From the Faculty of Medicine, Ain Shams University, Cairo, and the Faculty of Veterinary Medicine, Cairo University, El-Gizeh

Tinea capitis in Egypt

A. Abdel Fattah, M. Refai and Zenab El-Gothamy

Ringworm of the scalp still represents a major problem among children of school-age in Egypt. One of the earliest reports which dealt with this subject was that by Scander (7) in 1928 who isolated Trichophyton violaceum, T. crateriforme, T. acuminatum and T. gypseum in this order of frequency from cases of tinea capitis among children. Gohar (3) in his book „Mycosis and Practical Mycology“ did not mention the relative frequency of species causing tinea capitis in Egypt but he briefly stated that T. violaceum is common in Mediterranean countries.

In 1953 Kennedy (4) examined 217 cases of tinea capitis in Alexandria and reported that T. violaceum, T. ectoendothrix, T. ectothrix, M. audouinii, favus and M. canis are the responsible species. His report depended mainly on clinical and microscopical examination and occasionally on cultural identification.

The value of accurate laboratory diagnosis of dermatophytosis should be reemphasised due to its importance in determining the source of infection, mode of treatment, general management and prognosis. Reviewing the world literature we found that reports coming out from Egypt dealing with the subject of dermatophytes causing ringworm of the scalp are relatively few.

In the last two years we examined 250 cases referred to the mycology laboratory with the clinical diagnosis of either tinea capitis, especially the black dotted form (fig. 1),
or favus (fig. 2 and 3), sometimes the white-headed form. The method used by us is
the usual one, the area affected is cleaned at first with 70% alcohol, few hairs are plugged
off with previously heated non-toothed forceps and scales are collected by scraping with
a sterile blunt scalpel. Some of the material collected are put on a slide in one or two
drops of 15% KOH and covered with a coverglass, heated gently and left for 15—20 mi-
tutes to be examined microscopically. The remaining portion of the specimen is inoculated
on the spot in SABOURAUD-dextrose-nicot-cycloheximide agar.

Fig. 2: A white-headed case of favus due to Trichophyton schoenleinii

Fig. 3: Scaly favus due to Trichophyton schoenleinii in a boy

mykosen 10. Heft 5 (1967)
Results:

In the 250 cases examined by us, T. violaceum (fig. 4) was the commonest cause of scalp ringworm (53%), then comes T. schoenleinii (26.7%) (fig. 5), followed by M. canis (18.8%) and small percentages due to T. mentagrophytes and T. tonsurans.

The results of the laboratory investigation are shown in table 1

<table>
<thead>
<tr>
<th>Method of examination</th>
<th>Number of cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>microscopic + culture +</td>
<td>150</td>
<td>60 %</td>
</tr>
<tr>
<td>microscopic + culture 0</td>
<td>18</td>
<td>7.2 %</td>
</tr>
<tr>
<td>microscopic 0 culture +</td>
<td>22</td>
<td>8.8 %</td>
</tr>
<tr>
<td>microscopic 0 culture 0</td>
<td>60</td>
<td>24 %</td>
</tr>
<tr>
<td>total</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5: *Trichophyton schoenleinii*. Left Petri dish: Culture on *Sabouraud's* glucose agar; right Petri dish: Culture on *Sabouraud's* pepton agar
Table 2

<table>
<thead>
<tr>
<th>Dermatophyte</th>
<th>Number of cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. violaceum</td>
<td>92</td>
<td>53.3%</td>
</tr>
<tr>
<td>T. schoenleinii</td>
<td>46</td>
<td>26.7%</td>
</tr>
<tr>
<td>T. tonsurans</td>
<td>1</td>
<td>0.6%</td>
</tr>
<tr>
<td>T. mentagrophytes</td>
<td>1</td>
<td>0.6%</td>
</tr>
<tr>
<td>M. canis</td>
<td>32</td>
<td>18.8%</td>
</tr>
<tr>
<td>total</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

Species identified in 172 positive cultures are shown in table 2.

Discussion

Probably the first reliable mycological study on tinea capitis in Egypt was the work done by Mikhael (5) in 1953 who reported that between 363 cases of ringworm of the scalp, 76% were found due to T. violaceum, 68% M. canis and 5% due to T. sulpureum, T. schoenleinii, T. discoides, T. mentagrophytes and T. ferrugineum. In 13% of the cases he failed to determine the causative fungi.

