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Abstract
Wehave studied the photocatalytic performance of ZnO, Er:ZnO, hybrid Ag/ZnO, andAg/Er:ZnO
colloidal nanoparticles (NPs) synthesized by pulsed laser ablation of stoichiometric targets and silver
plate in double distilledwater. The x-ray diffraction (XRD) analysis revealed the polycrystalline
structure of the ablatedNPs. Themorphology of the nanoparticles was examined by the transmission
electronmicroscope (TEM). The optical properties of the prepared colloidal NPswere investigated by
theUV-visible absorption and photoluminescence spectroscopies. The photodegradation of the
Rhodamine 6Gorganic dyewas utilized to evaluate the photocatalytic activity of the produced
colloidalNPs under illumination byUV light. The hybrid Ag/Er:ZnO colloidal NPs showed enhanced
photodegradation efficiency of 96.4%, after 45min ofUV irradiation, compared to 79.7%of the
pristine ZnONPs. The obtained results point out the enhancing effect of the dopants on the
photocatalytic performance of ZnO, and further demonstrate the pulsed laser ablation of bulk
materials in pure water as a fast and eco-friendly technique for producing efficient nanoparticle
photocatalysts.

1. Introduction

The removal of hazardous organic pollutants from the industrial wastewater by photocatalysis is among the
known strategies used forwastewater treatment. In the last decades, developing zinc oxide (ZnO)nanomaterials
for photocatalytic applications has attracted a growing interest due to the distinctive properties of ZnO
semiconductor, beside its non-toxicity, good stability, and availability [1–7].

Moreover,many reported studies have shown that ZnOmodifiedwith appropriate dopants (such as rare-
Earth (RE) elements and noblemetals) can exhibit improved properties compared to the pristine ZnO in
different applications [8–15]. For example, the photocatalytic properties of ZnOnanoparticles have been
enhanced upon dopingwith europium ions (Eu3+) [16–18], erbium ions (Er3+) [19–25], and by hybridization
with selected noblemetal such as silver (Ag) [26–39]. The observed effective separation of the photo-generated
charges in ZnOhas been attributed to the electron-scavenger effect of the noblemetal [26] and the point defects
introduced by RE-doping [23]. In addition, the upconverted optical emission of Er3+ ions dopant has been
reported to increase the charge carrier density and hence the photocatalytic efficiency of ZnO [19, 20].

The preparation technique can also affect the properties of ZnOnanomaterials [40, 41]. Pulsed laser ablation
in liquidmedia (PLAL) is a rapid, straight forward, and eco-friendly technique bywhich nanoparticles with high
purity can be synthesizedwithout reducing or capping agents and at the ambient conditions [42–48]. In the
literature there aremany studies reported the synthesis of ZnONPs by pulsed laser ablation of Znmetal or ZnO
target in liquidmedia. For instance, Guillen et al reported on the preparation of ZnONPs by pulsed laser
ablation of Znmetal in distilledwater at different temperatures [49]. Camarda et alhave prepared crystalline and
luminescent ZnONPs by ultra-short femtosecond pulsed laser ablation of Zn plate in deionizedwater [50].
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Chen et al have synthesized ZnONPs by pulsed laser ablation of Zn powder suspending in deionizedwater [51].
Khudiar et alhave prepared ZnONPs via pulsed laser ablation of Zn target inmethanol, for sensingNO2 gas
[52]. Also, ZnONPswith antibacterial activity [53], and Zn@ZnO core–shell nanostructures for sensing
hydroquinone [54]have been synthesized by PLAL. In addition, Ag/ZnOnanoparticles with enhanced
photocatalytic activity [36, 55] and anticancer nature [56], have been produced by PLAL using Zn andAg
metallic targets [55, 56] andAg-coated ZnO target [36] inwater. Furthermore, Ag/Au-ZnOplasmonic hybrid
nanomaterials have been synthesized by pulsed laser ablation of Ag/Aubimetallic inwater followed bymixing
with ZnOnano-powder and by laser irradiation of themixture [57].

