Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: Modulation of oxidative stress, fibrosis, and inflammatory parameters

Mai A. Zaafan, Hala F. Zaki, Amany I. El-Brairy & Sanaa A. Kenawy

To cite this article: Mai A. Zaafan, Hala F. Zaki, Amany I. El-Brairy & Sanaa A. Kenawy (2016): Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: Modulation of oxidative stress, fibrosis, and inflammatory parameters, Experimental Lung Research, DOI: 10.1080/01902148.2016.1244578

To link to this article: http://dx.doi.org/10.1080/01902148.2016.1244578

Published online: 31 Oct 2016.
Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: Modulation of oxidative stress, fibrosis, and inflammatory parameters

Mai A. Zaafan, Hala F. Zaki, Amany I. El-Brairy, and Sanaa A. Kenawy

Pharmacology & Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt.

Abstract

Objective: The current study aimed to investigate the modulatory effects of pyrrolidinedithiocarbamate (PDTC; 100 mg/kg) on bleomycin-induced pulmonary fibrosis (5 mg/kg; intratracheal) in rats.

Materials and Methods: Rats were randomly assigned to three groups: normal control, bleomycin control, and PDTC-treated groups. Lung injury was evaluated through histological examination, immunohistochemical detection of inducible nitric oxide synthase (iNOS) in lung tissue and evaluating the total and differential leukocytes count in bronchoalveolar lavage fluid. Lung tissue was used for biochemical assessment of lung content of hydroxyproline, transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α) as well as analysis of lipid peroxides, reduced glutathione (GSH), and total nitrite contents.

Results: PDTC attenuated bleomycin-induced pulmonary fibrosis as evidenced by histological observations, decreased iNOS expression and prevention of bleomycin-induced altered total and differential leukocytes count. Additionally, PDTC caused a significant decrease in lung contents of hydroxyproline, TGF-β1, TNF-α, lipid peroxides, and total nitrite coupled with increase in lung GSH content as compared to bleomycin control group.

Conclusion: PDTC attenuated bleomycin-induced pulmonary fibrosis in rats via its anti-inflammatory, antioxidant, and antifibrotic activities.

Introduction

Bleomycin is an antitumor drug that used in the management of some human cancers, including lymphomas, squamous cell carcinomas, testicular tumors, and malignant pleural effusions. Its cytotoxicity occurs by induction of free radicals that cause DNA breaks leading to cell death. Pulmonary toxicity is potentially the most serious side effect, occurring in approximately 10% of treated patients. The most frequent manifestation is pneumonitis occasionally progressing to pulmonary fibrosis which may result in death. The lung is selectively affected by bleomycin because this tissue lacks an enzyme that hydrolyzes the β-aminoalanine moiety of bleomycin, which prevents its metabolite from binding metals such as iron.

Bleomycin is known to generate reactive oxygen species upon binding to DNA and iron, which cause DNA damage. The interaction of bleomycin with DNA appears to initiate the inflammatory and fibroproliferative changes via a concerted action of various cytokines leading to collagen accumulation in the lung. Bleomycin also promotes the depletion of endogenous antioxidant defenses thus exacerbating oxidant-mediated tissue injury. Bleomycin-induced lung fibrosis is a widely used animal model resembling human idiopathic pulmonary fibrosis. Strategies aimed at reducing oxidative stress and inflammatory cytokines release have been successfully tried in suppressing bleomycin-induced lung injury and fibrosis.

Pyrrolidinedithiocarbamate (PDTC) is a low-molecular weight thiol compound that functions as a metal chelator and antioxidant. In addition, PDTC has been found to inhibit nuclear factor-kappa B (NF-κB) and inflammatory cytokines, protecting against many diseases including obstructive uropathy and neuropsychiatric disorders. Moreover, PDTC attenuated the development of monocrotaline-induced pulmonary arterial hypertension through inhibition of NF-κB. Clinical evidence relates NF-κB to the pathogenesis of...
lung diseases like asthma and cystic fibrosis.[10] Hence, the aim of the present study was to evaluate the efficacy of PDTC against bleomycin-induced pulmonary fibrosis by assessing various biochemical, histological, and ultrastructural changes in lungs of rats.

