Circuits I Lecture 1_2: Introduction and Basics

Dr. Hassan Mostafa hmostafa@uwaterloo.ca Cairo University

Modified from Dr. Mohamed Fathy Slides

Fall 2019

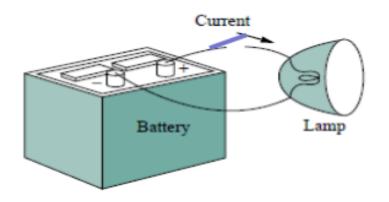
Course Information

- □ Textbook reference:
 - J. W. Nilsson and S. A. Riedel, Electric
 - C. Alexander and M. Sadiku, Fundamental of Electric Circuits, Mc Graw Hill

Course Importance

- Many branches of electrical engineering, such as power, electric machines, control, electronics, communications, and instrumentation, are based on electric circuit theory.
- The basic electric circuit theory course is the most important course for an electrical engineering student.
- It is an excellent starting point for a beginning student in electrical engineering education.

Basic Definitions and Laws

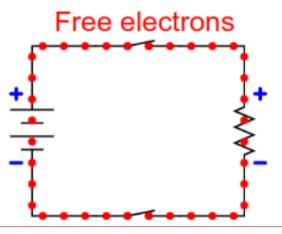

Introduction

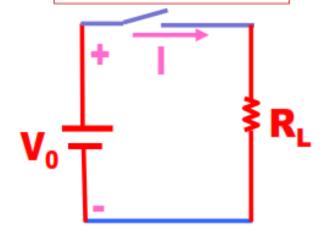
- In electrical engineering, we are often interested in transferring energy from one point to another.
- This requires an interconnection of electrical devices.
- Such interconnection is referred to as an electric circuit, and each component of the circuit is known as a circuit element.

Basic Quantities

Quantity	Symbol	SI units	
Charge	Q	Coulombs (C)	
Time	t	Seconds (s)	
Work	W	Joules (J)	
Current	I	Ampare (A)	
Voltage	V	Volt (V)	
Power	P	Watts (w)	

Introduction




Three basic components: a battery, a lamp, switch and connecting wires.

Flash light circuit.

Direction of electron motion

Voltage, Current, & power.

14

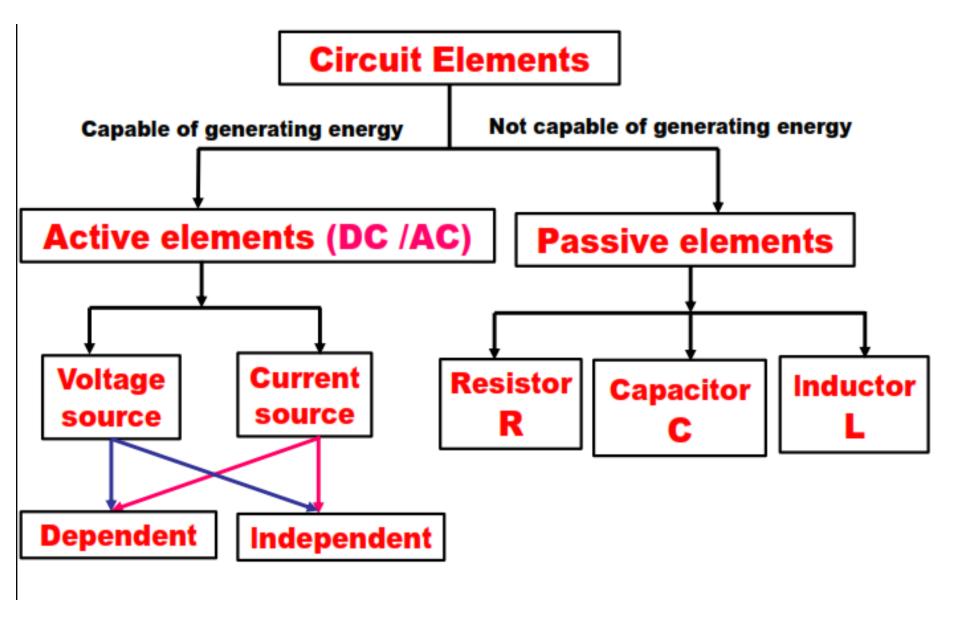
Current

- Electric current results from the movement of electric charge.
- Electric Current is the time rate of change of charge measured in amperes A)

• I (Ampere) =
$$\frac{\text{Charrge (Q) in Coulmbs}}{\text{time (t) in seconds}}$$

 For most electronic circuits the ampere is a rather large unit so the mA unit is more common.