To the best of our knowledge, there are few reported studies on the synthesis of RE-dopedZnO colloidal NPs
by PLAL. Tarasenka et alhave demonstratedNd3+-dopedZnOnanocrystals, prepared by pulsed laser ablation
of Znmetal in an aqueous solution of neodymiumnitrate, forNIR-II fluorescence bioimaging [58]. Katsuki et al
have synthesized luminescent Eu3+:ZnONPs by PLAL using Eu-doped ZnO sintered disk in SDS surfactant
solution [59]. In our previous study [16], we reported on the photocatalytic activity of Au/Eu:ZnONPs prepared
by pulsed laser ablation of Eu-doped ZnO sintered target and gold plate in distilledwater. And herein, as an
extension of our previous one, we report on the photocatalytic performance of hybrid Ag/Er:ZnO colloidal
nanoparticles synthesized by pulsed laser ablation of Er:ZnO sintered pellet and silvermetallic plate in distilled
water. Themotivation of the current workwas to evaluate the reproducibility and reliability of the pulsed laser
ablation in liquid (PLAL) technique to produce hybrid noblemetal/rare-Earth doped semiconductor colloidal
nanoparticles with enhanced photocatalytic performance.We replaced both the rare-Earth dopant and the
noblemetal nanoparticles: the trivalent Europiumoxide Eu3+ is replaced by Erbium ions Er3+, and the noble
metal Auwas replaced byAg.

2.Materials andmethods

In the present study, ZnO, Er:ZnO, Ag/ZnO andAg/Er:ZnO colloidal nanoparticles have been synthesized by
pulsed laser ablation of the stoichiometric bulk targets in double distilledwater, as adopted fromour previous
reported study [16]. The undoped andEr-doped ZnO (with doping concentration of 1mol%Er2O3) sintered
ceramic targets have been produced by the conventional solid-state reaction, and the details of the sintering
process are found in [60].

The PLAL experiment was conducted using a pulsedNd3+:YAG laser (ContinuumSL-10) operating at the
following laser parameters: laser beamwavelength of 1.064μm, pulse duration of about 8 ns, pulse repetition
rate of 10Hz, and laser energy of∼ 50mJ/pulse. The focused laser beamwas incident vertically on the target
whichwas immersed in 15ml of double distilledwater. The apparent crater spot size of the focused laser
beamwas∼ 0.2mmand the corresponding energy density delivered to the target surface was estimated to be
∼ 160 J cm−2. The ablation timewas kept at 10 min, and the beakerwas rotated slowly to keep homogeneous
ablation of the target surface and reduce the deeply ablated traces. Finally, the hybrid Ag/ZnOandAg/Er:ZnO
colloidal NPs have been prepared by ablating a high purity silver plate (Fine Silver 999) immersed in the obtained
ZnOand Er:ZnONPs colloidals, respectively, with the same laser ablation parameters as above (laser energy and
ablation time of∼ 50mJ/pulse and 10 min, respectively). Continuousmagnetic stirringwas provided during the
laser ablation.

The crystallinity of the ablated nanoparticles was examined by an x-ray diffractometer (BrukerD8-Discover)
equippedwith aCuKα radiation sourcewithwavelength of 1.5406°A. The as-preparedNPs colloidal solutions
were dropped onto glass slides and dried at 100 °C for fewminutes in a furnace, to formpowder films suitable
for the XRDmeasurements.Moreover, an energy-dispersive x-ray spectrometer (EDXS), equipped on a
scanning electronmicroscope (TESCAN-VEGA3), was utilized to identify the constituent elements in the
hybrid Ag/Er:ZnO sample. The size and shape of the laser-ablated nanoparticles were investigated by a high-
resolution transmission electronmicroscope (HR-TEM) (model: JEM-2100). TheUV-visible absorbance
spectra of the colloidal NPswere obtained by a dual-beam spectrophotometer (JascoV-750). The
photoluminescence (PL) spectra of the prepared samples were recorded at room-temperature by aHitachi
Fluorescence Spectrophotometer (F-7100), at excitationwavelength of 325 nm (to induce band-to-band
transitions of ZnO semiconductor).