\section*{Materials and methods}

\subsection*{Animals}

Male Wistar albino rats weighing 150–200 g were used in the present study. They were purchased from the Egyptian Company for Production of Vaccines, Sera and Drugs (EGYVAC; Cairo, Egypt) and allowed free access to water and standard pellet chow. Rats were kept under constant conditions (temperature 25°C ± 3°C, and humidity 50%) with 12/12 hours light/dark cycles and were housed in plastic cages in the animal house at October University for Modern Science and Arts (MSA University). The study was carried out according to the guidelines of the Ethics Committee, Faculty of Pharmacy, Cairo University.

\subsection*{Drugs and chemicals}

PDTC was purchased from Sigma-Aldrich (MO, USA); whereas bleomycin hydrochloride was obtained from Nippon Kayaku (Tokyo, Japan). All other chemicals used were of analytical grade.

\subsection*{Induction of pulmonary fibrosis}

Briefly, after the weights were recorded, the rats were anesthetized using a combination of ketamine (80 mg/kg, i.p.) and xylazine (20 mg/kg, i.p.). A midline incision was made in the neck and the trachea was exposed. A tracheal cannula was inserted into the trachea under direct visualization.[11] For induction of pulmonary fibrosis, the rats received a single dose of 5 mg/kg bodyweights bleomycin HCl dissolved in 0.9% NaCl solution by intratracheal instillation and the skin was closed with cat gut surgical suture. The selected route and dose of bleomycin were chosen from published literature.[12]

\subsection*{Experimental design}

Rats were randomly allocated into three groups ($n = 12$). The first group of rats received a single intratracheal dose of sterile saline and served as normal control group. The second group (bleomycin control) received a single intratracheal dose of bleomycin HCl solution (5 mg/kg), while the last group was treated with PDTC (100 mg/kg, p.o.) for 28 days started one week before intratracheal instillation of bleomycin.

After 21 days from bleomycin intratracheal instillation, six rats from each group were sacrificed by cervical dislocation under ketamine anesthesia, and then both lungs were rapidly dissected out and washed with ice-cold saline. In these animals, the right lung was homogenized in isotonic saline to prepare 10% homogenate that was used for biochemical assessment of lung content of hydroxyproline, transforming growth factor beta-1 (TGF-\textbeta{}1) and tumor necrosis factor-alpha (TNF-\textalpha{}) as well as analysis of lipid peroxides, reduced glutathione (GSH) and total nitrite content, while the left lung was used for histopathological examination and immunohistochemical detection of inducible nitric oxide synthase (iNOS). The other six rats in each group were anesthetized with ketamine and their lungs were used for assessment of lung injury markers in bronchoalveolar lavage fluid (BALF) as total and differential leucocytes count.

\subsection*{Biochemical investigations}

Hydroxyproline content was measured in lung homogenate as an indication of collagen deposition using rat specific immunoassay kit according to the method described by Yao et al.[13] Pulmonary TNF-\textalpha{} and TGF-\textbeta{}1 were determined by enzyme-linked immunosorbent assay (ELISA) technique using standard kits (MyBioSource, Inc., USA).

Lipid peroxidation in lung tissues was estimated by the determination of thiobarbituric acid reactive substances content that was evaluated as malondialdehyde (MDA) in lung homogenate using a standard kit purchased from Biodiagnostic (Egypt). Pulmonary GSH content was determined using a commercial kit (Biodiagnostic, Egypt). Pulmonary nitrite content was determined as an index of NO content in lung homogenate using a commercial kit (Assay Designs, Inc., USA).