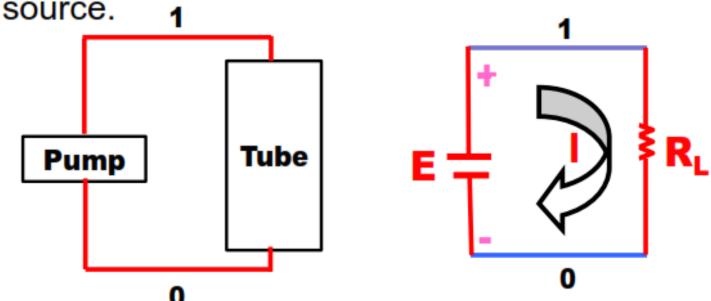
15


DC & AC Circuits

1- Direct Current Circuits

Currents (I) and voltages (V) are constant with time.

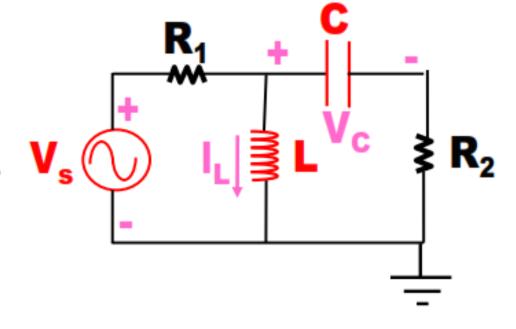
2- Alternating Current (AC) Circuits


Current (i) and voltage (v) are time varying

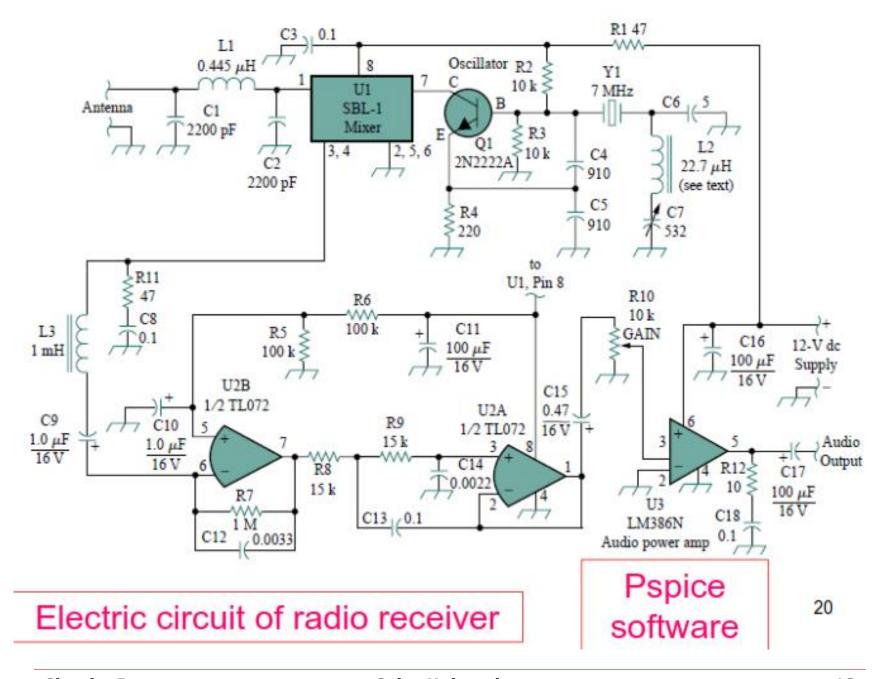
DC Circuit

 Any combination of DC Active elements and passive elements (usually resistors).

An active elements is either a voltage or a current

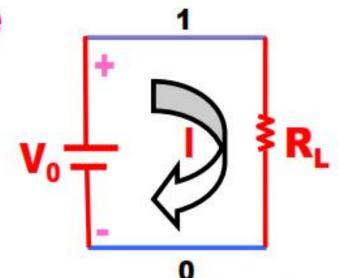


Conservation of energy


 Sum of power supplied by sources = sum of power₁₈ dissipated by resistors.

