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Abstract

It has been proven that stress, mainly in the early years of life, can lead to anxiety
and mood problems. Current treatments for psychiatric disorders are not enough,
and some of them show intolerable side effects, emphasizing the urgent need for
new treatment targets. Hence, a better understanding of the different brain
networks, which are involved in the response to anxiety and depression, may evoke
treatments with more specific targets. One of these targets is B-catenin that
regulates brain circuits. B-Catenin has a dual response toward stress, which may
influence coping or vulnerability to stress response. Indeed, B-catenin signaling
involves several processes such as inflammation-directed brain repair, inflammation-
induced brain damage, and neurogenesis. Interestingly, B-catenin reduction is
accompanied by low neurogenesis, which leads to anxiety and depression. However,
in another state, this reduction activates a compensatory mechanism that enhances
neurogenesis to protect against depression but may precipitate anxiety. Thus,
understanding the molecular mechanism of B-catenin could enhance our knowledge
about anxiety and depression's pathophysiology, potentially improving clinical
results by targeting it. Herein, the different states of B-catenin were discussed,
shedding light on possible drugs that showed action on psychiatric disorders through

B-catenin.
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both showing higher vulnerability, especially in women (Kalin, 2020).
Women exhibit different neuronal circuits that make them more

Stress is an unavoidable aspect of human life; nearly everyone
encounters stressful circumstances at some point. Stressful life
events can lead to psychopathology (Mutiso et al., 2023). Mental
illnesses significantly contribute to the world's growing disease
burden. Almost one billion people worldwide are affected by mental
illnesses. Notably, depression and anxiety are the most prevalent
debilitating mental disorders (Health, 2020). Clinically, there is a

strong correlation between anxiety and depressive disorders, with

vulnerable to depression and anxiety, thus emphasizing the impor-
tance of sex differences for advancing psychotherapy (Bangasser &
Cuarenta, 2021). While the Wnt/B-catenin signaling has been
implicated in anxiety and depressive disorders, its exact role and
influence remain to be fully understood. The influence of this
pathway on psychopathological diseases needs more clarification,
especially regarding its link to neurogenesis. To uncover the

complexity between psychotropic diseases and neurogenesis, it is

Abbreviations: APC, adenomatous polyposis coli; BDNF, brain-derived neurotrophic factor; BDZ, benzodiazepine.; DG, dentate gyrus; DKK, Dickkopf; Erk 1/2, extracellular signal-regulated
kinases %; GSK-3, glycogen synthase kinase-3; miRNAs, microRNAs; Sfrp, secreted Fzd-related protein; SSRIs, selective serotonin reuptake inhibitors; TCF, T-cell factor.
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important to elucidate the physiological and pathological status of

Wnt/B-catenin signaling.

2 | Wnt/B-CATENIN SIGNALING AND ITS
DOWNSTREAM TARGETS

The Wnt/B-catenin signaling is involved in the cell cycle, prolifera-
tion, and tissue homeostasis, where its dysfunction is associated with
neurogenesis and neurotransmitters release (Mishra et al., 2021).
B-Catenin is a vital regulator of spine formation, dendritic growth,
survival of newly generated neurons, and aging-related deficits in
adult neurogenesis in the hippocampus (Heppt et al., 2020). Caracci
et al. supported the role of Wnt/B-catenin signaling in regulating
neuronal progenitor cell proliferation, survival, and differentiation
(Caracci et al., 2021). In addition, Briona et al. emphasized the role of
Wnt/B-catenin signaling in promoting neurogenesis and neuronal
differentiation following spinal cord injury (Briona et al., 2015). Also,
Gao et al. showed the role of active B-catenin in promoting neural
stem cell self-renewal; however, its overstimulation can inhibit
normal retinal differentiation (Gao et al., 2021). Increased B-catenin
can induce uncontrollable cell division (Liu et al., 2021; Ye et al,,
2020). A reduction in B-catenin phosphorylation at Ser45, causing
B-catenin accumulation, promoted uncontrollable cell division with a
significant relation to the degree of cell differentiation (Pan et al.,
2019). B-Catenin can beneficially promote tissue regeneration and
homeostasis (Reilly et al., 2023). In addition, overexpressing B-catenin
mediates anxiolytic, antidepressant, and stress resilience effects (Dias
et al., 2014; Larosa & Wong, 2022). Also, inhibiting glycogen synthase
kinase-3 (GSK-3B), promoting B-catenin activity, exhibits resilience to
depression. On the contrary, GSK-3B knockout mice can exhibit
exaggerated anxiety and aberrant social interaction (Gozal et al.,
2021; Nisar et al., 2019). Moreover, single GSK-3p allele deletion
exhibits anxiety and aggressive actions (Jaworski et al., 2019).
B-Catenin is influenced by stress and is thought to be a mediator in
the abused drugs’ effect, which contributes to later susceptibility to

