Export 8 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
The Future of Agriculture in Egypt (Version 2.0): Comparative Full Cost Accounting Study of Organic and Conventional Crop Production Systems in Egypt., Saeda, T., Mohamed R., Abdou D., Bakr Hassan Abou, Abdelrahman Hamada, Elaraby Tarek, and Abouleish Helmy , 06, Cairo, p.30, (2020) Abstractthe-future-of-agriculture-in-egypt-study2.pdf


Removal of toxic elements from aqueous environments using nano zero-valent iron- and iron oxide-modified biochar: a review, Shaheen, Sabry M., Mosa Ahmed, Natasha, Abdelrahman Hamada, Niazi Nabeel Khan, Antoniadis Vasileios, Shahid Muhammad, Song Hocheol, Kwon Eilhann E., and Rinklebe Jörg , BIOCHAR, 2022, Volume 4, Issue 1, p.24, (2022) AbstractWebsite

Biochar (BC) has gained attention for removal of toxic elements (TEs) from aqueous media; however, pristine biochar often exhibits low adsorption capability. Thus, various modification strategies in BC have been developed to improve its removal capability against TEs. Nanoscale zero-valent iron (nZVI) and iron oxides (FeOx) have been used as sorbents for TE removal. However, these materials are prone to agglomeration and also expensive, which make their usage limited for large-scale applications. The nZVI technical demerits could be resolved by the development of BC-based composite sorbents through the loading of nZVI or FeOx onto BC surface. Nano zero-valent iron modified BC (nZVIBC), FeOx-modified BC (FeOxBC) have attracted attention for their capability in removing pollutants from the aqueous phases. Nonetheless, a potential use of nZVIBC and FeOxBC for TE removal from aqueous environments has not been well-realized or reviewed. As such, this article reviews: (i) the preparation and characterization of nZVIBC and FeOxBC; (ii) the capacity of nZVIBC and FeOxBC for TE retention in line with their physicochemical properties, and (iii) TE removal mechanisms by nZVIBC and FeOxBC. Adopting nZVI and FeOx in BC increases its sporptive capability of TEs due to surface modifications in morphology, functional groups, and elemental composition. The combined effects of BC and nZVI, FeOx or Fe salts on the sorption of TEs are complex because they are very specific to TEs. This review identified significant opportunities for research and technology advancement of nZVIBC and FeOxBC as novel and effective sorbents for the remediation of TEs contaminated water.

Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective, Shaheen, Sabry M., Antoniadis Vasileios, Shahid Muhammad, Yang Yi, Abdelrahman Hamada, Zhang Tao, Hassan Noha E. E., Bibi Irshad, Niazi Nabeel Khan, Younis Sherif A., et al. , Renewable and Sustainable Energy Reviews, 2022, Volume 153, p.111791, (2022) AbstractWebsite

Rice is second only to maize among the world's most important cereal crops, with a global harvested area of approximately 158 million hectares and an annual production of more than 700 million tonnes as paddy rice. At this scale, rice production generates vast amounts of waste in the form of straw, husk, and bran. Because of high cellulose, lignin, and silica contents, rice biowaste (RB) can be used to produce rice biochar (RBC) and rice compost (RC). Furthermore, RB can be used as sorbents, soil conditioners, bricks/concrete blocks, flat steel products, and biofuels, all of which make significant contributions to meeting United Nations Sustainable Development Goals (UNSDGs). Although previous reviews have explored individual applications of rice feedstocks, inadequate attention has been paid to multifunctional values and potential multi-utilities. Here, we offer a comprehensive review of RBC and RC with respect to: (1) preparation and characterization; (2) applications as soil conditioners and organic fertilizers and their effects on soil-carbon sequestration; (3) remediation of toxic element–contaminated soils and water; (4) removal of colors, dyes, endocrine-disrupting chemicals, personal-care products, and residual pesticides from water; and (5) applications in the construction industry. Specifically, we describe the opportunities for the sustainable use of RBC and RC in the management of contaminated soils and water as well as the construction industry. Overall, this review is expected to lengthen the list of possible multifunctional applications of RBC and RC.

Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review, Shaheen, Sabry M., Natasha, Mosa Ahmed, El-Naggar Ali, Faysal Hossain Md, Abdelrahman Hamada, Niazi Nabeel Khan, Shahid Muhammad, Zhang Tao, Tsang Yiu Fai, et al. , Bioresource Technology, 2022, Volume 346, p.126581, (2022) AbstractWebsite

The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.

Addition of walnut shells biochar to alkaline arable soil caused contradictory effects on CO2 and N2O emissions, nutrients availability, and enzymes activity, Sial, Tanveer Ali, Shaheen Sabry M., Lan Zhilong, Korai Punhoon Khan, Ghani Muhammad Imran, Khan Muhammad Numan, Syed Ain-ul-Abad, Hussain Asghar Ali Main Noor, Rajpar Inayatullah, Memon Mehrunisa, et al. , Chemosphere, 2022, Volume 293, p.133476, (2022) AbstractWebsite