AC Circuit

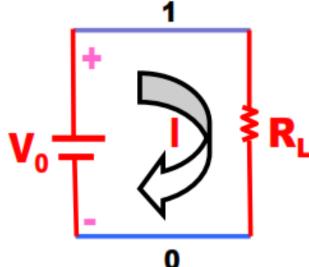
 Any combination of Active and passive elements (resistors, capacitors and coils).



The sources are AC voltage or current sources

Voltage

 To move a charge Q from node
 0 to node 1, the source should do a work (W).



- Voltage is defined as the work done per unit charge
- It is the measure of "push" available to motivate charge

 Work (W) in Joules= Volt (V₀) in Volts * Charge (Q) in Coulombs

21

Voltage

• The SI unit of voltage is Volt (V).

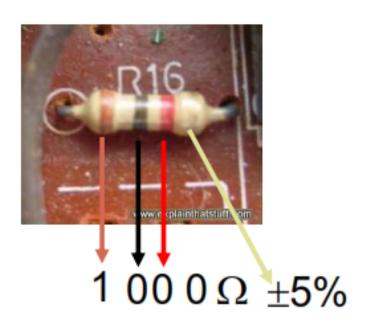
•
$$V_0$$
 (volts) = $\frac{W \text{ in Joules}}{Q \text{ in Coulmbs}}$

 Current flows in a resistor if there is a potential difference between its ends.

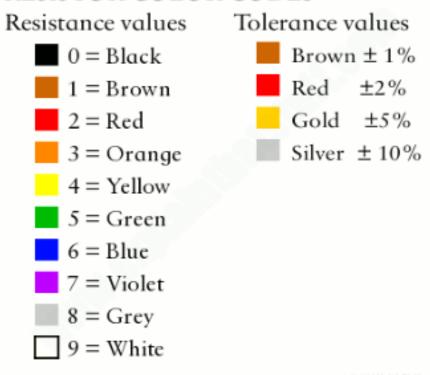
 Current flows in a resistor from high voltage to low voltage.

Resistance and Ohm's low

 The Resistance of an object is a function of its material and shape.


 The voltage (V) across an ohmic resistor and the current (I) through the resistor are related as follows:

$$\mathbf{V} = \mathbf{I} * \mathbf{R}$$


$$\downarrow \qquad \qquad \downarrow$$
Volts mA k Ω

Resistance and Ohm's low

3-color code Resistors

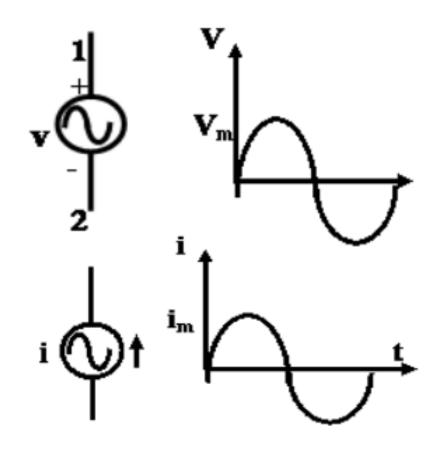
RESISTOR COLOR CODES

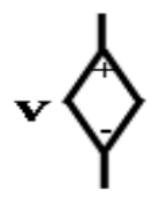
www.explainthatstuff.com

Active Elements

- Active elements are either voltage or current dependent or independent.
- DC ideal independent sources

DC voltage source


DC current source


AC ideal independent sources

AC voltage source

AC current source

Ideal dependent voltage source

Voltage controlled voltage source (VCVS)

$$\mathbf{v} = \mathbf{\mu} \mathbf{v}_{\mathbf{x}}$$

μ is dimensionless

Current controlled voltage source (CCVS)