The photocatalytic properties of the colloidal nanoparticles were examined by using Rhodamine 6G (R6G)
dye as amodel organic pollutant. The details of the photocatalytic experiment are found elsewhere [16]. Briefly,
in each photocatalytic experiment, after wellmixing the prepared colloidalNPswith the R6G aqueous solution,
themixturewas divided equally into 4 parts in glass beakers, then illuminated by theUV irradiation for exposure
time intervals of 0, 10, 30, and 45 min. TheUV radiationwas generated from aXenon lamp (ORIEL-66005),
operating at an output power of∼ 180W, and the standard emittedwavelength ranges from theUV through
visible to near IR spectral region (∼200 nm–900 nm). The distance between the lamp aperture and the solution
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surfacewas kept at 15 cm. In all samples, themolar concentration of the R6Gdyewas kept at 10−5M. Before and
afterUV irradiation, the optical absorption spectra of the R6Gdye solutionswere recorded by a PG (T80UV/
VIS) spectrophotometer in the visible spectral range. All photocatalytic experiments andmeasurements were
carried out at room temperature.

3. Results and discussions

TheXRDpatterns of the laser-ablated nanoparticles are represented infigure 1. The observed peaks at around
31.8°, 34.4°, 36.2°, 47.4°, 56.6°, 62.9°, 66.4°, 67.9°, and 69.1°matchwell with the (100), (002), (101), (102),
(110), (103), (200), (112), and (201) planes, respectively, of the indexed hexagonal ZnO crystal structure (COD
2107059). NoZn peakswere observed, probably because the ZnONPswere ablated directly from stoichiometric
bulk targets [16, 61].

The observed peak at around 29.3° (labeled by *) is assigned to the (222)plane of Er2O3 dopant
[11, 22, 23, 25, 62, 63]. Thus, during the sintering process, at 1mol%Er2O3 doping concentration, some of
erbium ionsmight be aggregated and form a separate phase of Er2O3 in the sintered pellet target. In addition, a
slight shift of the ZnOdiffraction peak (002) toward lower angle was observed in Er:ZnO sample. This could
reveal that some of Er3+ ions (with ionic radius (0.89Å) higher than that of Zn2+ (0.74Å))were partly
substituted into the ZnO lattice [21, 25, 64]during the sintering process, and/or the laser ablation. Furthermore,
the XRDpeak intensity is slightly increased in Er-dopedZnONPs. This is likely because the laser ablation or
fragmentation of undoped ZnO sintered bulk target is harder than that of the doped one [16, 65].

TheweakXRDpeak at around 38.24o (labeled by ) in the hybrid Ag/ZnO andAg/Er:ZnO samples, is
corresponded to the face-centered cubic crystal plane (111) ofmetallic Ag (COD1100136) [15, 26, 33–35,
37, 66], and its low intensitymay reveal the poor crystallinity and/or the low productivity of the ablatedAgNPs
in the present study.

The collected data from theXRDpeak, corresponds to the crystal plane (101) of ZnO lattice, was applied to
theDebye–Scherrer’s formula [67] for estimating the average grain size of the ablated nanoparticles (table 1). For
the ZnOand Er:ZnO samples, the estimated average grain size is 19.4 nm and 20.6 nm, respectively.

The constituent elements of the hybrid Ag/Er:ZnOnanoparticles were further identified by the EDXS
measurements (figure S1 in the SupplementaryMaterial). And, the estimatedmass percentages of the elements
Zn,O, Ag, and Er are 57.86, 40.22, 1.23 and 0.68 atomicmass%, respectively, in the scanned area of the sample.

Figures 2(a)–(d) show the TEM images of the laser-ablated ZnO, Er:ZnO, Ag/ZnO, andAg/Er:ZnO
nanoparticles.Most of the ablatedNPs have irregular and nearly round shapes and a broad size-distributionwith
size ranges from∼10 nm to 50 nm.

The nanoparticles were ablated from the bulk targets in distilledwater without surfactant, and this could
cause the aggregation of the obtainedNPs [48, 68].Moreover, the successive laser pulses in a certain target area
could result in continual fragmentation and formation ofNPs, beside the random coalescence of the obtained
NPs in the aqueousmedium [69]. Similar aggregation and broad size-distribution of ZnONPs synthesized by
PLALwere observed in reported studies [16, 48, 55, 69, 70].

Figure 1.TheXRDpatterns of ZnO, Er:ZnO, Ag/ZnO, andAg/Er:ZnO colloidal nanoparticles synthesized via PLAL using bulk
targets in double distilled water.
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Infigures 2(c)–(d), the dark spheres are likelymetallic silver nanoparticles. In general, the AgNPs could be
distinguished from the ZnONPs due to their contrast under the transmission electronmicroscope. TheAg
metal has higher electron density than ZnOmetal oxide and hencewould look darker compared to the ZnONPs
[55]. Furthermore, themetallic nanoparticles, ablated from a bulkmetal in liquidmedium, commonly have a
spherical shape [42, 66].