\subsection*{Bronchoalveolar lavage fluid collection and analysis}

After ketamine anesthesia, the lungs were prepared for lavage by inserting a cannula (size: 24G, flow rate: 16 mL/min) attached by a syringe into the trachea. BALF was obtained by washing the lung three times with 3 mL aliquots of saline through the
tracheal cannula (total 9 mL). Each time, saline remained in the lung for 30 seconds followed by gentle aspiration of the fluid from the lung. Recovery rates of BALF exceeded 80% and were not significantly different between groups. The total numbers of cells in the BALF were counted with a hemocytometer. For differential counts of leukocytes in the BALF, smear slides were prepared and stained with Giemsa solution.[11]

Immunohistochemical expression of iNOS

Paraffin embedded tissue sections of 3 µm thickness were rehydrated in xylene and then in graded ethanol solutions. The slides were then blocked with 5% bovine serum albumin (BSA) in tris buffered saline (TBS) for 2 hours. The sections were then immunostained with primary antibody polyclonal immunoglobulin-G (IgG) to rat iNOS at a concentration of 1 µg/mL with 5% BSA in TBS and incubated overnight at 4°C. After washing the slides with TBS, the sections were incubated with secondary antibody, diluted 1:2000 with 5% BSA in TBS and incubated for 2 hours at room temperature. Finally, sections were washed with TBS and incubated for 5–10 minutes in a solution of 0.02% diaminobenzidine containing 0.01% hydrogen peroxide. Counter staining was performed using hematoxylin, and the slides were visualized under a light microscope.[4]

Histopathologic assessment of lung tissue damage

Autopsy samples were taken from the lung of rats in different groups and fixed in 10% formal saline for 24 hours. Washing was done in tap water then serial dilutions of alcohol (methyl, ethyl, and absolute ethyl) were used for dehydration. Specimens were cleared in xylene and then in graded ethanol solutions. The slides were visualized under a light microscope.[14] The criteria used for grading lung fibrosis were as follows. Grade 0: normal lung; Grade 1: minimal fibrous thickening of alveolar or bronchial walls; Grades 2–3: moderate thickening of walls without obvious damage to lung architecture; Grades 4–5: increased fibrosis with definite damage to lung architecture and formation of fibrous bands or small fibrous mass; Grades 6–7: severe distortion of structure and large fibrous areas; “honeycomb lung” was placed in this category; and Grade 8: total fibrous obliteration of the field. The mean score of all the fields was taken as the fibrosis score of that lung section.[4]

Statistical analysis

Data were expressed as mean ± SEM. Comparisons between means of different groups were carried out using one-way analysis of variance followed by Tukey–Kramer multiple comparisons test.[15] The level of significance was taken as $P < 0.05$. GraphPad Prism software package, version 5 (GraphPad Software, Inc., USA), was used to carry out all statistical tests.

Results

Effect of PDTC treatment on biochemical investigations

Intratracheal instillation of rats with bleomycin resulted in a marked increase in pulmonary hydroxyproline content (131.16 ± 8.7 ng/g wet tissue) as compared to that of the normal control rats (28.61 ± 1.3 ng/g wet tissue). Pretreatment with PDTC significantly suppressed the elevated hydroxyproline (38.90 ± 2.6 ng/g wet tissue) as compared to the bleomycin control group with nonsignificant difference from the normal control rats (Table 1).

In addition, bleomycin caused a marked increase in pulmonary TGF-β1 and TNF-α contents (104.9 ± 7.75 and 39.89 ± 3.15 pg/g wet tissue, respectively) as compared to that of the normal control rats. Meanwhile, pretreatment with PDTC significantly decreased TGF-β1 and TNF-α contents (34.83 ± 2.60 and 7.23 ± 0.32 pg/g wet tissue, respectively) as compared to the normal control rats.

Table 1. Effect of pyrrolidinedithiocarbamate (PDTC) treatment on pulmonary contents of hydroxyproline, transforming growth factor-beta1 (TGF-β1) and tumor necrosis factor-alpha (TNF-α) in bleomycin-induced pulmonary fibrosis in rats.