 μ is in k Ω

Ideal dependent current source

Current controlled current source (CCCS)

$$i = \mu i_x$$

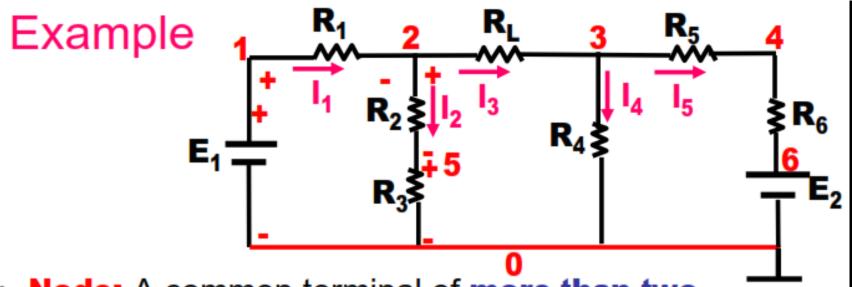
μ is dimensionless

Voltage controlled current source (VCCS)

$$i = \mu v_x$$

 μ is in $(k\Omega)^{-1}$

$$\Omega^{-1} \equiv \mathbf{mho} \equiv \mathbf{Siemens}$$


Basic Circuit laws

Contents

- Topology of Electric Circuit
- Kirchoff's Laws
 - KVL
 - KCL
 - Series and Parallel Combinations of Resistors
 - Voltage Divider
 - Current Divider

Topology of Electric Circuit

- Circuit: A circuit is built of Active elements and passive elements
- Branch: A part of the circuit whose elements have the same current
- Node : A common terminal of two or more branches
- Loop: A set of branches making a closed path (starts and ends with the same node)

Node: A common terminal of more than two branches

N=3 (2, 3, 0) (Non simple nodes)

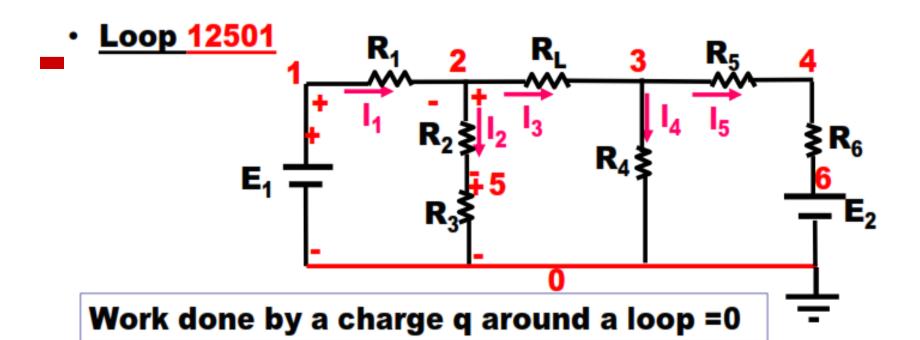
- Loop: A closed path in a circuit
 No. of independent loops L=3 12501, 23052, 34603
- Branch: A circuit path having the same current
- B=5 012, 250, 23, 30, 3460

In a planer circuit, B=N+L-1

Why 0 is one node?

31

Group Pressure



 Kirchhoff's Voltage Law (KVL): the algebraic sum of the voltages around any loop of N elements is zero

$$\sum_{j=1}^{N} V_j = 0$$

 KVL is a statement of the conservation of energy law

$$qV_{12}^{+}qV_{25}^{+}qV_{50}^{+}qV_{01}^{-}=0$$

$$V_{12}^{+}V_{25}^{+}V_{50}^{+}V_{01}^{-}=0$$

$$I_{1}R_{1}^{+}+I_{2}R_{2}^{+}+I_{2}R_{3}^{-}-E_{1}^{-}=0$$

Basic Circuit laws

- Kirchhoff's Current Law (KCL): The algebraic sum of the currents entering any node is zero.
- KCL is a statement of conservation of charge.

Series and Parallel Combinations of Resistors

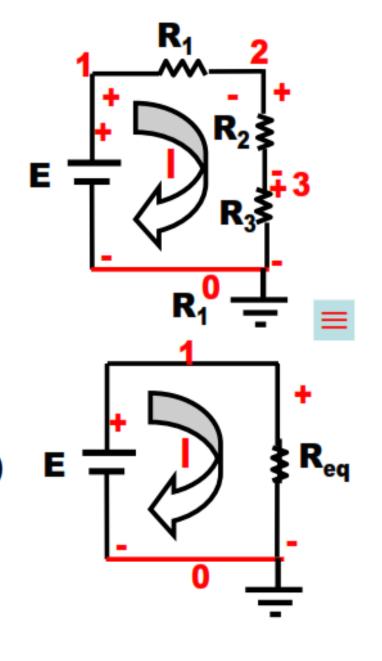
 Circuit elements are in series when a common current passes through each element.