addiction and relapse (Torres-Berrio et al., 2018). Boosting B-catenin

,7‘ B-catenin imbalance

can implicate mood disturbance (Abd-Elmawla et al., 2023). Also, it
can impair social interaction and raise repetitive behavior. In addition,
B-catenin can contribute to premature astrocyte senescence (Kritsilis
et al., 2018). Indeed, increased B-catenin expression is a contributor
in autism spectrum disorders. High levels of B-catenin are linked to
bipolar disorders and schizophrenia, whereas low levels are associ-
ated with epilepsy, Huntington's disease, Parkinson's disease, and
Alzheimer's disease. Therefore, treatment interventions that raise
B-catenin in disorders like bipolar disorders, cancer, epilepsy, and
schizophrenia may exacerbate the case (Ahmed et al., 2017; Gao
et al., 2021). The foregoing may in part explain the role of B-catenin
toward beneficial or harmful outcomes in different body states.
Furthermore, both excessive and insufficient activity of the Wnt/
B-catenin pathway is harmful, leading to cognitive performance
impairment (Gozal et al., 2021), as summarized in Figure 1. Hence,
balanced B-catenin signaling rather than its overexpression or
reduction is pivotal.

B-Catenin has different phosphorylation states which in turn may

influence the fate of the body state. The phosphorylation sites p>¢™>,

p™™41 and p°¢7/%3B-catenin can reduce B-catenin signaling
(Li et al., 2020). Moreover, p™™°, p™¥* and p"8-B-catenin are
potentially essential to brake proliferation, unlike the active form
pYré54.B-catenin (Mishra et al., 2017). A dual mutation of p'Y"4%€

and pTYri20E.

B-catenin promotes several tens of fold reduction in
lifetime compared with a single mutation (Le et al., 2019). Together,
p™Y¢%* and p""142-B-catenin elicit the accumulation of B-catenin in
the cytoplasm (Li et al., 2020). In addition, p°¢?2 and p®¢™°2-g-
catenin enhance B-catenin signaling (Chang et al., 2020; Choi et al.,
2021). Moreover, active p>¢™®7>-B-catenin is a measure for Wnt
signaling efficacy (Pinto et al., 2020). This may partly explain the
crucial role of B-catenin and its balance depending on its precise
phosphorylation site and the present body state (Figure 2). Therefore,
B-catenin regulation plays a crucial role in determining B-catenin
activity.

The phosphorylation and influence of B-catenin are determined by
several proteins. B-Catenin is regulated through the destructive
complex GSK-3B, adenomatous polyposis coli (APC), and Axin

—
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FIGURE 1 The effect of B-catenin imbalance. Balancing B-catenin is pivotal where its dysregulation can cause various diseases such as

cancer, anxiety, depression, and so on.
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The role of B-catenin in psychopathology or psychotherapy is shaped by its various
phosphorylation sites and the corresponding body state
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FIGURE 2 Role of B-catenin toward psychopathology or psychotherapy depends on its phosphorylation site and body state. B-catenin can
be phosphorylated to be active or inactive. The phosphorylation site alongside different body states like anxiety, depression, epilepsy,
Huntington's disease, Parkinson's disease, Alzheimer's disease, autism, bipolar disorders, and schizophrenia can figure out the impact of

B-catenin in the pathophysiology.