<table>
<thead>
<tr>
<th>Parameter groups</th>
<th>Hydroxyproline (ng/g wet tissue)</th>
<th>TGF-β1 (pg/g wet tissue)</th>
<th>TNF-α (pg/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>28.61 ± 1.3</td>
<td>27.55 ± 1.5</td>
<td>6.84 ± 0.44</td>
</tr>
<tr>
<td>Bleomycin control</td>
<td>131.16 ± 8.7</td>
<td>104.9 ± 7.75</td>
<td>39.89 ± 3.15</td>
</tr>
<tr>
<td>PDTC (100 mg/kg)</td>
<td>38.90 ± 2.6</td>
<td>34.83 ± 2.60</td>
<td>7.23 ± 0.32</td>
</tr>
</tbody>
</table>

Each value represents mean ± SEM ($n = 6$).

*Significantly different from normal control group at $P < 0.05$.

*Significantly different from bleomycin control group at $P < 0.05$.
bleomycin control group with nonsignificant difference from normal control rats (Table 1).

Bleomycin instillation also resulted in a significant increase in pulmonary contents of MDA and nitrite (192.50 ± 11.60 and 113.73 ± 3.25 µmol/g wet tissue, respectively) with a significant decrease in GSH content (3.16 ± 0.13 mg/g wet tissue) as compared to that of the normal control rats. However, pretreatment with PDTC significantly decreased the elevated MDA and nitrite contents (99.69 ± 3.58 and 73.47 ± 2.22 µmol/g wet tissue, respectively) with a significant increase in GSH content (6.09 ± 0.32 mg/g wet tissue) as compared to that of the bleomycin control group (Table 2).

Table 2. Effect of pyrrolidinedithiocarbamate (PDTC) treatment on pulmonary contents of malondialdehyde (MDA), reduced glutathione (GSH) and nitrite in bleomycin-induced pulmonary fibrosis in rats.

<table>
<thead>
<tr>
<th>Parameter groups</th>
<th>MDA (µmol/g wet tissue)</th>
<th>Nitrite (µmol/g wet tissue)</th>
<th>GSH (mg/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>31.94 ± 2.36</td>
<td>10.44 ± 0.34</td>
<td>27.74 ± 0.80</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>192.50 ± 11.60</td>
<td>3.16 ± 0.13</td>
<td>113.73 ± 3.25</td>
</tr>
<tr>
<td>PDTC (100 mg/kg)</td>
<td>99.69 ± 3.58</td>
<td>6.09 ± 0.32</td>
<td>73.47 ± 2.22</td>
</tr>
</tbody>
</table>

Each value represents mean ± SEM (n = 6).

Table 3. Effect of pyrrolidinedithiocarbamate (PDTC) treatment on total and differential cell counts in bronchoalveolar lavage fluid (BALF) of bleomycin-induced pulmonary fibrosis in rats.

<table>
<thead>
<tr>
<th>Total leukocyte count (×10⁶ mL⁻¹)</th>
<th>Lymphocytes %</th>
<th>Macrophages %</th>
<th>Eosinophiles %</th>
<th>Neutrophiles %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>0.44 ± 0.01</td>
<td>13.08 ± 0.36</td>
<td>82.63 ± 0.2</td>
<td>0.50 ± 0.02</td>
</tr>
<tr>
<td>Bleomycin control</td>
<td>1.44 ± 0.07</td>
<td>6.64 ± 0.15</td>
<td>49.29 ± 0.97</td>
<td>4.07 ± 0.06</td>
</tr>
<tr>
<td>PDTC (100 mg/kg)</td>
<td>0.66 ± 0.02</td>
<td>10.13 ± 0.13</td>
<td>71.58 ± 0.61</td>
<td>2.20 ± 0.1</td>
</tr>
</tbody>
</table>

Each value represents mean ± SEM (n = 6).