 Circuit elements are in parallel when a common voltage exists across each element.

Resistors in series

Poof (KVL) Loop 12301

$$V_{12} + V_{23} + V_{30} + V_{01} = 0$$


$$IR_1 + IR_2 + IR_3 - E = 0$$

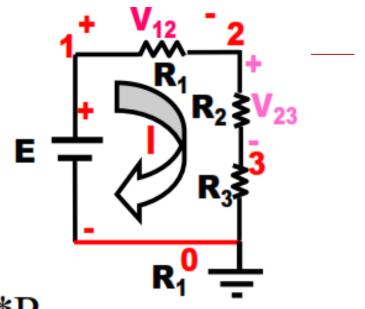
$$I(R_1+R_2+R_3)-E=0$$

KVL Loop 101
$$V_{10} + V_{01} = 0$$

$$IR_{eq}$$
- $E=0$

$$R_{eq} = R_1 + R_2 + R_3 = \sum R_i$$

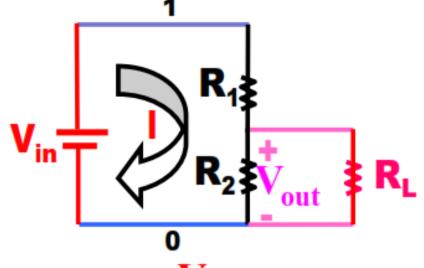
Resistors in series


Voltage Division

$$I = \frac{E}{R_1 + R_2 + R_3}$$

$$V_{12} = I * R_1 = \frac{E}{R_1 + R_2 + R_3} *$$

$$= \mathbf{E}^* \frac{\mathbf{R}_1}{\mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3}$$


$$\frac{V_{23}}{R_1 + R_2 + R_3}$$

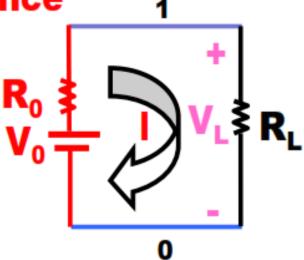
 $*R_1$

37

$$V_{out} = V_{AB} = I R_2 = \frac{V_{in}}{R_1 + R_2} R_2 = V_{in} \frac{R_2}{R_1 + R_2}$$

$$= V_{in} \frac{R_2}{R_1 + R_2}$$

What is the effect on V_{out} when R_L is connected?


Actual sources

Actual voltage source

R₀:Source internal resistance

$$I = \frac{V_0}{R_0 + R_L}$$

$$\mathbf{V_L} = \mathbf{I} \; \mathbf{R_L} = \mathbf{V_0} \; \frac{\mathbf{R_L}}{\mathbf{R_0} + \mathbf{R_L}}$$

$$V_L \approx V_0$$
 if $R_0 \ll R_L$

Resistors in parallel


KCL Node 1

$$I = I_{1} + I_{2} + I_{3}$$

$$= \frac{E}{R_{1}} + \frac{E}{R_{2}} + \frac{E}{R_{3}}$$

$$= E \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \right)$$

$$I = \frac{E}{R_{1}} + \frac{E}{R_{2}} + \frac{1}{R_{3}}$$

$$\overline{R_{eq}} = \overline{R_1} + \overline{R_2} + \overline{R_3} = \overline{R_i}$$

 The equivalent resistance of a combination of resistors connected in parallel is given by:

$$\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$$
 or $G_{eq} = \sum G_i$

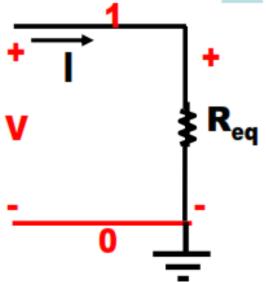
G is the conductance in Ω^{-1} (mho) or seimens

- The equivalent resistance of two resistors connected in parallel is : $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$
- The equivalent resistance of N equal parallel resistors each = R connected in parallel is : $R_{eq} = \frac{R}{N}$