(Zhang et al., 2021). Moreover, secreted Fzd-related protein (sFRP) and
Dickkopf (DKK) are considered Wnt/B-catenin inhibitors that regulate
cell survival, proliferation, and fate through monitoring Wnt/B-catenin
level (Gémez-Oliva et al.,, 2020). GSK-3B is a potential therapeutic
target for psychiatric disorders due to its critical role in regulating the
inflammation process. GSK-3f is a proinflammatory protein that can
increase both cytokines and the proinflammatory transcription factor
nuclear factor kappa B (NF-kB) (Marques Orellana et al., 2015). In
addition, the phosphorylation of GSK-3B is involved in hippocampal
neurogenesis that mediates the antidepressant effect of Wnt/
B-catenin signaling (Zou et al., 2021). B-Catenin accumulation is a
marker for GSK-3B inhibition (lllesca-Matus et al., 2023; Karege et al.,
2012). Furthermore, women may be vulnerable to depressive-like
behavior because of increased susceptibility to GSK-3B activation
(Hasbi et al., 2020). Moreover, B-catenin signaling can be elevated in
the inner zone of the adrenal cortex of males compared with females,
which is positively influenced by androgens (Dumontet et al., 2018;
Lyraki et al., 2023). This may be in part account for the vulnerability of
females toward psychopathology. Together, APC is essential for brain
growth through neuronal differentiation and axonal growth (Ruane
et al, 2016). The precise role of APC in the destructive complex
remains obscure, and it was not yet established whether APC
promoted Wnt/B-catenin signaling or inhibited it (Parker & Neufeld,
2020). The activation of downstream proteins of this signaling was the
determinant of APC role and action.

One of the executive tools of B-catenin is microRNA (miRNA).
Besides, miR-155 has a “cleanup” mechanism by inducing apoptosis
and regulates hippocampal viability under the dominance of B-
catenin signaling (Dai et al., 2020; Woodbury et al., 2015). This
enabled Narayanan and Schratt to describe miR-155 as a stress-
regulated microRNAs (miRNA) (Narayanan & Schratt, 2020). More-
over, miR-155 controls microglial cells in several processes, such as
differentiation, inflammation, and astrocyte association. The knowl-
edge of these determinant proteins anticipates the status of
B-catenin signaling and the possible mechanisms that drugs may act

on during anxiety and depression.