The crystallinity of the ablatedNPs is further revealed by the selected area electron diffraction (SAED)
patterns.Moreover, from theHR-TEM images infigures 2(aIII), (bIII), and (dIII), the estimated lattice spacing is
0.18, 0.21, and 0.12 nmand could be assigned to the planes (102), (101), and (201) of the hexagonal ZnO lattice
structure, respectively (COD2107059). In addition, the lattice spacing shown infigure 2(cIII) is 0.15 nmand
assigned to the plane (220) of the cubic Ag crystal structure (COD1100136).

TheUV-visible optical absorption spectra of the laser-ablated ZnO, Er:ZnO, Ag/ZnO andAg/Er:ZnONPs
colloidal samples, are shown infigure 3. In all spectra, theUV absorption peak is attributed to the characteristic
interband transition of ZnO semiconductor [55, 66, 68, 71]. In addition, a broad shoulder centered at 412 nm
was observed in the spectra of Ag/ZnO andAg/Er:ZnONPs hybrid samples, and ascribed to the surface
plasmon resonance (SPR) of Agmetallic nanoparticles [55, 66, 67]. TheUV absorbance peak intensity is
obviously higher in Er:ZnO andAg/Er:ZnO samples, implying that the ablation yield andNPs productivity of
the dopedZnO sintered bulk target are higher than those of the undoped ZnOone [16, 65]. No absorption peaks
related to Er2O3 ionswere resolved in Er-dopedZnO samples.

ZnO is a direct bandgap semiconductor, and the bandgap energy Eg of all samples was estimated using the
Tauc plot of (Ahv)2 versus hv (figure 4), where A is the absorbance intensity in arbitrary unit, and hv is the
photon energy in eV [58, 72]. For ZnO and Er:ZnO colloidal NPs, Eg was∼ 3.13 and 3.21 eV, respectively,
and for the hybrid Ag/ZnO andAg/Er:ZnO samples, Eg was∼ 3.11 and 3.21 eV, respectively (table 1). Thus,
the apparent Eg of Er:ZnO sample is slightly widened compared to that of ZnONPs, and the observed
bandgapwidening could be attributed to the Burstein–Moss effect caused by Er-dopants [58, 73]. No
obvious change was observed in the ZnO bandgap upon hybridizing ZnO and Er:ZnONPs colloidal samples
with AgNPs.

The room-temperature Photoluminescence spectra of ZnO, Er:ZnO,Ag/ZnOandAg/Er:ZnO colloidal
NPs are shown infigure 5. The observed nearUV emission peak (equivalent to∼ 3.25 eV) is attributed to the
characteristic near band-edge exciton emission (NBE) of ZnO semiconductor [34, 55, 68, 72, 74–77]. In
addition, broad andweak intensity visible emission bands can be noted and is ascribed to the luminescent
defect-states within the ZnObandgap [34, 55, 68, 75]. No PL emission from erbium (Er3+) ions can be resolved,
even under direct excitation (at 488 nm). Thus, in the laser-ablated Er-doped ZnOnanoparticles inwater, the
characteristics intra-4f radiative transitions of Er3+ ions are inactive.

Infigures 5(a)–(b), the intensity of the ZnO exciton emission peak decreases in the hybrid Ag/ZnOand
Ag/Er:ZnO colloidal NPs, compared to ZnO andEr:ZnO samples, respectively. The quenching of the ZnO
exciton emission, when hybridizationwith noblemetal such as AgNPs, has been observed in previous studies
and attributed to the effective separation of the photo-generated electron–hole pairs, at the Ag /ZnO interface
[26, 27, 34, 37, 55]. Schottky barrier can be formed at themetal/semiconductor interface, andAgmetal can trap
the excited electrons in the ZnO conduction band, and hence reducing the rate of radiative recombination of the
photoexcited charge carriers [26, 33, 37, 55].