Resistors in parallel

Current division


$$\frac{1}{\text{Re q}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$


$$V = I*R_{eq}$$

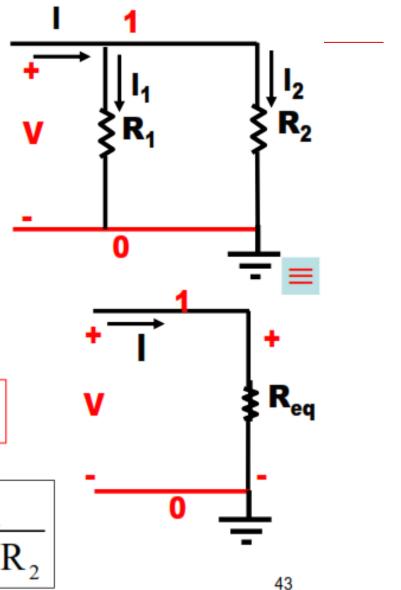
$$I_1 = \frac{V}{R_1}$$

$$I_2 = \frac{\mathbf{V}}{\mathbf{R_2}}$$

$$I_{j} = \frac{V}{R_{j}}$$

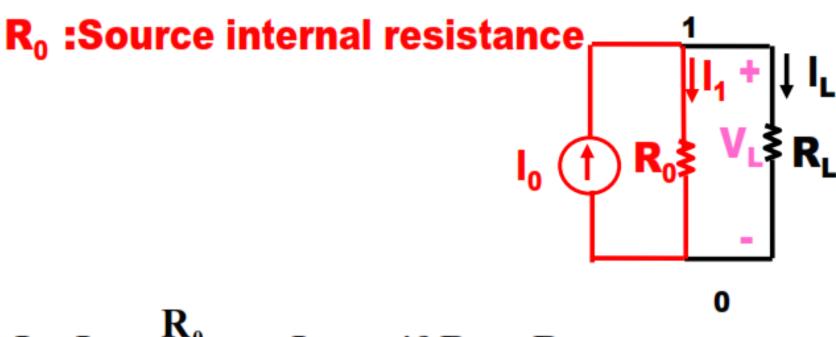
Resistors in parallel

Current division


$$\operatorname{Re} q = \frac{R_1 R_2}{R_1 + R_2}$$

$$V = I*R_{eq} = I*\frac{R_1R_2}{R_1 + R_2}$$

$$= I_1 * R_1 = I_2 * R_2$$


$$I_1 = I * \frac{R_2}{R_1 + R_2}$$

$$I_2 = I * \frac{R_1}{R_1 + R_2}$$

Actual sources

Actual Current source

$$I_{L} = I_{0} \frac{R_{0}}{R_{L} + R_{0}} \approx I_{0}$$
 if $R_{0} >> R_{L}$

IQ Question

٧.

4	5	7	3
8	3	3	9
7	6	9	5
6	9	8	?

What number should replace the question mark?

IQ Question

٧.

4	5	7	3
8	3	3	9
7	6	9	5
6	9	8	?

What number should replace the question mark?

Answer:

8

Explanation:

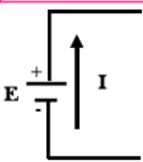
The sum of the numbers in each line across increases by 4.

Power & Energy

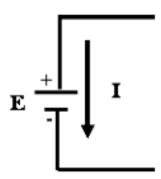
 Power is the time rate of delivering or absorbing energy, measured in watts (W).

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = V*I$$

For a resistor, power is always dissipated.


• For a linear resistor, $\mathbf{V} = \mathbf{I} * \mathbf{R} | \mathbf{P} = \mathbf{V} * \mathbf{I} = \mathbf{I}^2 \mathbf{R} = \frac{\mathbf{V}^2}{\mathbf{I}^2}$

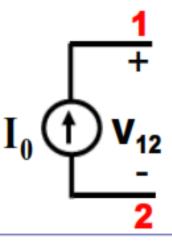
$$P=V*I=I^2R=\frac{V^2}{R}$$


Power & Energy

For a source, power is either delivered or absorbed.

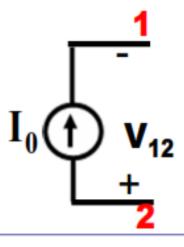
Voltage Source

P (delivered)=E*I



P (delivered)=E*(- I)
(absorbed)

• Power balance : Σ Power delivered by sources = Σ Power dissipated by resistors


Power & Energy

Current source.

P (delivered)= $I_0 * V_{12}$

P is +ve (delivered)

P (delivered)=I₀ *V₁₂

P is -ve (absorbed)

• Power balance: Σ Power delivered by sources = Σ Power dissipated by resistors