3 | B-CATENIN AND NEUROGENESIS IN
PSYCHIATRIC DISORDERS

The concept of functional neurogenesis began to emerge in the
1990s. Continuous neurogenesis can occur in the hippocampus,
subventricular zone, and olfactory bulb. Hippocampus rather than
subventricular is pivotal for mood regulation, which is related to
anxiety and depression disorders (Dutheil et al., 2009; Zhao et al.,
2018). Recently, Chen et al. showed that the olfactory bulb is another
neurogenesis niche that relies on the subventricular zone (Chen et al.,
2023). Rottstaedt et al. revealed that the olfactory bulb volume may
be used as a depression biomarker, however, it is insufficient to
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depend on solely. In addition, the olfactory bulb is involved in
emotional regulation, which is connected to the hippocampus
(Rottstaedt et al. 2018; Rottstadt et al, 2018). Moreover, the
hippocampus is highly connected with the amygdala and higher brain
regions like the prefrontal cortex. These areas have been linked to
mood and stress-related behaviors, especially the hippocampus,
which has been identified as a key regulator of emotional distress and
neurogenesis through the dentate gyrus (DG) (Eliwa et al., 2017;
Joshi et al., 2020). Neurogenesis is related to psychiatric diseases and
is currently embedded in the neuronal networks. While numerous
studies suggest that hippocampal neurogenesis plays a significant
role in the etiology of anxiety and depression, the exact contribution
of neurogenesis to psychiatric disorders remains a topic of debate.
The hippocampus provides the path for most information toward
stress and adaptation. It is observed that hippocampal DG neurogen-
esis is mastered by fB-catenin signaling, where neurogenesis may
influence anxiety and depression (Vidal et al., 2019). Indeed,
B-catenin possesses a dual role in the cell, where it can boost or
diminish neurogenesis (Al-Dalahmah et al., 2020; Knotek et al., 2020).
B-Catenin serves as a point of convergence for directing cell survival,
proliferation, and differentiation, where B-catenin promotes neuro-
genesis (L'Episcopo et al., 2013). In accordance, diminished B-catenin
reduce neurogenesis (Shin et al., 2022; Tao et al., 2023; Xiao et al.,
2021). In line with these studies, Cuesta et al. showed that the
dysregulation of B-catenin is linked to anxiety, and its overexpression
promotes stress resilience (Cuesta et al., 2020). Similarly, other
studies pointed to the role of B-catenin signaling in anxiety-related
behavior by impeding anxiety progression (Wang et al., 2019, 2017).
In the same context, B-catenin showed the ability to be involved in
the psychopathology of another psychiatric disorder, like depression.
Additionally, a decrease in neurogenesis has been linked to the onset
of both anxiety and depression. Conversely, an increase in
neurogenesis is associated specifically with the emergence of anxiety
symptoms (Gomes-Leal, 2021; Morgan et al., 2018). Accordingly,
decreased -catenin may increase neurogenesis and elicit a compen-
satory mechanism that modifies the activity of positive and negative
pathway regulators (Etet et al., 2013; Gao et al., 2021). Furthermore,
inhibiting Wnt/B-catenin signaling through the nuclear factor of
activated T cells positively regulates neurogenesis (Gamit et al.,
2023). Hence, reduced B-catenin signaling may decrease neurogen-
esis, which may implicate anxiety and depression. On the other side,
it may be associated with a coping strategy for increasing neurogen-
esis for the precipitation of anxiety with an anti-depressant character.

From another point of view, the pathophysiology of depression is
associated with inflammatory milieu besides [-catenin signaling
activation impacts inflammation control (Vallée et al., 2022; Yang
et al.,, 2017). Moreover, chronic unpredictable mild stress (CUMS) is
accompanied by a reduction in hippocampal B-catenin that elicits an
inflammatory causing psychopathological disorders
(EI-Kadi et al., 2024; Habib et al., 2020). Eventually, the pathology

of depression is significantly influenced by changes in B-catenin. In

response,

addition, B-catenin is regarded as a common target for treating stress
(Cuesta & Pacchioni, 2017). Koshiyama et al. highlighted the

neurogenesis hypothesis as a recent one for explaining the etiology
of depression instead of the conventional monoamine theory
(Koshiyama et al., 2020). Furthermore, Farioli-Vecchioli and Cutuli
provided valuable insights of implementing the neurogenesis hypoth-
esis in the pathophysiology of depression where depression is
correlated to neurogenesis reduction and hippocampal DG volume.
The neurogenesis hypothesis interpreted the lag of antidepressant
action to increase neurogenesis of the atrophied hippocampus.
Indeed, the latency of antidepressant efficacy is comparable to the
time required for fully maturation and differentiation of newly
formed neurons. Moreover, there are several lines of evidence that
support the neurogenesis hypothesis such as the reduction of
hippocampal neurogenesis upon stress, increasing hippocampal
neurogenesis after antidepressant, and the complete elimination of
antidepressant effect upon ablation of hippocampal neurogenesis
(Farioli-Vecchioli & Cutuli, 2023) Thus, this new hypothesis may be
valid an alternate to monoamine hypothesis. Altering neurogenesis
levels can significantly impact anxiety, with a decrease tending to
exacerbate it, while an increase can have anxiolytic and antidepres-
sant effects. Therefore, these data sum up the necessity to discover
new interventions to regulate B-catenin and the preceding neurogen-
esis processes to manage the resulting anxious and depressed
behavior. The influence of B-catenin on anxiety and depression is
highlighted in Table 1.