The photocatalytic response of the laser-ablated ZnO, Er:ZnO, Ag/ZnO, andAg/Er:ZnO colloidal
nanoparticles was examined through the photodegradation of the R6Gorganic dye. The absorbance spectra of
the dye solution containing the colloidal NPs, after different time intervals (0, 10, 30, and 45 min) ofUV
illumination, are represented infigures 6(b)–(e). For comparison, the absorbance spectra of the blank dye
solution afterUV illumination for the same time intervals, are shown infigure 6(a). It is obvious that, upon
mixingwith the laser-ablatedNPs, the optical absorption peak intensity of the dyemolecules (at∼ 526 nm)
decreases as the time interval ofUV illumination increases, indicating the photocatalytic decomposition of the
organic dyemolecules.

Table 1.TheXRDanalysis and the bandgap energy Eg of the laser-ablated nanoparticles.

Sample Plane (002)
Plane (101)

Eg (eV)
2θ (deg) 2θ (deg) FWHM (deg) Average grain size (nm)

ZnO 34.396 36.221 0.43352 19.3 3.13

Er:ZnO 34.372 36.225 0.40686 20.5 3.21

Ag/ZnO 34.369 36.213 0.43023 19.4 3.11

Ag Er:ZnO 34.376 36.222 0.42425 19.7 3.21
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In general, the peak absorbance (A) of the organic dyemolecules is directly proportional to the dye
concentration (C). Hence, the photodegradation efficiency of the R6Gdyemolecules can be estimated by
[16, 34]:

A A

A

C C

C
% 100 100o t

o

o t

o

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
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⎠
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-

´ =
-

´

whereAo and Co are the absorbance and the corresponding concentration, respectively, of the dyemolecules
before the irradiation, whileAt and Ct are those after illuminationwithUV light for time interval t. The

Figure 2.TheTEM&HR-TEM images, and SAEDpatterns of (a)ZnO, (b)Er:ZnO, (c)Ag/ZnO, and (c)AgEr:/ZnONPs, produced
via PLALusing stoichiometric bulk targets inwater.

5

Phys. Scr. 98 (2023) 095934 SMAhmed andH Imam



estimated photodegradation efficiency η (%) is listed in table 2, and plotted versus the irradiation time interval
t infigure 7(a).

Scheme 1 depicts the irreversible photocatalytic process, under illumination byUV light, as follows.When
ZnOnanoparticles absorb the incidentUVphotons energy, some electrons in the valance band (VB) are excited
to the conduction band (CB) and left behind holes in the valence band. Then, the radical ( O• 2

-) could be formed
by the interaction between the electrons in theCB and the oxygenmolecules dissolved in the solution. In
addition, the radical (•OH) could be produced by the interaction between the holes in theVB and theH2O
molecules, and/or the adsorbed hydroxy (−OH) functional group. Finally, the adsorbedmolecules of the

Figure 3.TheUV-visible absorbance spectra of the laser-ablated ZnO, Er:ZnO, Ag/ZnO, andAg/Er:ZnO colloidal nanoparticles.

Figure 4.TheTauc plot of (Ahυ)2 versus (hυ) for ZnO, Er:ZnO, Ag/ZnOandAg/Er:ZnO colloidal NPs.
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Figure 5.The PL spectra of (a)ZnO, Ag/ZnO, (b)Er:ZnO, andAg/Er:ZnO colloidal nanoparticles (recorded at room-temperature
under excitationwavelength of 325 nm).

Figure 6.The optical absorbance spectra of (a) the blankR6Gdye solution, and (b-e) the R6Gdye solutionmixedwith ZnO, Er:ZnO,
Ag/ZnOandAg/Er:ZnO colloidal NPs, respectively, after different time interval ofUV illumination.
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organic dye pollutant can be degraded by the active superoxide (O2
-⋅ ) and hydroxyl (•OH) radicals, into inorganic

end product [1, 2, 8, 48, 78].
In the blank dye solution (figure 6(a)), the photolysis of the organic R6Gmolecules dissolved in the distilled

water is observed [79], and the estimated degradation efficiency, after 45 min ofUV illumination, is 27%.
However, in the dye solution containing the ZnO, Ag/ZnO, Er:ZnO, andAg/Er:ZnO colloidal NPs, the
degradation efficiency obviously enhanced to be 79.7, 88, 94.1, and 96.4%, respectively, indicating the
photocatalytic nature of the laser-ablated colloidal nanoparticles. The plot of Ln (Co/Ct) versus theUV

Figure 7. (a)The plots of the photodegradation efficiency η (%) versus theUV illumination time t. (b)The plot of Ln (Co/Ct) versus t.

