Interval automatic differentiation

Dawood, Hend, and Nefertiti Megahed. "Automatic Differentiation of Uncertainties: An Interval Computational Differentiation for First and Higher Derivatives with Implementation." PeerJ Computer Science 9, no. 5 (2023): e1301. Abstractpeerjcs1301_dawood.pdfWebsite

Acquiring reliable knowledge amidst uncertainty is a topical issue of modern science. Interval mathematics has proved to be of central importance in coping with uncertainty and imprecision. Algorithmic differentiation, being superior to both numeric and symbolic differentiation, is nowadays one of the most celebrated techniques in the field of computational mathematics. In this connexion, laying out a concrete theory of interval differentiation arithmetic, combining subtlety of ordinary algorithmic differentiation with power and reliability of interval mathematics, can extend real differentiation arithmetic so markedly both in method and objective, and can so far surpass it in power as well as applicability. This article is intended to lay out a systematic theory of dyadic interval differentiation numbers that wholly addresses first and higher order automatic derivatives under uncertainty. We begin by axiomatizing a differential interval algebra and then we present the notion of an interval extension of a family of real functions, together with some analytic notions of interval functions. Next, we put forward an axiomatic theory of interval differentiation arithmetic, as a two-sorted extension of the theory of a differential interval algebra, and provide the proofs for its categoricity and consistency. Thereupon, we investigate the ensuing structure and show that it constitutes a multiplicatively non-associative S-semiring in which multiplication is subalternative and flexible. Finally, we show how to computationally realize interval automatic differentiation. Many examples are given, illustrating automatic differentiation of interval functions and families of real functions.

InCLosure Version 2.0 Released

InCLosure: A Language and Environment for Reliable Scientific Computing.
InCLosure version 2.0

http://scholar.cu.edu.eg/henddawood/software/InCLosure
Copyright (c) 2018 by Hend Dawood.
All rights reserved.

Dawood, Hend. InCLosure (Interval enCLosure): A Language and Environment for Reliable Scientific Computing. 1.0 ed. Department of Mathematics, Faculty of Science, Cairo University, 2018. AbstractWebsite

InCLosure (Interval enCLosure) is a Language and Environment for Reliable Scientific Computing. InCLosure, provides rigorous and reliable results in arbitrary precision. From its name, InCLosure (abbreviated as "InCL") focuses on "enclosing the exact real result in an interval". The interval result is reliable and can be as narrow as possible.
InCLosure supports arbitrary precision in both real and interval computations. In real arithmetic, the precision is arbitrary in the sense that it is governed only by the computational power of the machine (default is 20 significant digits). The user can change the default precision according to the requirements of the application under consideration. Since interval arithmetic is defined in terms of real arithmetic, interval computations inherit the arbitrary precision of real arithmetic with an added property that the interval subdivision method is provided with an arbitrary number of subdivisions which is also governed only by the computational power of the machine. The user can get tighter and tighter guaranteed interval enclosures by setting the desired number of subdivisions to cope with the problem at hand.
All the computations defined in terms of real and interval arithmetic (e.g., real and interval automatic differentiation) inherit the same arbitrary precision.
InCLosure is written in Lisp, the most powerful and fast language in scientific computations. InCLosure provides easy user interface, detailed documentation, clear and fast results. Anyone can compute with InCLosure.

Dawood, Hend. "Interval Mathematics as a Potential Weapon against Uncertainty." In Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems. Hershey, PA: IGI Global, 2014. Abstractinterval_mathematics_as_a_potential_weapon_against_uncertainty.pdf

This chapter is devoted to introducing the theories of interval algebra to people who are interested in applying the interval methods to uncertainty analysis in science and engineering. In view of this purpose, we shall introduce the key concepts of the algebraic theories of intervals that form the foundations of the interval techniques as they are now practised, provide a historical and epistemological background of interval mathematics and uncertainty in science and technology, and finally describe some typical applications that clarify the need for interval computations to cope with uncertainty in a wide variety of scientific disciplines.

Keywords: Interval mathematics, Uncertainty, Quantitative Knowledge, Reliability, Complex interval arithmetic, Machine interval arithmetic, Interval automatic differentiation, Computer graphics, Ray tracing, Interval root isolation.