Neurotrophic factors figure out the antidepressant effect
through the neurogenesis hypothesis (Samuels & Hen, 2011). One
of the B-catenin targets is brain-derived neurotrophic factor (BDNF),
which heightens neurogenesis, plasticity, and synaptic activity. The
increase in its signal is associated with anti-depressant effect along
with an enhanced hippocampal neurogenesis process (Eliwa et al.,
2017; Zhang et al., 2022). The active form of B-catenin is p>¢"7°>-B-
catenin, which triggers T-cell factor (TCF) activation (Ip et al., 2012).
The hippocampal B-catenin and TCF regulate mood disorders that are
crucial in psychiatric disorders (Zwamborn et al., 2018). Besides,
Dicer and c-Myc are other B-catenin downstream targets (To et al,,
2017; Xu et al., 2016). Dicer is a micro-RNA-generating-protein in the
cell that plays a significant role in neuronal cell-cycle regulation
(Mens & Ghanbari, 2018). Dicer is found to be common in stress-
related disorders (Haramati et al., 2011), while the Myc family is a
super transcription factor that influences essential cell functions such
as cell-cycle genes, cell adhesion, viability, protein synthesis (Chen
et al., 2018). Cell-cycle-related factors such as c-Myc have been
proven to increase proliferation through B-catenin signaling, which
affects neurological diseases like Parkinson's disease, Alzheimer's
disease, depression, and spinal cord injury (Gao et al, 2021).
Moreover, TCF, BDNF, Dicer, and c-Myc, as downstream effectors
of B-catenin signaling, primarily impact anxiety and depression.
Therefore, assessing these effector proteins is significant in evaluat-
ing the efficacy of antidepressant or anxiolytic drugs. Another critical
mediator mastered by B-catenin is the extracellular signal-regulated
kinases 1 and 2 (Erk1/2). B-Catenin mediates Erk1/2 activation (Jung
et al., 2008), which is crucial for stress adaptation (Trollope et al.,
2017). The Erk1/2 activation in the hippocampus was noted to be
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TABLE 1

Stress type

Low anxiety level

Anxiety

Depression and
anxiety

Depression

Animal model

Chronic morphine exposure in
male Sprague-Dawley rats for
1 week

Social isolation in male Wistar
rats

CTNNB1 (mutations in B-catenin)
conditional knockout mice
showing autism-associated
behavioral defects

Chronic unpredictable mild stress-
induced anxiety in female
Wistar rats

Chronic stress-induced anxiety-like
behavior in male C57BL/6 mice
treated with morphine

Activation of dopamine D1-D2
receptor by SKF 83959 in
African green monkey and
Sprague-Dawley rats

Chronic social defeat stress in
c57bl/6 male mice

Two conditional transgenic
C57BL6/J male mice with
inactive or stable B-catenin

Unpredictable chronic mild stress
in male Sprague-Dawley rats

Chronic stress-induced depressive-
like behavior in male
Wistar rats

Chronic unpredictable mild stress-
induced depression in male
Sprague Dawley

Subclinical hypothyroidism model
in Sprague-Dawley rats

Chronic unpredictable mild stress
model in male C57BL/6 mice

GSK-3-inhibitor in stressed C57/
BL6J male mice

Chronic unpredictable mild
stress with lipopolysaccharide
model in C57BL/6 male rats

Role of B-catenin in anxiety and depression.

B-Catenin effect

Anxiolytic

Anxiolytic

Anxiolytic

Anxiolytic

Anxiogenic

Anxiolytic and Anti-
depressant

Anxiolytic and Anti-
depressant

Anxiolytic and Anti-
depressant

Anti-depressant

Anti-depressant

Anti-depressant

Anti-depressant

Anti-depressant

Anti-depressant

Provoke depression

B-Catenin role

Inhibiting B-catenin may be beneficial

in treating this level of low anxiety
caused by morphine exposure

B-Catenin is diminished in stress and

its overexpression promotes stress
resilience and anxiolytic character

Mutations in B-catenin in the parvalbumin

interneurons cause anxiogenic effect
in the open field test and elevated
plus maze test but do not exhibit
depression-like behaviors