Effect of PDTC on the immunohistochemical expression of iNOS in lung tissue

Lung sections from normal control rats showed a small degree of immunostaining for iNOS in the peribronchiolar tissues and alveoli (Figure 1A). On the other hand, intatracheal instillation of bleomycin produced severe increase in the immunohistochemical expression of iNOS in lung tissue as shown in Figure 1B.

Lung sections from rats pretreated with PDTC showed moderate immunohistochemical expression of iNOS as compared to that of bleomycin control group (Figure 1C). Comparative quantification of iNOS staining from all groups is presented in Figure 1D.
normal histological structure with marked decrease in inflammatory cells infiltration and fibrosis (Figure 2C).

Masson trichome staining

Lung tissue from normal rats showed normal histological structure with typical open alveoli, interalveolar spaces and bronchioles with lack of inflammatory cells infiltration and fibrosis (Figure 2D). Bleomycin injection produced obvious high increase in collagen deposition in lung tissue and peribronchiolar fibrosis as demonstrated by the blue color (Figure 2E). Meanwhile, lungs of the rats pretreated with PDTC showed marked decrease in collagen and fibroblastic cells proliferation in peribronchiolar tissue as compared to bleomycin control group (Figure 2F). Grading of pulmonary fibrosis, collagen deposition and inflammatory cells infiltration in histological examination of lung tissues is presented in Table 4.

Discussion

The major side effect of bleomycin that limit its use as a chemotherapeutic agent is the induction of pulmonary fibrosis because of the low levels of cysteine hydro-lase that inactivates bleomycin in lung tissue leading to bleomycin accumulation.\[4\] Bleomycin can be used in experimental models to cause lung injury leading to inflammatory and fibrotic lesions in the lung tissue of various animal species.\[11\] This animal model of pulmonary fibrosis resembles that seen in humans and it

Figure 1. Effect of pyrrolidinedithiocarbamate (PDTC) treatment on the immunohistochemical expression of inducible nitric oxide synthase (iNOS) in lung tissue: (A) Section of a lung from a rat in the normal control group showed a small degree of immunostaining of iNOS in lung tissue as illustrated by the brown color (×16), (B) Section of a lung from a rat in the bleomycin control group showed severe increased expression of iNOS in peribronchiolar tissue and alveoli as illustrated by the brown color immunostaining (×16), (C) Section of a lung from a rat in pyrrolidinedithiocarbamate treated group showed moderate positive immunoreaction of iNOS in peribronchiolar tissue and bronchioles (×16), (D) Quantification of iNOS staining represents the number of stained (positive) cells per 16× field was averaged across 15 field for each rat section. Each value represents mean ± SEM (n = 6), *significantly different from normal control group at P < 0.05, @ significantly different from bleomycin control group at P < 0.05.

<table>
<thead>
<tr>
<th>Histological groups</th>
<th>Normal control</th>
<th>Bleomycin control</th>
<th>PDTC (100 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory cells infiltration (H&E)</td>
<td>0.70 ± 0.04</td>
<td>3.50± 0.18</td>
<td>0.92± 0.08</td>
</tr>
<tr>
<td>Focal Fibrosis (H&E)</td>
<td>0.33 ± 0.03</td>
<td>1.75± 0.13</td>
<td>0.60± 0.03</td>
</tr>
<tr>
<td>Collagen deposition (Masson trichome)</td>
<td>0.43 ± 0.03</td>
<td>5.47± 0.27</td>
<td>0.95± 0.07</td>
</tr>
</tbody>
</table>

Each value represents mean ± SEM (n = 6).

a Significantly different from normal control group at P < 0.05.