Scheme 1.The photocatalyticmechanismunder illumination byUV light, in dye solution containing Ag/Er:ZnONPs.

Table 2.The photodegradation efficiency η (%) and the rate constant k, for the
blank and dye solutionsmixedwith theNPs.

Sample

The photodegradation efficiency

η (%) The rate constant

k (min−1)
10 min 30 min 45 min

BlankR6G 4.7 17.8 27.0 0.007

ZnO 29.0 57.3 79.7 0.034

Er:ZnO 55.9 87.2 94.1 0.062

Ag/ZnO 44.4 75.2 88.0 0.046

Ag/Er:ZnO 61.4 91.9 96.4 0.074
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Table 3.Data of the preparation techniques and photocatalytic performance of different ZnO-based photocatalysts, collected from reported studies in the literature.

Nanomaterial Preparation technique

Photocatalysis reaction time/pho-

ton source

Photo-degradation

efficiency Organic pollutant/concentration References

Ag/Er:ZnO PLAL 45 min/UV illumination 96.4% Rhodamine 6G (R6G)dye/10 5- M The present study

Au/Eu:ZnO PLAL 45 min/UV illumination 92.8% R6Gdye/10 5- M [16]
0.8 at%Ag-ZnO PLAL 120 min/UV (A-B) light 90% R6Gdye/5μM [55]
0.32wt%Ag- ZnO PLAL 60 min/UV illumination 73% Methylene Blue (MB)

dye /2.7 10 mol L5 /´ -
[36]

1.62wt%Eu:ZnO Forced-HydrolysisMethod 80 min/UV–visible light 99.3% MBdye/0.0267mM [17]
1mol%Eu:ZnO Chemical PrecipitationMethod 180 min/UV light 95.3% MethylOrange (MO) dye/10mg L−1 [18]
Er3+:YAlO3/ZnO composite UltrasonicDispersion&Liquids BoilingMethod 60 min/solar light 86.4% Acid Red Bdye/10mg L−1 [20]
2.5wt%Er-ZnO CombustionMethod 60 min/UV irradiation 99.1% Direct Red 31 (DR-31) dye [22]
0.6wt%Er3+-ZnO Solid-State Reaction Technique 25 min/UV light 96.7% MBdye/10−5M [23]
0.09mmol Er-ZnO Sol–GelMethod 60 min/UV–visible light 90% Phenol/20mg L−1 [24]
Ag/ZnO/PMMA Low-Temperature Atomic LayerDeposition (ALD) on Poly

(MethylMethacrylate) (PMMA)
4 h/UV light 90% SodiumLauryl Sulfate (SDS)/1.5× 10−5

M

[26]

1.7%Ag -ZnO Hydrothermal Technique FollowedBy Pulsed Laser Deposit-

ing of Ag

120 min/UV (A-B) light 86% R6Gdye [27]

Ag/ZnO HydrothermalMethod 40 min/Sunlight illumination 96.7% Rhodamine B (RhB) dye [32]
Ag-ZnO core–shell Atomic LayerDeposition (ALD) onAgCores 100 min/Artificial Sunlight 98% RhBdye/10−5M [39]
0.5 at.%Ag- ZnO Microwave-Assisted Technique 5 h/Solar light irradiation 98.5% Phenol [33]
3mol%Ag -ZnO Modified Polymer-NetworkGelMethod 25 min/Simulated Sunlight 100% MB/4mg L−1 [34]
1wt%Ag-deposited ZnO PhotodepositionMethod 60 min/UV irradiation 99% Levofloxacin/1 g L−1 [35]
3wt%Ag-ZnO Combined Sol–Gel &Chemical ReductionMethod 240 min/UV irradiation visible

light

82.6%76% MBdye/2×10−5M [37]
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illumination time interval t (figure 7(b)) shows that the photocatalytic degradation process exhibits a pseudo
first-order kinetics, with a rate constant k, as follows [25, 55]:

Ln
C

C
kto

t

⎜ ⎟
⎛
⎝

⎞
⎠
=

The rate constant k (estimated from the linear fitting of the plot) is 0.007 min−1 in the blank dye solution,
while in dye solution containing the ZnO,Ag/ZnO, Er:ZnO, andAg/Er:ZnO colloidal NPs, k is 0.034, 0.046,
0.062, and 0.074 min−1, respectively. The hybrid Ag/Er:ZnO colloidal NPs presented the highest photocatalytic
response.