Stress lowered B-catenin and downstream

proteins: p-Erk, c-Myc, and Dicer-1
besides miR-17-5p and miR-18

Morphine treatment stimulated Wnt/

B-catenin signaling that enhanced
anxiety

Females are susceptible for depression-

like and anxiety-like behaviors
because of increased vulnerability to
GSK-3B activation, which promotes
B-catenin diminishing

B-Catenin overexpression promoted

resilience with antidepressant and
anxiolytic characters through Dicer1/
microRNA regulation

Reduction of B-catenin in hippocampal

DG shows definite anxiety and
depression-like behavior. While
animals with stabilized-catenin
displayed anxiolytic-like and anti-
depressive-like responses and stress
resilience

Depression can diminish B-catenin in the

nucleus accumbens and ventromedial
prefrontal cortex

Stress is accompanied by a reduction in

hippocampal B-catenin that elicited
inflammatory response figuring
psychopathological disorders

Hippocampal B-catenin levels may be

considered an indicator of
antidepressant effects

B-Catenin upregulation is a marker for

antidepressant effect

B-catenin may figure out depression

through neurogenesis and
inflammation control

Raising B-catenin through GSK-3

inhibition can promote neurogenesis
and antidepressant effect

to depression
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TABLE 1 (Continued)

Stress type Animal model

In vivo chronic unpredictable mild Provoke depression

stress model in
Sprague-Dawley rats and the
invitro neuroinflammation
model of lipopolysaccharide-
induced depression in BV2 cells

inhibited in suicidal cases (Wang & Mao, 2019), and this complies
with the notion that Erk1/2 exhibits antidepressant and anxious
behavior. Pytka et al. suggested the antidepressant effect of Erk in
part following the reduction of both Erk and p-Erk in postmortem
tissues of depressed patients beside similar changes in an animal
model (Pytka et al., 2018). At the same time, Xiang et al. highlighted
the anxiogenic effect of serotonin through phosphorylation of both
Erkl and Erk2 (Xiang et al., 2018). At the cellular level, B-catenin
partners with Erk1/2. Under stress conditions, the signaling between
Erk1/2 and B-catenin impacts miR-17-92 and miR-203 (Chakraborty
et al., 2016). Interestingly, miR17-92 can decrease or increase anxiety
however, its increase enhances neurogenesis (Murphy & Singewald,
2019). Hence, B-catenin may be involved in neurogenesis through
mastering Erk1/2 and miRNA. Accepting the knowledge of this milieu
may open new avenues in advancing the treatment options of

psychiatric disorders. B-Catenin signaling is highlighted in Figure 3.

4 | PSYCHOTROPIC DRUGS AND
NEUROGENESIS

It has been suggested that -catenin mediates the effects of various
psychotropic drugs, especially antidepressants, anxiolytics, and mood
stabilizers (Mishra et al., 2021). Regarding anxiolytics, the benzodiaz-
epine (BDZ) class is one of the most effective anxiolytics. Of note,
benzothiazepines like diazepam are GSK-3p allosteric inhibitors that
influence B-catenin activity (Shri et al., 2023). The JM-20, a BDZ
derivative, protects against neuronal damage and counteracts
cognitive and memory impairments by normalizing phosphorylated
GSK-3B (Wong-Guerra et al., 2021). Treatment by 2,3-BDZ deriva-
tives, rather than the classical 1,4-BDZ, increases hippocampal
proliferation and synaptic transmission, which may improve cognitive
performance (Carli et al,, 2020). However, the common anxiolytic
drug, buspirone, effectively boosts mammalian hippocampal neuro-
genesis without extensive data on its action on B-catenin signaling
(Baptista & Andrade, 2018). Cilostazol is an antiplatelet drug that
experimentally showed antidepressant effect by different mechanisms;
however, there is no study pointed to its significance in increasing f3-
catenin levels that mediated neurogenesis and reversed anxious and
depressive symptoms in different animal models (Kim et al., 2016).
Alijanpour and Rezayof recorded that ketamine can increase hippo-
campal neuronal activity and boost BDNF, a -catenin downstream,

figuring its anxiogenic character (Alijanpour & Rezayof, 2023).

