,
2

4 2
2

2

2

1 ababbbabb ≥−±−=α−±=α ±± (19)

The first condition in equation (17) leads to

( ) ( ) ( )[ ] ( ) ,1 2
210101102 uauaauubbuubbu ++=+λ−α−λ+−α−

λ
−

or

( ) ,212 2
210

2
101101

2 uauaaububbb ++=λ−+



λ

−λ−λα+




 λα+
λ
α

then

( ) .2,12, 211011001
2 ababbab =λ−=




λ
−λ−λα=





 λα+
λ
α

(20)

From (19) and (20), we find

( ) ( )
( )

,
2

4241
2

1

22

mbcc

caacacmabccac

−τα
τ+τ−τ−+±τ−=λ± (21)

and equation (15) takes the form

( ) ( ) ( )[ ] .01
11 =α−λ−



 α−

λ
− uuDuDuh (22)

The compatible first order equation is

( ) .01 =α−λ−′ uuu (23)

Integration of (23) and use of (19, 21) give the following particular

solution of (9):

( ) ( ) ,
2

tanh1 0
1

1























−αλ+α=

±±
±± zzzu (24)

where 0z  is the integration constant.

In Figures 1 and 2 we show a plot of solutions (24) for different values

of τ, namely 5.2,2,0=τ  at .1=t



H. A. ABDUSALAM and E. S. FAHMY6

Figure 1. The solution ( )txu ,±  of (24) for different values of

τ, namely, the normal, dashed and solid graphs represent the

solutions for 5.2,2,0=τ  respectively at ,0,3.0,1 0 === zct

1,4 == ab   and .2.0=m

Figure 2. The solution ( )txu ,−  of (24) for different values of τ,

namely, the normal, dashed and solid graphs represent the solutions

for 3.2,2,0=τ  respectively at 1,4,0,2.0,1.0 0 ===== abzct

and .2.0=m



EXACT SOLUTION FOR THE MODIFIED EQUATION … 7

4. Conclusions

In this paper, the factorization method that was proposed by Rosu
and Cornejo [13] has been extended to a more general form of second
order nonlinear partial differential equation. The general form was
applied to our modified equation for the spatial population dynamics. An
exact particular solution has been obtained for the equation. An exact
solution for Martian J. Beckmann equation was obtained as a special
case of our solution.
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