Doping ZnO lattice with 1mol%of Er2O3 could introduce some point defects and trapping sites, which can
enhance the separation of the photo-generated charges, and consequently, the photocatalytic activity of the ZnO
NPs. And the higher concentration of the ablatedNPs in colloidal sample ablated fromEr:ZnObulk, as revealed
by the absorbance spectra, could also attributed to the enhanced photocatalytic response of Er:ZnONPs
colloidal sample [16, 23].Moreover, the trivalent erbium ions (Er3+) dopantsmay capture electrons fromZnO
conduction band and be reduced to Er2+ ions, which consequently could form the active radical ( O• 2

-) via the
interactionwith the dissolved oxygenmolecules [13, 24, 25].

In addition, the AgNPs could act as electrons traps at themetal/semiconductor (Ag/ZnO) Schottky barrier
interface, reducing the charges-recombination rate [26, 27, 33, 37, 55], as revealed by the PL spectra, and
enhancing of the photocatalytic response of ZnONPs in hybrid Ag/ZnOandAg/Er:ZnONPs colloidal samples.
Thus, the accumulated effects of the Er-doping and addingAgNPs obviously enhance the photocatalytic
performance of ZnOnanoparticles in the hybrid Ag/Er:ZnO colloidal NPs sample. Furthermore, the listed data
in table 2 show that the effect of Er2O3 doping on the photocatalytic efficiency of ZnONPs is higher than that of
adding AgNPs, in the present study.

The direct comparison between the obtained results and those of previous works is somehowdifficult
because of the differences in the preparation techniques and the photocatalytic experimental parameters.
However, for rough comparison, the data of the photocatalytic performance of different ZnO-based
photocatalysts, collected from reported studies in the literature and the present study, are listed in table 3. For
instance, 90%of R6Gdyewas degraded during 120 min ofUV illumination in the presence of ZnO–Ag
nanoparticles, synthesized via PLAL using Zn andAg plates in aquabides [55], while in current study about 96%
of the R6Gdyewas degraded in 45 min ofUV illumination.

Furthermore, the obtained results of the current work, when comparedwith those of our previous study
[16], show that the laser-ablatedAg/Er:ZnO colloidal NPs possess enhanced photocatalytic activity similar to
those of theAu/Eu:ZnO. These findings in turns emphasize that the pulsed laser ablation of bulk targets in pure
water is a reliable, fast, and echo-friendly technique for producing hybrid noblemetal/rare-Earth doped
semiconductor colloidal nanoparticles with photocatalytic nature.Moreover, the photocatalytic performance of
ZnO semiconducting nanoparticles was significantly enhanced upon dopingwith the trivalent rare-Earth oxides
(Eu3+ or Er3+) andmixingwith the noblemetals (AuorAg).

4. Conclusion

In the present study, ZnO, Er:ZnO, Ag/ZnO, andAg/Er:ZnO colloidal NPs catalysts were produced via PLAL
using bulk targets in double distilled waterwithout any surfactant. The polycrystalline nature of the laser-ablated
NPs has been confirmed by theXRDanalysis. The TEM images showed aggregated nanoparticles with irregular
round shapes and the size ranges from about 10 nm to 50 nm. The photocatalytic response of the laser-ablated
nanoparticles was examined by the degredation of the organic R6Gdye, underUV illumination. The
degradation efficiency, after 45 min ofUV illumination, was estimated to be 79.7, 88, 94.1, and 96.4%, of the dye
solution containing the ZnO,Ag/ZnO, Er:ZnO, andAg/Er:ZnONPs, respectively. These results confirm the
enhancement of the photocatalytic performance of ZnOupon hybridizationwith the selected dopants, and
indicate that efficient hybrid nanomaterials for photocatalysis applications can be produced by the simple and
reliable PLAL technique.

In the futurework, we plan to immobilize the laser-ablatedAg/Er:ZnO and/or Au/Eu:ZnOnanoparticles in
appropriate polymer and investigate their photocatalytic performance.
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