B-Catenin effect

B-Catenin role References

Both in vivo and in vitro activation of Du et al. (2024)

B-catenin can result in depression
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FIGURE 3 Overview of B-catenin signaling. Reduction in the
activity of the destructive complex promotes B-catenin signaling
where it can figure neurogenesis through its downstream targets.
B-catenin can regulate the neurotrophic factor (brain-derived
neurotrophic factor [BDNF]), T-cell factor (TCF), c-myc, and dicer-1.
In addition, B-catenin can master extracellular signal-regulated
kinases 1 and 2 (Erk1/2) activation that influences miR-17-92 and
miR-203.

c-myc I

Therefore, B-catenin signaling, particularly its neurogenesis role, is of
great importance in the pathophysiology of psychotherapy. In addition,
research on this signaling may broaden our understanding of
psychopathology and clinical outcomes.

Regarding major depressive disorder (MDD), there is a relation-
ship between neurogenesis and antidepressants, where antidepres-
sants can promote hippocampal neurogenesis to restore normal
hippocampal functions (Taniguchi et al., 2021). Moreover, selective
serotonin reuptake inhibitors (SSRIs) and lithium may support cellular
survival and brain function through modulation of Wnt/B-catenin
signaling alongside increasing BDNF signals as neurogenesis markers
(Bersani et al., 2015; Liu et al., 2016). In addition, it has been found
that citalopram can promote the proliferation and survival of the
hippocampal DG, the primary site of neurogenesis (Vega-Rivera et al.,
2020). Besides, citalopram can normalize hippocampal GSK-3B and
B-catenin in chronically stressed rats to rescue depression (Teo et al.,
2019); this may, in part, support the therapeutic value of normalizing
B-catenin signaling in mood disorders. Lithium is a Wnt agonist that
can boost hippocampal neurogenesis in neurodegenerative diseases
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TABLE 2 The role of B-catenin in the action of antidepressant medications.

Drug Animal model Conclusion Reference
Imipramine Chronic stress in male BALB/c mice Imipramine produced antidepressant effect via raising -catenin Ni et al. (2018)
and diminishing GSK3p
Fluoxetine Chronic unpredictable mild stress in Fluoxetine ameliorated depression through B-catenin signaling Zou et al. (2021)
male Sprague-Dawley rats
Citalopram Acute and chronic forced swim Chronic citalopram normalized phospho-GSK3 and B-catenin Chen et al. (2012)
stress in male levels. GSK3B/B-catenin signaling is crucial in chronic
Sprague-Dawley rats stress-related depression rather than acute one
Chronic forced swim stress in male Citalopram reversed the harmful effects of psychological stress Liu et al. (2012)
Sprague-Dawley rats through raising B-catenin signaling
Venlafaxine Chronic venlafaxine in normal adult Chronic venlafaxine administration doubled B-catenin-induction Mostany
male albino Wistar rats of astrocyte-like activation in hippocampal stem/progenitor et al. (2008)

cells, that afterwards activated hippocampal neurogenesis

and acute brain injury (Yang et al., 2015). The clinical outcomes of
antidepressants like fluoxetine and venlafaxine were related to
increased PB-catenin signaling through neurogenesis regulation
(Bersani et al., 2015). One of the mood stabilizers commonly used
in bipolar depression, valproic acid, promoted hippocampal neuro-
genesis and regulated hippocampal Wnt/B-catenin signaling in a
mouse model of Alzheimer's disease. Valproic acid can activate the

inactive form p>¢"

