Interval Differentiation Arithmetic

Dawood, Hend, and Nefertiti Megahed. "A Consistent and Categorical Axiomatization of Differentiation Arithmetic Applicable to First and Higher Order Derivatives." Punjab University Journal of Mathematics 51, no. 11 (2019): 77-100. Abstractpujm_51-11_p77-100_dawood.pdfWebsite

Differentiation arithmetic is a principal and accurate technique for the computational evaluation of derivatives of first and higher order. This article aims at recasting real differentiation arithmetic in a formalized theory of dyadic real differentiation numbers that provides a foundation for first and higher order automatic derivatives. After we set the stage by putting on a systematic basis certain fundamental notions of the algebra of differentiation numbers, we begin by setting up an axiomatic theory of real differentiation arithmetic, as a many-sorted extension of the theory of a continuously ordered field, and then establish the proofs for its consistency and categoricity. Next, we carefully construct the algebraic system of real differentiation arithmetic, deduce its fundamental properties, and prove that it constitutes a commutative unital ring. Furthermore, we describe briefly the extensionality of the system to an interval differentiation arithmetic and to an algebraically closed commutative ring of complex differentiation arithmetic. Finally, a word is said on machine realization of real differentiation arithmetic and its correctness, with an addendum on how to compute automatic derivatives of first and higher order.

Keywords: Automatic differentiation; Categorical differentiation arithmetic; Consistent differentiation arithmetic; Commutative unital ring; Interval differentiation arithmetic; Algebraically closed commutative rings.

Dawood, Hend. InCLosure (Interval enCLosure): A Language and Environment for Reliable Scientific Computing. 1.0 ed. Department of Mathematics, Faculty of Science, Cairo University, 2018. AbstractWebsite

InCLosure (Interval enCLosure) is a Language and Environment for Reliable Scientific Computing. InCLosure, provides rigorous and reliable results in arbitrary precision. From its name, InCLosure (abbreviated as "InCL") focuses on "enclosing the exact real result in an interval". The interval result is reliable and can be as narrow as possible.
InCLosure supports arbitrary precision in both real and interval computations. In real arithmetic, the precision is arbitrary in the sense that it is governed only by the computational power of the machine (default is 20 significant digits). The user can change the default precision according to the requirements of the application under consideration. Since interval arithmetic is defined in terms of real arithmetic, interval computations inherit the arbitrary precision of real arithmetic with an added property that the interval subdivision method is provided with an arbitrary number of subdivisions which is also governed only by the computational power of the machine. The user can get tighter and tighter guaranteed interval enclosures by setting the desired number of subdivisions to cope with the problem at hand.
All the computations defined in terms of real and interval arithmetic (e.g., real and interval automatic differentiation) inherit the same arbitrary precision.
InCLosure is written in Lisp, the most powerful and fast language in scientific computations. InCLosure provides easy user interface, detailed documentation, clear and fast results. Anyone can compute with InCLosure.

Tourism