Cardinality

Showing results in 'Publications'. Show all posts
Dawood, Hend, and Yasser Dawood. "Parametric Intervals: More Reliable or Foundationally Problematic?" Online Mathematics Journal 1, no. 3 (2019): 37-54. Abstractomj_01-03_p37-54_dawood.pdfWebsite

Interval arithmetic has been proved to be very subtle, reliable, and most fundamental in addressing uncertainty and imprecision. However, the theory of classical interval arithmetic and all its alternates suffer from algebraic anomalies, and all have difficulties with interval dependency. A theory of interval arithmetic that seems promising is the theory of parametric intervals. The theory of parametric intervals is presented in the literature with the zealous claim that it provides a radical solution to the long-standing dependency problem in the classical interval theory, along with the claim that parametric interval arithmetic, unlike Moore's classical interval arithmetic, has additive and multiplicative inverse elements, and satisfies the distributive law. So, does the theory of parametric intervals accomplish these very desirable objectives? Here it is argued that it does not.

Keywords: Interval mathematics, Classical interval arithmetic, Parametric interval arithmetic, Constrained interval arithmetic, Overestimation-free interval arithmetic, Interval dependency, Functional dependence, Dependency predicate, Interval enclosures, S-semiring, Uncertainty, Reliability.

Dawood, Hend, and Nefertiti Megahed. "A Consistent and Categorical Axiomatization of Differentiation Arithmetic Applicable to First and Higher Order Derivatives." Punjab University Journal of Mathematics 51, no. 11 (2019): 77-100. Abstractpujm_51-11_p77-100_dawood.pdfWebsite

Differentiation arithmetic is a principal and accurate technique for the computational evaluation of derivatives of first and higher order. This article aims at recasting real differentiation arithmetic in a formalized theory of dyadic real differentiation numbers that provides a foundation for first and higher order automatic derivatives. After we set the stage by putting on a systematic basis certain fundamental notions of the algebra of differentiation numbers, we begin by setting up an axiomatic theory of real differentiation arithmetic, as a many-sorted extension of the theory of a continuously ordered field, and then establish the proofs for its consistency and categoricity. Next, we carefully construct the algebraic system of real differentiation arithmetic, deduce its fundamental properties, and prove that it constitutes a commutative unital ring. Furthermore, we describe briefly the extensionality of the system to an interval differentiation arithmetic and to an algebraically closed commutative ring of complex differentiation arithmetic. Finally, a word is said on machine realization of real differentiation arithmetic and its correctness, with an addendum on how to compute automatic derivatives of first and higher order.

Keywords: Automatic differentiation; Categorical differentiation arithmetic; Consistent differentiation arithmetic; Commutative unital ring; Interval differentiation arithmetic; Algebraically closed commutative rings.

Dawood, Hend, and Yasser Dawood. Logical Aspects of Interval Dependency. Giza: Department of Mathematics, Faculty of Science, Cairo University, 2013. Abstract

By means of the most fundamental logical concepts of quantification theory, the notion of interval dependency is axiomatized and its fundamental properties are deduced.

Tourism