Mitigation of greenhouse gas (GHGs) emissions and improving soil health using biochar (BC) shall help achieving the UN-Sustainable Development Goals. The impacts of walnut shells biochar (WSB) pyrolyzed at different temperatures on CO2 and N2O emission and soil health have not been yet sufficiently explored. We investigated the effects of addition of WSB pyrolyzed at either 300 °C (WSB-300), 450 °C (WSB-450), or at 600 °C (WSB-600) to alkaline soil on CO2 and N2O emissions, nutrients availability, and soil enzymes activities in a 120-day incubation experiment. Cumulative N2O emissions were reduced significantly as compared to the control, by 64.9%, 50.6%, and 36.4% after WSB-600, WSB-450 and WSB-300, respectively. However, the cumulative CO2 emissions increased, over the control, as follows: WSB-600 (50.7%), WSB-450 (68.6%), and WSB-300 (73.4%). Biochar addition, particularly WSB-600 significantly increased soil pH (from 8.1 to 8.34), soil organic C (SOC; from 8.6 to 22.3 g kg−1), available P (from 21.0 to 60.5 mg kg−1), and K (181.0–480.5 mg kg−1), and activities of urease, alkaline phosphatase, and invertase. However, an opposite pattern was observed with NH4+, NO3−, total N and β-glucosidase activity after WSB application. The WBS produced from high temperature pyrolysis can be used for N2O emissions mitigation and improvement of soil pH, SOC, available P and K, and activities of urease, alkaline, phosphatase. However, WBS produced from low temperature pyrolysis can be used to promote N availability and β-glucosidase; however, these findings should be verified under different field and climatic conditions.

Bias in aggregate geometry and properties after disintegration and drying procedures, Siebers, Nina, Abdelrahman Hamada, Krause Lars, and Amelung Wulf , Geoderma, 2018/3/1/, Volume 313, p.163 - 171, (2018) AbstractWebsite

Isolation and drying soil microaggregates and their building units are of crucial importance when studying their structure and function within different soil management systems. Our aim was to evaluate how different drying techniques preserve small aggregate building units after different disintegration steps. After applying fast wetting, slaking, or ultrasonic dispersion at 440 J mL− 1 to Cambisol topsoils under either long-term forest, grassland, or arable soil management, aggregate-size distributions were assessed using fast image analyses after optical particle-size assessment prior and after air- and freeze-drying. Microaggregates isolated by dry-sieving served as control. While ultrasonic dispersion significantly disintegrated soil aggregates into smaller units, slaking in water did not. Intriguingly, freeze-drying preserved the aggregate size distribution fairly well, with a reaggregation ranging between 1.2 and 10.1%. In contrast, air-drying led to substantial reaggregation of particles ranging between 20.4 and 44.9%. However, freeze-drying also led to slight deformation of particles and also to a redistribution of elements between size-fractions, the extent of which being different for the samples under different land-use. We conclude that ultrasonic treatment followed by freeze-drying is suitable to preserve the correct aggregate size of at least Cambisols, but the properties of the secondary particles may still not reflect true geometric forms and chemical properties.

Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea, Soundari Arockiam Jeyasundar, Parimala Gnana, Ali Amjad, Azeem Muhammad, Li Yiman, Guo Di, Sikdar Ashim, Abdelrahman Hamada, Kwon Eilhann, Antoniadis Vasileios, Mani Vellingiri Manon, et al. , Environmental Pollution, 2021, p.116789, (2021) AbstractWebsite

Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots.The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.

Enhancing microplastics biodegradation during composting using livestock manure biochar, Sun, Yue, Shaheen Sabry M., Ali Esmat F., Abdelrahman Hamada, Sarkar Binoy, Song Hocheol, Rinklebe Jörg, Ren Xiuna, Zhang Zengqiang, and Wang Quan , Environmental Pollution, 2022, Volume 306, p.119339, (2022) AbstractWebsite

Biodegradation of microplastics (MPs) in contaminated biowastes has received big scientific attention during the past few years. The aim here is to study the impacts of livestock manure biochar (LMBC) on the biodegradation of polyhydroxyalkanoate microplastics (PHA-MPs) during composting, which have not yet been verified. LMBC (10% wt/wt) and PHA-MPs (0.5% wt/wt) were added to a mixture of pristine cow manure and sawdust for composting, whereas a mixture without LMBC served as the control (CK). The maximum degradation rate of PHA-MPs (22–31%) was observed in the thermophilic composting stage in both mixtures. LMBC addition significantly (P < 0.05) promoted PHA-MPs degradation and increased the carbon loss and oxygen loading of PHA-MPs compared to CK. Adding LMBC accelerated the cleavage of C–H bonds and oxidation of PHA-MPs, and increased the O–H, CO and C–O functional groups on MPs. Also, LMBC addition increased the relative abundance of dominant microorganisms (Firmicutes, Proteobacteria, Deinococcus-Thermus, Bacteroidetes, Ascomycota and Basidiomycota) and promoted the enrichment of MP-degrading microbial biomarkers (e.g., Bacillus, Thermobacillus, Luteimonas, Chryseolinea, Aspergillus and Mycothermus). LMBC addition further increased the complexity and connectivity between dominant microbial biomarkers and PHA-MPs degradation characteristics, strengthened their positive relationship, thereby accelerated PHA-MPs biodegradation, and mitigated the potential environmental and human health risk. These findings provide a reference point for reducing PHA-MPs in compost and safe recycling of MPs contaminated organic wastes. However, these results should be validated with other composting matrices and conditions.