In the 250 cases examined by us, T. violaceum was the commonest cause of scalp ringworm (53%) then comes T. schoenleinii (26.7%) in the second place, followed by M. canis (18.8%) and small percentages due to T. mentagrophytes and T. tonsurans.

The prevalence of *T. violaceum* as a cause of Tinea capitis (fig. 6) found in this survey is in agreement with the finding of Coutelen et al (1) in Tunisia, Tripoli, Morocco, Algeria and Egypt. In a clinical laboratory study of tinea capitis in Egypt Galloway et al (2) found that by direct examination of 300 consecutive cases, 184 showed endothrix

![Fig. 6: Black dotted ringworm due to *Trichophyton violaceum* in a girl 8 years old](mykosen_10_5_1967)
infection and 116 endothrix infection of favic type. Cultural examination of "40 Random Cases" yielded 20 isolates of *T. schoenleinii*, 16 of *T. violaceum* 2 *T. mentagrophytes* and 2 *M. canis*. The author stated that *T. schoenleinii* and *T. violaceum* caused the majority of the tinea capitis infections seen in both rural and urban Egypt. They also reported that although they isolated *T. mentagrophytes* and *M. canis* from a few cases only, the latter organism seemed to be rapidly increasing in the larger cities. This would appear to have been borne out this present study carried out 10 years later. TAYLOR and BASSALY (8) reported in 1964 on 400 cases of tinea capitis among Egyptians, of these 162 were due to *T. violaceum*, 139 *M. canis*, 19 *T. schoenleinii*, 30 *T. violaceum + M. canis*, 1 *T. violaceum + T. schoenleinii* and 1 due to *T. schoenleinii + M. canis*. *T. violaceum* and *M. canis* (fig. 7 and 8) were predominantly urban and *T. schoenleinii* rural.

Fig. 8: *Microsporum canis*. Left Petri dish: Culture on Sabouraud's glucose agar; right Petri dish: Culture on Sabouraud's peptone agar

mvkosen 10, Heft 5 (1967)
In a recent report of a survey of small Egyptian mammals for pathogenic fungi, Taylor et al (9) reported the isolation of *T. mentagrophytes* and *M. gypseum* from rodents. These two ringworm fungi were found very infrequently, only 15 isolates being made from over 2000 animals examined, and no lesions were detectable on the animals which probably acted only as passive carriers of the spores. The authors stated that *M. gypseum* has not been reported in Egypt and no cases were seen in the present survey to be due to this dermatophyte. However, Refai and Rietti (6) were able to isolate *M. gypseum* and *T. mentagrophytes* from Egyptian soil. They stated that the soil can be incriminated as a source of infection to man and animals. Further investigations regarding *T. violaceum*, which is the commonest cause of tinea capitis in Egypt, are in progress.

Summary

In 250 cases of tinea capitis in Egypt *T. violaceum* was isolated from 99 cases, *T. schoenleini* from 46 cases, *M. canis* from 24 cases. *T. mentagrophytes* and *T. tonsurans* each was isolated once. The literature dealing with ringworm of the scalp in Egypt all pointed to *T. violaceum* being the commonest causative fungus. *M. audouini* is not encountered in our survey.

Zusammenfassung

In den letzten zwei Jahren wurden 250 Fälle von Kopfkrausekrankungen mykologisch untersucht. In 172 Fällen konnte der Erreger kulturell nachgewiesen werden. In 92 Fällen (55.3%) wurde Trichophyton violaceum isoliert, in 46 Fällen (26.7%) war Trichophyton schoenleini der Erreger, in 32 Fällen (18.8%) Microsporum canis. Trichophyton mentagrophytes und Trichophyton tonsurans wurden je einmal isoliert. Microsporum audouini wurde nicht angetroffen.

Aus einer Übersicht über die Literatur ergibt sich, daß Trichophyton violaceum der häufigste Erreger der Kopfkrausekrankungen in Ägypten ist.

References

Anschr. d. Verff.: Dr. A. Abdel Fattah and Dr. Zenaar El-Gothamy, Faculty of Medicine, Ain Shams University, Cairo; Dr. M. Refai, Faculty of Veterinary Medicine, Cairo University, El-Gizeh, U. A. R.

mykosen 10, Heft 5 (1967)