b Significantly different from bleomycin control group at P < 0.05.
is useful to assess the effects of potential therapeutic agents.\[16\]
Mechanisms proposed to explain bleomycin-induced lung damage are varied and include induction of a strong inflammatory response with inflammatory cells infiltration that is considered to be the initial response to injury from bleomycin.\[17\] Bleomycin is also able to mediate DNA strand scission in presence of iron and oxygen, producing single or double strand breaks with consequent higher reactive oxygen species and reactive nitrogen species (RNS) production.\[18\] These oxidants can activate several genes related to cell growth, cell death, and fibroblast proliferation with multiple inflammatory mediators and cytokines release from the injured lung tissue possibly through activation of NF-κB, and thereby promote pulmonary fibrosis.\[16\]

The current study demonstrated increased levels of lipid peroxides as a marker of oxidative stress with a concomitant decrease in the antioxidant GSH level in bleomycin-injured rats that could be due to free radical-mediated membrane damage and the reflection of decrease in the antioxidants defense systems. These results are consistent with previous reports.\[11,19\]
The results of this study also showed that pretreatment with PDTC significantly decreased the levels of lipid peroxides production in lung tissue with a concomitant increase in pulmonary GSH content as compared to bleomycin control group. These results are in harmony with the study of Yavuz et al. who showed the ability of PDTC to decrease lipid peroxides in lung tissue of rats with monocrotaline-induced pulmonary arterial hypertension. The antioxidant properties of PDTC were revealed via decreasing lipid peroxides and increasing GSH content in brain of rats with scopolamine-induced cognitive impairment. PDTC functions as an antioxidant due to two structural features: direct scavenging of reactive oxygen metabolites by the dithiocarboxy group and chelating activity for heavy metal ions that may catalyze formation of reactive oxygen metabolites.

NO is an endogenous short-lived free radical that freely diffuses within the cells. Extensive focus has been shifted on RNS, including NO, peroxynitrite and nitrogen dioxide in the pathogenesis of pulmonary fibrosis. Bleomycin induces generation of the reactive species in the lung tissue that results in DNA injury, lipid peroxidation, alteration in lung prostaglandins and an increase in collagen synthesis. As a result of injury, inflammation and cytokine dysregulation occur, fibroblasts are activated, and collagen production is stimulated, while collagen degradation is inhibited.

The current study showed a significant increase in nitrite content in lung tissue of bleomycin control rats that could be considered an indication of increased RNS and in particular NO production. That was also proved through the increased expression of iNOS in lung tissue in the immunohistochemical reaction. The increase in nitrite content in lung tissue of bleomycin-treated rats is in harmony with the study of El-Khouly and reported increased iNOS expression with bleomycin treatment. Moreover, the current study demonstrated that pretreatment with PDTC was able to decrease iNOS expression in lung tissue with consequent suppression in lung nitrite content as compared to bleomycin control group. These results are in agreement with Wang et al. who showed the ability of PDTC to provide neuroprotection after brain ischemia in neonatal rats through its ability to inhibit iNOS production in brain.

The current study also showed a significant increase in the total number of leukocytes count with altered proportions of each cell types through the increased percentages of neutrophils and eosinophils within the differential cell count in BALF of bleomycin treated rats. This is in accordance with previous studies of El-Khouly et al. and Verma et al. In addition to oxidative stress, intratracheal administration of bleomycin leads to interstitial inflammation, with the marked increase in the recruitment of leukocytes. The alteration in inflammatory cell count in BALF is the hallmark of acute inflammatory response. Neutrophils have an ability to induce cellular toxicity via release of myeloperoxidase. The recruitment of leucocyte caused activation of fibroblasts that result in hyperproliferative response leading to an abnormality in the ultrastructural appearance of alveoli and thus fibrosis.

However, the total cell count, neutrophils, lymphocytes, and macrophages count in PDTC pretreated rats remained comparable to the normal control rats. Inhibited leukocytes recruitment, which directly impacted inflammation and tissue repair, might partly account for the preventive effect of PDTC on bleomycin-induced pulmonary fibrosis.