-GSK-3B, which increases B-catenin signaling
(Zeng et al., 2019). Schoenfeld and Cameron revealed the effective-
ness of antidepressants in the proliferation, maturation, and survival
of new neurons, while anxiolytics have the same efficacy without
involvement in the survival of new neurons (Schoenfeld & Cameron,
2015). There is contrasting information regarding Wnt/B-catenin's
role in neuron survival, such as differentiation processes. In addition,
continuous activation of B-catenin can result in depression. Fluvox-
etine, according to Du et al., can still have an antidepressant effect in
chronic mild stress-induced B-catenin activation (Fan et al., 2022).
Collectively, this may be inpart highlight the diverse effect of
B-catenin in psychopathology and the modulating activity of some
antidepressant medications toward B-catenin signaling; facilitating
research prospects for targeting B-catenin modulation in psycho-
pathology for better managment (Du et al., 2024). On the other side,
combining BDZs with antidepressants like fluoxetine blocks the
increase in hippocampal neuron generation and survival when
compared with fluoxetine alone in treating depression comorbid
with anxiety (Choi & Kim, 2018; Sun et al., 2013). In the cohort study
of Jeong et al., from 2002 to 2017 about depressed inpatients and
outpatients from the South Korean populations, depressed patients
taking an antidepressant combined with BDZs rather than anti-
depressant monotherapy were associated with an increased risk of
all-cause death (Jeong et al, 2020). Chronic administration of
benzodiazepines with antidepressants negatively influences the
antidepressant effect, where this combination worsens functional
status and exhibits poor clinical outcomes. This may be because of
interference with neurogenesis and a decline in monoaminergic
function and y-aminobutyric acid (Koren et al., 2024; Lim et al.,

2020). Concurrent BDZ treatment at higher doses with ketamine may

dampen ketamine's antidepressant effect (Choi & Kim, 2018). BDZs
exhibit a minimal effect on ketamine's rapid antidepressant effect;
however, sedation was prevalent (Diekamp et al., 2021). Older Asian
adults who combined BDZs with antidepressants like SSRIs and
tricyclic antidepressants suffered from BDZ side effects (Zhong et al.,
2019). In addition, patients should be informed of the increased risk
of fractures when using BDZ combinations (Yang et al., 2021).

On the other side, Xhakaza et al. highlighted that combining
BDZs with SSRIs rapidly enhances the anxiolytic of SSRIs (Xhakaza
et al., 2023). Hence, conventional anxiolytic BDZs may hinder the
antidepressant effect of SSRIs because they do not involve new
neuron survival, as mentioned by Schoenfeld and Cameron
(Schoenfeld & Cameron, 2015). Furthermore, the antidepressant
SSRIs may impact a faster anxiolytic effect because they increase
neurogenesis by raising both proliferation and differentiation, as
mentioned by Schoenfeld and Cameron. The tricyclic antidepressant
imipramine can mediate its therapeutic efficacy through raising
B-catenin and diminishing GSK3p (Ni et al., 2018). Neurodegenerative
diseases are usually accompanied by anxiety and depression.
Pramipexole, which is used for treating Parkinson's disease with
anxiety or depression, can boost neurogenesis of hippocampal DG
(Mishra et al., 2019). This dopaminergic agonist significantly influences
B-catenin signaling (Choi et al., 2017), where Wnt/B-catenin signaling
showed a pivotal role in the differentiation of dopaminergic neurons in
Parkinson's disease (Gao et al., 2021). The role of B-catenin in the
action of antidepressant medications is highlighted in Table 2.

5 | CONCLUSION

B-Catenin regulators, alongside their downstream targets, are crucial
in the pathophysiology of anxiety and depression through neurogen-
esis modulation. Reducing or boosting neurogenesis triggers anxiety.
However, reduced neurogenesis can only precipitate depression.
B-Catenin signaling operates in two distinct ways. A reduction in this
signaling can inhibit the neurogenesis process, leading to both anxiety

and depression. On the other hand, it can trigger a compensatory
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mechanism by increasing factors that stimulate neurogenesis. This
can protect against depression, though it may still result in symptoms
of anxiety. B-Catenin's compensatory mechanism is part of its dual
response. Specifically, the “dual response” of B-catenin refers to its
ability to promote or inhibit neurogenesis based on the body's needs.
Thus, an individual's vulnerability or resilience to psychopathology
might hinge on how effectively B-catenin can switch between these
two modes in response to stressors. Finally, this review broadens our
understanding of the pathophysiology of anxiety and depression
through B-catenin signaling and opens a new horizon toward

targeting B-catenin signaling in treatment interventions.
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