The inflammatory response is the initial response following injury and fibrosis is generally the final outcome of the inflammatory process in the lung. The response includes migration and activation of both resident and circulating inflammatory cells. Inflammatory cells release cytokines and growth factors, stimulate multiplication, migration, secretory activities, and collagen production by fibroblasts. Many cytokine interactions associated with inflammation and fibrosis have been reported in the course of pulmonary fibrosis.

TGF-β1 is an important mediator and has a broad spectrum of activities in pulmonary inflammation, tissue repair, and fibrosis. TGF-β1 can serve as a chemoattractant for fibroblasts and monocytes/macrophages and stimulate these cells to synthesize a number of proinflammatory and fibrogenic cytokines such as TNF-α, IL-6, and TGF-β1 itself. Furthermore, TGF-β1 is one of the most potent inducers of extracellular matrix production. At the same time, TGF-β1 reduces the breakdown of collagen and other matrix proteins by inhibiting the generation of plasminogen activators, matrix metalloproteinase, and elastase, as well as by enhancing the expression of tissue inhibitors of metalloproteinases, plasminogen activator inhibitor-1 and −2. In this study, TGF-β1 production in lung tissue was elevated after bleomycin treatment, as was consistent with previous investigation.
Moreover, TNF-α, a potent proinflammatory cytokine acts as one major molecule among the multifaceted networks of cellular and molecular interactions that regulate the fibrotic process. In this study, a significant elevation in lung TNF-α content expression was observed in the bleomycin-treated group, which is in accordance with the findings of Nikbakht et al. The tissue injury caused by bleomycin is inflammatory mediated and might be due to the production of free radicals, possibly leading to activation of NF-κB and increased synthesis of TNF-α. In the current experiments, pretreatment of rats with PDTC prevented bleomycin-induced increases in lung content of TGF-β1 and TNF-α. PDTC was reported to bear numbers of beneficial properties plus its antioxidant activity including anti-inflammatory and immunomodulatory effects, all of which could account for the observed effects of PDTC on lung cytokines contents. PDTC blocks NF-κB activation and finally inhibit NF-κB mediated increased production of proinflammatory cytokines as TNF-α. Hagar showed the ability of PDTC to decrease TNF-α concentration in serum of rats subjected to lipopolysaccharide-induced oxidative stress and acute hepatic injury rats, while Abd-El-Fattah et al. demonstrated decrease TNF-α content in brain of demented rats.

Hydroxyproline is a hallmark of collagen synthesis. Furthermore, collagen which is an interstitial matrix component also have been reported to play the important role in the pathogenesis of pulmonary fibrosis. In the present study, elevated hydroxyproline content in lung after bleomycin administration was correlated with the accumulated collagen in the alveolar space. These results are in agreement with Verma et al. The subsequent corroboratory histopathological observation showed marked structural distortion of the alveolar space with collapsed alveole, interalveolar inflammation, thickened alveolar wall, and abnormal collagen deposition in bleomycin-induced rats. Similar histopathological changes have been reported by other studies. The current study showed that PDTC was successfully able to inhibit the bleomycin-induced pulmonary fibrosis through the previously mentioned mechanisms. These were demonstrated through the significant inhibition of hydroxyproline content in lung tissue as an indication of decreased collagen deposition. Moreover, it was observed that PDTC could hinder the structural distortion caused by bleomycin as indicated by the improvement in lung fibrosis scores.

In summary, the present study demonstrated that PDTC could significantly suppress bleomycin-induced pulmonary fibrosis in rats due to its anti-inflammatory and antioxidant properties. Based on these findings PDTC may be a promising candidate in the prevention of bleomycin-induced pulmonary fibrosis and attenuation of the exacerbation of idiopathic pulmonary fibrosis.

Acknowledgment

The authors are very grateful to Dr. Adel M. Bakeer, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for examining and interpreting histopathologic aspects of this study.

Declaration of interest

The authors declared no potential conflicts of interest with respect to research, authorship, and publication of this paper.

References

